37.利用linprog解 有约束条件多元变量函数最小值(matlab程序)

1.简述

      

linprog函数主要用来求线型规划中的最小值问题(最大值的镜像问题,求最大值只需要加个“-”)

2. 算法结构及使用方法
针对约束条件为Ax=b或Ax≤b的问题

2.1 linprog函数
x=linprog(f,A,b)
x=linprog(f,A,b,Aeq,beq)
x=linprog(f,A,b,Aeq,beq,lb,ub)
x=linprog(f,A,b,Aeq,beq,lb,ub,x0)

2.2 参数简介
f:目标函数
A:不等式约束条件矩阵
b:对应不等式右侧的矩阵
Aeq:等式约束条件矩阵
beq:不等式右侧的矩阵
Aeq:等式约束条件矩阵
beq:对应等式右侧的矩阵
lb:x的下界
ub:x的上界
x0:设置初始点x0,这个选择项只是对medium-scale算法有效。默认的large-scale算法和简单的算法忽略任何初始点。(一般用不到)

2.3 常用linprog函数及用法举例
linprog函数常用形式为:

x=linprog(f,A,b,Aep,beq,lb,ub);

例子:  学习目标:有约束条件多元变量函数最小值
 适合  计划生产盈利最大   的模式求解,

 最大值解法可转化为求解最小值算法,非常容易


   求最大值转化为求最小值  f=70*x1+120*x2  的最大值,当然x1,x2是有约束的。
   

转化为求  f=-(70*x1+120*x2)  的最小值。


   约束条件:9*x1+4*x2<=3600;4*x1+5*x2<=2000;3*x1+10*x2<=3000;-x1,-x2<

2.代码

主函数:

clc
clear
       
       f=[-70 -120];
       A=[9 4;4 5;3 10];
       B=[3600;2000;3000];
       Aeq=[];  Beq=[];
       lb=[0 0];ub=[inf inf];
        x0=[1 1];
       options=optimset('display','iter','Tolx',1e-8);

     [x,f,exitflag]=linprog(f,A,B,Aeq,Beq,lb,ub,x0,options)
     %[xmincon,fval,exitflag,output] = fmincon(@(x)-(70*x(1)+120*x(2)),x0,A,B,Aeq,Beq,lb,ub,[],options)
 

子函数:

