1 synchronized的JVM底层原理实现的精简理解
Java 虚拟机中的synchronized基于进入和退出Monitor对象(也称为管程或监视器锁)实现, 无论是显式同步(synchronized作用在同步代码块,有明确的 monitorenter 和 monitorexit 指令) 还是隐式同步(synchronized作用在方法区,调用指令ACC_SYNCHRONIZED 标志)都是如此,都是使得Monitor对象里面的count计数期增加或者减少来实现,然后synchronized属于重量级锁,效率低下,因为监视器锁(monitor)是依赖于底层的操作系统的Mutex Lock来实现的,而操作系统实现线程之间的切换时需要从用户态转换到核心态,这个状态之间的转换需要相对比较长的时间,时间成本相对较高,这也是为什么早期的synchronized效率低的原因,ReentrantLock底层实现依赖于特殊的CPU指令,比如发送lock指令和unlock指令,不需要用户态和内核态的切换,所以效率高(这里和volatile底层原理类似)。
2 Java对象头与Monitor的理解
1)Java对象的构成
在JVM中,对象在内存中的布局分为三块区域:对象头、实例数据和对齐填充
- 实例变量:类的属性数据信息,包括父类的属性信息。
- 填充数据:虚拟机要求对象起始地址必须是8字节的整数倍,这里和C语言的结构体内存对齐还是有点不一样。
- 对象头:jvm中采用2个字节来存储对象头(如果对象是数组则会分配3个字,多出来的1个字记录的是数组长度),其主要结构是由Mark Word 和 Class Metadata Address
虚拟机位数 头对象结构 作用
32/64bit Mark Word 存储对象的hashCode、锁信息或分代年龄或GC标志等信息
32/64bit Class Metadata Address 类型指针指向对象的类元数据,JVM通过这个指针确定该对象是哪个类的实例。
32位JVM的Mark Word默认存储结构如下
锁状态 | 25bit | 4bit | 1bit是否是偏向锁 | 2bit 锁标志位 |
---|---|---|---|---|
无锁状态 | 对象HashCode | 对象分代年龄 | 0 | 01 |
Mark Word默认存储结构外,还有如下可能变化的结构
2)monitor对象
轻量级锁和偏向锁是Java 6 对 synchronized 锁进行优化后新增加,重量级锁也就是通常说synchronized的对象锁,锁标识位为10,其中指针指向的是monitor对象,每个对象都存在着一个 monitor 与之关联,对象与其 monitor 之间的关系有存在多种实现方式,如monitor可以与对象一起创建销毁或当线程试图获取对象锁时自动生成,但当一个 monitor 被某个线程持有后,它便处于锁定状态。在Java虚拟机(HotSpot)中,monitor是由ObjectMonitor实现的,其主要数据结构如下(位于HotSpot虚拟机源码ObjectMonitor.hpp文件,C++实现的)
ObjectMonitor() {_header = NULL;_count = 0; //记录个数_waiters = 0,_recursions = 0;_object = NULL;_owner = NULL;_WaitSet = NULL; //处于wait状态的线程,会被加入到_WaitSet_WaitSetLock = 0 ;_Responsible = NULL ;_succ = NULL ;_cxq = NULL ;FreeNext = NULL ;_EntryList = NULL ; //处于等待锁block状态的线程,会被加入到该列表_SpinFreq = 0 ;_SpinClock = 0 ;OwnerIsThread = 0 ;}
ObjectMonitor中有两个队列,_WaitSet 和 _EntryList,用来保存ObjectWaiter对象列表( 每个等待锁的线程都会被封装成ObjectWaiter对象),_owner指向持有ObjectMonitor对象的线程,当多个线程同时访问一段同步代码时,首先会进入 _EntryList 集合,当线程获取到对象的monitor 后进入 _Owner 区域并把monitor中的owner变量设置为当前线程同时monitor中的计数器count加1,若线程调用 wait() 方法,将释放当前持有的monitor,owner变量恢复为null,count自减1,同时该线程进入 WaitSe t集合中等待被唤醒。若当前线程执行完毕也将释放monitor(锁)并复位变量的值,以便其他线程进入获取monitor(锁)
monitor对象存在于每个Java对象的对象头中(存储的指针的指向),synchronized锁便是通过这种方式获取锁的,也是为什么Java中任意对象可以作为锁的原因,同时也是notify/notifyAll/wait等方法存在于顶级对象Object中的原因
3 synchronized作用于代码块
synchronized作用代码块后反编译的字节码关键如下
3: monitorenter //进入同步方法
//..........省略其他
15: monitorexit //退出同步方法
16: goto 24
//省略其他.......