function [x,fval,exitflag,output,lambda]=linprog(f,A,B,Aeq,Beq,lb,ub,x0,options)
%LINPROG Linear programming.
%   X = LINPROG(f,A,b) attempts to solve the linear programming problem:
%
%            min f'*x    subject to:   A*x <= b
%             x
%
%   X = LINPROG(f,A,b,Aeq,beq) solves the problem above while additionally
%   satisfying the equality constraints Aeq*x = beq. (Set A=[] and B=[] if
%   no inequalities exist.)
%
%   X = LINPROG(f,A,b,Aeq,beq,LB,UB) defines a set of lower and upper
%   bounds on the design variables, X, so that the solution is in
%   the range LB <= X <= UB. Use empty matrices for LB and UB
%   if no bounds exist. Set LB(i) = -Inf if X(i) is unbounded below;
%   set UB(i) = Inf if X(i) is unbounded above.
%
%   X = LINPROG(f,A,b,Aeq,beq,LB,UB,X0) sets the starting point to X0. This
%   option is only available with the active-set algorithm. The default
%   interior point algorithm will ignore any non-empty starting point.
%
%   X = LINPROG(PROBLEM) finds the minimum for PROBLEM. PROBLEM is a
%   structure with the vector 'f' in PROBLEM.f, the linear inequality
%   constraints in PROBLEM.Aineq and PROBLEM.bineq, the linear equality
%   constraints in PROBLEM.Aeq and PROBLEM.beq, the lower bounds in
%   PROBLEM.lb, the upper bounds in  PROBLEM.ub, the start point
%   in PROBLEM.x0, the options structure in PROBLEM.options, and solver
%   name 'linprog' in PROBLEM.solver. Use this syntax to solve at the
%   command line a problem exported from OPTIMTOOL.
%
%   [X,FVAL] = LINPROG(f,A,b) returns the value of the objective function
%   at X: FVAL = f'*X.
%
%   [X,FVAL,EXITFLAG] = LINPROG(f,A,b) returns an EXITFLAG that describes
%   the exit condition. Possible values of EXITFLAG and the corresponding
%   exit conditions are
%
%     3  LINPROG converged to a solution X with poor constraint feasibility.
%     1  LINPROG converged to a solution X.
%     0  Maximum number of iterations reached.
%    -2  No feasible point found.
%    -3  Problem is unbounded.
%    -4  NaN value encountered during execution of algorithm.
%    -5  Both primal and dual problems are infeasible.
%    -7  Magnitude of search direction became too small; no further
%         progress can be made. The problem is ill-posed or badly
%         conditioned.
%    -9  LINPROG lost feasibility probably due to ill-conditioned matrix.
%
%   [X,FVAL,EXITFLAG,OUTPUT] = LINPROG(f,A,b) returns a structure OUTPUT
%   with the number of iterations taken in OUTPUT.iterations, maximum of
%   constraint violations in OUTPUT.constrviolation, the type of
%   algorithm used in OUTPUT.algorithm, the number of conjugate gradient
%   iterations in OUTPUT.cgiterations (= 0, included for backward
%   compatibility), and the exit message in OUTPUT.message.
%
%   [X,FVAL,EXITFLAG,OUTPUT,LAMBDA] = LINPROG(f,A,b) returns the set of
%   Lagrangian multipliers LAMBDA, at the solution: LAMBDA.ineqlin for the
%   linear inequalities A, LAMBDA.eqlin for the linear equalities Aeq,
%   LAMBDA.lower for LB, and LAMBDA.upper for UB.
%
%   NOTE: the interior-point (the default) algorithm of LINPROG uses a
%         primal-dual method. Both the primal problem and the dual problem
%         must be feasible for convergence. Infeasibility messages of
%         either the primal or dual, or both, are given as appropriate. The
%         primal problem in standard form is
%              min f'*x such that A*x = b, x >= 0.
%         The dual problem is
%              max b'*y such that A'*y + s = f, s >= 0.
%
%   See also QUADPROG.

%   Copyright 1990-2018 The MathWorks, Inc.

% If just 'defaults' passed in, return the default options in X

% Default MaxIter, TolCon and TolFun is set to [] because its value depends
% on the algorithm.
defaultopt = struct( ...
    'Algorithm','dual-simplex', ...
    'Diagnostics','off', ...
    'Display','final', ...
    'LargeScale','on', ...
    'MaxIter',[], ...
    'MaxTime', Inf, ...
    'Preprocess','basic', ...
    'TolCon',[],...
    'TolFun',[]);

if nargin==1 && nargout <= 1 && strcmpi(f,'defaults')
   x = defaultopt;
   return
end

% Handle missing arguments
if nargin < 9
    options = [];
    % Check if x0 was omitted and options were passed instead
    if nargin == 8
        if isa(x0, 'struct') || isa(x0, 'optim.options.SolverOptions')
            options = x0;
            x0 = [];
        end
    else
        x0 = [];
        if nargin < 7
            ub = [];
            if nargin < 6
                lb = [];
                if nargin < 5
                    Beq = [];
                    if nargin < 4
                        Aeq = [];
                    end
                end
            end
        end
    end
end

% Detect problem structure input
problemInput = false;
if nargin == 1
    if isa(f,'struct')
        problemInput = true;
        [f,A,B,Aeq,Beq,lb,ub,x0,options] = separateOptimStruct(f);
    else % Single input and non-structure.
        error(message('optim:linprog:InputArg'));
    end
end

% No options passed. Set options directly to defaultopt after
allDefaultOpts = isempty(options);

% Prepare the options for the solver
options = prepareOptionsForSolver(options, 'linprog');

if nargin < 3 && ~problemInput
  error(message('optim:linprog:NotEnoughInputs'))
end

% Define algorithm strings
thisFcn  = 'linprog';
algIP    = 'interior-point-legacy';
algDSX   = 'dual-simplex';
algIP15b = 'interior-point';

% Check for non-double inputs
msg = isoptimargdbl(upper(thisFcn), {'f','A','b','Aeq','beq','LB','UB', 'X0'}, ...
                                      f,  A,  B,  Aeq,  Beq,  lb,  ub,   x0);
if ~isempty(msg)
    error('optim:linprog:NonDoubleInput',msg);
end

% After processing options for optionFeedback, etc., set options to default
% if no options were passed.
if allDefaultOpts
    % Options are all default
    options = defaultopt;
end

if nargout > 3
   computeConstrViolation = true;
   computeFirstOrderOpt = true;
   % Lagrange multipliers are needed to compute first-order optimality
   computeLambda = true;
else
   computeConstrViolation = false;
   computeFirstOrderOpt = false;
   computeLambda = false;
end

% Algorithm check:
% If Algorithm is empty, it is set to its default value.
algIsEmpty = ~isfield(options,'Algorithm') || isempty(options.Algorithm);
if ~algIsEmpty
    Algorithm = optimget(options,'Algorithm',defaultopt,'fast',allDefaultOpts);
    OUTPUT.algorithm = Algorithm;
    % Make sure the algorithm choice is valid
    if ~any(strcmp({algIP; algDSX; algIP15b},Algorithm))
        error(message('optim:linprog:InvalidAlgorithm'));
    end
else
    Algorithm = algDSX;
    OUTPUT.algorithm = Algorithm;
end

% Option LargeScale = 'off' is ignored
largescaleOn = strcmpi(optimget(options,'LargeScale',defaultopt,'fast',allDefaultOpts),'on');
if ~largescaleOn
    [linkTag, endLinkTag] = linkToAlgDefaultChangeCsh('linprog_warn_largescale');
    warning(message('optim:linprog:AlgOptsConflict', Algorithm, linkTag, endLinkTag));
end

% Options setup
diagnostics = strcmpi(optimget(options,'Diagnostics',defaultopt,'fast',allDefaultOpts),'on');
switch optimget(options,'Display',defaultopt,'fast',allDefaultOpts)
    case {'final','final-detailed'}
        verbosity = 1;
    case {'off','none'}
        verbosity = 0;
    case {'iter','iter-detailed'}
        verbosity = 2;
    case {'testing'}
        verbosity = 3;
    otherwise
        verbosity = 1;
end

% Set the constraints up: defaults and check size
[nineqcstr,nvarsineq] = size(A);
[neqcstr,nvarseq] = size(Aeq);
nvars = max([length(f),nvarsineq,nvarseq]); % In case A is empty

if nvars == 0
    % The problem is empty possibly due to some error in input.
    error(message('optim:linprog:EmptyProblem'));
end

if isempty(f), f=zeros(nvars,1); end
if isempty(A), A=zeros(0,nvars); end
if isempty(B), B=zeros(0,1); end
if isempty(Aeq), Aeq=zeros(0,nvars); end
if isempty(Beq), Beq=zeros(0,1); end

% Set to column vectors
f = f(:);
B = B(:);
Beq = Beq(:);

if ~isequal(length(B),nineqcstr)
    error(message('optim:linprog:SizeMismatchRowsOfA'));
elseif ~isequal(length(Beq),neqcstr)
    error(message('optim:linprog:SizeMismatchRowsOfAeq'));
elseif ~isequal(length(f),nvarsineq) && ~isempty(A)
    error(message('optim:linprog:SizeMismatchColsOfA'));
elseif ~isequal(length(f),nvarseq) && ~isempty(Aeq)
    error(message('optim:linprog:SizeMismatchColsOfAeq'));
end

[x0,lb,ub,msg] = checkbounds(x0,lb,ub,nvars);
if ~isempty(msg)
   exitflag = -2;
   x = x0; fval = []; lambda = [];
   output.iterations = 0;
   output.constrviolation = [];
   output.firstorderopt = [];
   output.algorithm = ''; % not known at this stage
   output.cgiterations = [];
   output.message = msg;
   if verbosity > 0
      disp(msg)
   end
   return
end

if diagnostics
   % Do diagnostics on information so far
   gradflag = []; hessflag = []; constflag = false; gradconstflag = false;
   non_eq=0;non_ineq=0; lin_eq=size(Aeq,1); lin_ineq=size(A,1); XOUT=ones(nvars,1);
   funfcn{1} = []; confcn{1}=[];
   diagnose('linprog',OUTPUT,gradflag,hessflag,constflag,gradconstflag,...
      XOUT,non_eq,non_ineq,lin_eq,lin_ineq,lb,ub,funfcn,confcn);
end