21: monitorexit //退出同步方法
从字节码中可知同步语句块的实现使用的是monitorenter 和 monitorexit 指令,其中monitorenter指令指向同步代码块的开始位置,monitorexit指令则指明同步代码块的结束位置,当执行monitorenter指令时,当前线程将试图获取 objectref(即对象锁) 所对应的 monitor 的持有权,当 objectref 的 monitor 的进入计数器为 0,那线程可以成功取得 monitor,并将计数器值设置为 1,取锁成功。如果当前线程已经拥有 objectref 的 monitor 的持有权,那它可以重入这个 monitor (关于重入性稍后会分析),重入时计数器的值也会加 1。倘若其他线程已经拥有 objectref 的 monitor 的所有权,那当前线程将被阻塞,直到正在执行线程执行完毕,即monitorexit指令被执行,执行线程将释放 monitor(锁)并设置计数器值为0 ,其他线程将有机会持有 monitor 。值得注意的是编译器将会确保无论方法通过何种方式完成,方法中调用过的每条 monitorenter 指令都有执行其对应 monitorexit 指令,而无论这个方法是正常结束还是异常结束。为了保证在方法异常完成时 monitorenter 和 monitorexit 指令依然可以正确配对执行,编译器会自动产生一个异常处理器,这个异常处理器声明可处理所有的异常,它的目的就是用来执行 monitorexit 指令。从字节码中也可以看出多了一个monitorexit指令,它就是异常结束时被执行的释放monitor 的指令
4 synchronized作用于方法
synchronized作用代码块后反编译的字节码关键如下
descriptor: ()V//方法标识ACC_PUBLIC代表public修饰,ACC_SYNCHRONIZED指明该方法为同步方法flags: ACC_PUBLIC, ACC_SYNCHRONIZEDCode:
JVM可以从方法常量池中的方法表结构(method_info Structure) 中的 ACC_SYNCHRONIZED 访问标志区分一个方法是否同步方法。当方法调用时,调用指令将会 检查方法的 ACC_SYNCHRONIZED 访问标志是否被设置,如果设置了,执行线程将先持有monitor(虚拟机规范中用的是管程一词), 然后再执行方法,最后再方法完成(无论是正常完成还是非正常完成)时释放monitor。在方法执行期间,执行线程持有了monitor,其他任何线程都无法再获得同一个monitor。如果一个同步方法执行期间抛 出了异常,并且在方法内部无法处理此异常,那这个同步方法所持有的monitor将在异常抛到同步方法之外时自动释放
5 synchronized的优化
锁的状态总共有四种,无锁状态、偏向锁、轻量级锁和重量级锁
其膨胀方向:无锁——>偏向锁——>轻量级锁——>重量级锁,并且膨胀方向不可逆。
1) 偏向锁:
核心思想是,如果一个线程获得了锁,那么锁就进入偏向模式,此时Mark Word 的结构也变为偏向锁结构,当这个线程再次请求锁时,无需再做任何同步操作,即获取锁的过程,这样就省去了大量有关锁申请的操作,从而也就提供程序的性能,对于没有锁竞争的场合,偏向锁有很好的优化效果,毕竟极有可能连续多次是同一个线程申请相同的锁。但是对于锁竞争比较激烈的场合,偏向锁就失效了,因为这样场合极有可能每次申请锁的线程都是不相同的,因此这种场合下不应该使用偏向锁,否则会得不偿失,需要注意的是,偏向锁失败后,并不会立即膨胀为重量级锁,而是先升级为轻量级锁。下面我们接着了解轻量级锁
2) 轻量级锁:
“对绝大部分的锁,在整个同步周期内都不存在竞争”,注意这是经验数据。需要了解的是,轻量级锁所适应的场景是线程交替执行同步块的场合,如果存在同一时间访问同一锁的场合,就会导致轻量级锁膨胀为重量级锁。
3) 、重量级锁
重量级锁是由轻量级锁升级而来,当同一时间有多个线程竞争锁时,锁就会被升级成重量级锁,此时其申请锁带来的开销也就变大
4) 、锁消除
消除锁是虚拟机另外一种锁的优化,这种优化更彻底,在JIT编译时,对运行上下文进行扫描,去除不可能存在竞争的锁
部分参考博客:https://blog.csdn.net/javazejian/article/details/72828483