% Throw warning that x0 is ignored (true for all algorithms)
if ~isempty(x0) && verbosity > 0
    fprintf(getString(message('optim:linprog:IgnoreX0',Algorithm)));
end

if strcmpi(Algorithm,algIP)
    % Set the default values of TolFun and MaxIter for this algorithm
    defaultopt.TolFun = 1e-8;
    defaultopt.MaxIter = 85;
    [x,fval,lambda,exitflag,output] = lipsol(f,A,B,Aeq,Beq,lb,ub,options,defaultopt,computeLambda);
elseif strcmpi(Algorithm,algDSX) || strcmpi(Algorithm,algIP15b)

    % Create linprog options object
    algoptions = optimoptions('linprog', 'Algorithm', Algorithm);

    % Set some algorithm specific options
    if isfield(options, 'InternalOptions')
        algoptions = setInternalOptions(algoptions, options.InternalOptions);
    end

    thisMaxIter = optimget(options,'MaxIter',defaultopt,'fast',allDefaultOpts);
    if strcmpi(Algorithm,algIP15b)
        if ischar(thisMaxIter)
            error(message('optim:linprog:InvalidMaxIter'));
        end
    end
    if strcmpi(Algorithm,algDSX)
        algoptions.Preprocess = optimget(options,'Preprocess',defaultopt,'fast',allDefaultOpts);
        algoptions.MaxTime = optimget(options,'MaxTime',defaultopt,'fast',allDefaultOpts);
        if ischar(thisMaxIter) && ...
                ~strcmpi(thisMaxIter,'10*(numberofequalities+numberofinequalities+numberofvariables)')
            error(message('optim:linprog:InvalidMaxIter'));
        end
    end

    % Set options common to dual-simplex and interior-point-r2015b
    algoptions.Diagnostics = optimget(options,'Diagnostics',defaultopt,'fast',allDefaultOpts);
    algoptions.Display = optimget(options,'Display',defaultopt,'fast',allDefaultOpts);
    thisTolCon = optimget(options,'TolCon',defaultopt,'fast',allDefaultOpts);
    if ~isempty(thisTolCon)
        algoptions.TolCon = thisTolCon;
    end
    thisTolFun = optimget(options,'TolFun',defaultopt,'fast',allDefaultOpts);
    if ~isempty(thisTolFun)
        algoptions.TolFun = thisTolFun;
    end
    if ~isempty(thisMaxIter) && ~ischar(thisMaxIter)
        % At this point, thisMaxIter is either
        % * a double that we can set in the options object or
        % * the default string, which we do not have to set as algoptions
        % is constructed with MaxIter at its default value
        algoptions.MaxIter = thisMaxIter;
    end

    % Create a problem structure. Individually creating each field is quicker
    % than one call to struct
    problem.f = f;
    problem.Aineq = A;
    problem.bineq = B;
    problem.Aeq = Aeq;
    problem.beq = Beq;
    problem.lb = lb;
    problem.ub = ub;
    problem.options = algoptions;
    problem.solver = 'linprog';

    % Create the algorithm from the options.
    algorithm = createAlgorithm(problem.options);

    % Check that we can run the problem.
    try
        problem = checkRun(algorithm, problem, 'linprog');
    catch ME
        throw(ME);
    end

    % Run the algorithm
    [x, fval, exitflag, output, lambda] = run(algorithm, problem);

    % If exitflag is {NaN, <aString>}, this means an internal error has been
    % thrown. The internal exit code is held in exitflag{2}.
    if iscell(exitflag) && isnan(exitflag{1})
        handleInternalError(exitflag{2}, 'linprog');
    end

end

output.algorithm = Algorithm;

% Compute constraint violation when x is not empty (interior-point/simplex presolve
% can return empty x).
if computeConstrViolation && ~isempty(x)
    output.constrviolation = max([0; norm(Aeq*x-Beq, inf); (lb-x); (x-ub); (A*x-B)]);
else
    output.constrviolation = [];
end

% Compute first order optimality if needed. This information does not come
% from either qpsub, lipsol, or simplex.
if exitflag ~= -9 && computeFirstOrderOpt && ~isempty(lambda)
    output.firstorderopt = computeKKTErrorForQPLP([],f,A,B,Aeq,Beq,lb,ub,lambda,x);
else
    output.firstorderopt = [];
end

3.运行结果

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/28043.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

5.PyCharm基础使用及快捷键

在前几篇文章中介绍了PyCharm的安装和汉化,本篇文章一起来看一下PyCharm的基本用法和一些快捷键的使用方法。 本篇文章PyCharm的版本为PyCharm2023.2 新建项目和运行 打开工具,在菜单中——文件——新建项目 选择项目的创建位置(注意最好不要使用中文路径和中文名项目名称…

如何查询多级菜单(采用递归的方法)

应用场景 1.京东 京东的页面就是这么显示的在家用电器下面有电视.空调.洗衣机然后再电视下面又有全面屏电视.教育电视等等 2.我们的后端管理系统 我们后端在页面上显示的很多也是通过层级目录的显示出来。 如何实现 1.准备数据库 我们这里parent_id为0的为我们的一级菜单 …

自己实现Linux 的 cp指令

cp指令 Linux的cp指令就是复制文件&#xff1a; cp: 拷贝(cp 拷贝的文件 要拷贝到的地址或文件)&#xff0c;cp b.c test.c 将b.c拷成test.c的一个新文件 Linux 系统初识_mjmmm的博客-CSDN博客 实现思路 打开源文件读文件内容到缓冲区创建新文件将读到的文件内容全部写入新文…

Apache+Tomcat 整合

目录 方式一&#xff1a;JK 1、下载安装包 2、添加依赖 3、启动服务&#xff0c;检查端口是否监听 4、提供apxs命令 5、检查是否确实依赖 6、编译安装 7、重要配置文件 方式二&#xff1a;http_proxy 方式三&#xff1a;ajp_proxy 方式一&#xff1a;JK 1、下载安装…

windows环境下如何更改pip安装的默认位置

1.查看配置信息 python -m site2.查看配置文件位置 python -m site -help3.修改配置文件 USER_SITE "D:\\soft\\Anaconda\\Lib\\site-packages" USER_BASE "D:\\soft\\Anaconda\\Scripts"如果遇到文件无法保存情况&#xff0c;请给用户增加权限。 4.…

微信如何多号定时群发?

微信作为国内最大的网络社交平台&#xff0c;目前用户已超过11亿。 掐点给朋友送生日祝福,给领导同事送新年祝福&#xff0c;提醒朋友的待办事项等等&#xff0c;这些定时发送功能一直都是微博 QQ&#xff0c;邮箱的专属&#xff0c;如果微信也能定时发送该多好&#xff1f;其…

Qt实现可伸缩的侧边工具栏(鼠标悬浮控制伸缩栏)

Qt实现可伸缩的侧边工具栏 一直在网上找&#xff0c;发现大多的实现方案都是用一个按钮&#xff0c;按下控制侧边栏的伸缩&#xff0c;但是我想要实现鼠标悬浮在侧边栏的时候就伸出&#xff0c;移开就收缩的功能&#xff0c;也没找到好的参考&#xff0c;所以决定自己实现一个…

人工智能的未来:探索下一代生成模型

推荐&#xff1a;使用 NSDT场景编辑器 助你快速搭建可编辑的3D应用场景 生成式 AI 目前能够做什么&#xff0c;以及探索下一波生成式 AI 模型需要克服的当前挑战&#xff1f; 如果你跟上科技世界的步伐&#xff0c;你就会知道生成式人工智能是最热门的话题。我们听到了很多关于…

Kafka-消费者组消费流程

消费者向kafka集群发送消费请求&#xff0c;消费者客户端默认每次从kafka集群拉取50M数据&#xff0c;放到缓冲队列中&#xff0c;消费者从缓冲队列中每次拉取500条数据进行消费。

JVM面试突击班2

JVM面试突击班2 对象被判定为不可达对象之后就“死”了吗 对象的生命周期 创建阶段 &#xff08;1&#xff09;为对象分配存储空间 &#xff08;2&#xff09;开始构造对象 &#xff08;3&#xff09;从超类到子类对static成员进行初始化 &#xff08;4&#xff09;超类成…

数学建模学习(10):遗传算法

遗传算法简介 • 遗传算法&#xff08;Genetic Algorithms&#xff09;是基于生物进化理论的原理发展起来的一种广为 应用的、高效的随机搜索与优化的方法。其主要特点是群体搜索策略和群体中个体之 间的信息交换&#xff0c;搜索不依赖于梯度信息。它是20世纪70年代初期由美国…

铸铝齿轮泵比例流量阀放大器

液压齿轮泵是一种常用的液压泵&#xff0c;被广泛应用于各种低压系统中&#xff0c;如采矿、冶金、建筑、航空、航海、农林等机械的中、高压液压系统中。 液压齿轮泵的特点是结构简单&#xff0c;制造方便&#xff0c;价格低廉&#xff0c;体积小&#xff0c;重量轻&#xff0…

机器学习深度学习——循环神经网络RNN

&#x1f468;‍&#x1f393;作者简介&#xff1a;一位即将上大四&#xff0c;正专攻机器学习的保研er &#x1f30c;上期文章&#xff1a;机器学习&&深度学习—语言模型和数据集 &#x1f4da;订阅专栏&#xff1a;机器学习&&深度学习 希望文章对你们有所帮助…

vs code remote ssh: Resolver error: Error: Got bad result from install script

今天像往常一样&#xff0c;打开 windows 11&#xff0c;使用 vs code 远程连接服务器 ubuntu 20&#xff0c;但是遇到了一个错误&#xff1a;Resolver error: Error: Got bad result from install script。 ok&#xff01;&#xff01;&#xff01;开始 Bing &#xff01;&…

利用abapGit的离线模式导出、导入开发对象

1. 背景 abapGit是为ABAP服务器开发的开源Git客户端&#xff0c;用于在ABAP系统之间导入和导出ABAP对象。 使用abapGit&#xff0c;可以将ABAP对象从任何系统导出到另一个系统&#xff0c;通常是从本地系统导出到云&#xff0c;或者从一个云系统导出到另一个云系统。 当然从…

Redis——特性介绍与应用场景

Redis特性介绍 In-memory data structrues 众所周知&#xff0c;MySQL是一种关系型数据库&#xff0c;其通过表的结构存储数据&#xff0c;就类似于建立了一个excel表格来存储数据。但是像视频这类数据并不适合存储在关系型数据库中&#xff0c;因此存在非关系型数据库——通…

【Linux命令行与Shell脚本编程】第十六章 Shell函数

Linux命令行与Shell脚本编程 第一章 文章目录 Linux命令行与Shell脚本编程六.函数6.1.脚本函数基础6.1.1.创建函数6.1.2.使用函数 6.2.函数返回值6.2.1.默认的退出状态码6.2.2.使用return命令6.2.3.使用函数输出 6.3.函数中使用变量6.3.1.向函数传递参数6.3.2.在函数中处理变量…

python爬虫2:requests库-原理

python爬虫2&#xff1a;requests库-原理 前言 ​ python实现网络爬虫非常简单&#xff0c;只需要掌握一定的基础知识和一定的库使用技巧即可。本系列目标旨在梳理相关知识点&#xff0c;方便以后复习。 目录结构 文章目录 python爬虫2&#xff1a;requests库-原理1. 概述2. re…

Maven 打包生成Windows和Liunx启动文件

新建一个springboot项目。 1、项目结构 2、pom.xml <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocati…

【Linux】Linux下的一些系统文件详细介绍总结

一&#xff0c;~/.bashrc文件 简介 .bashrc 文件是 Linux 系统中的一个脚本文件&#xff0c;其主要作用是在用户登录 Shell 时自动执行一系列的命令和设置环境变量。它通常位于用户的家目录下&#xff0c;文件名为 ".bashrc"&#xff0c;是每个用户都可以修改的个性化…