机器学习深度学习——卷积的多输入多输出通道

👨‍🎓作者简介:一位即将上大四,正专攻机器学习的保研er
🌌上期文章:机器学习&&深度学习——从全连接层到卷积
📚订阅专栏:机器学习&&深度学习
希望文章对你们有所帮助

其实关于卷积的相关内容,包括一些实现之前已经介绍过且代码实现过,具体大家可以看我以前的这篇文章:
机器学习&&深度学习——torch.nn模块
顺便可以把池化层等等看一看。
下面要介绍卷积的多输入多输出通道,这是一个比较重要的内容。

卷积的多输入多输出通道

  • 多输入通道
  • 多输出通道
  • 1×1卷积层
  • 小结

多输入通道

当输入包含多个通道时,需要构造一个与输入数据具有相同输入通道数的卷积核,以便进行计算。
我们卷积核的每个输入通道包含形状为:
k h × k w k_h×k_w kh×kw
的张量。
而我们将所有的张量连结在一个就可以得到一个:
c i × k h × k w c_i×k_h×k_w ci×kh×kw
的卷积核。
下面给出两个输入通道的互相关计算的图示:
在这里插入图片描述
我们实现一下多输入通道互相关运算,先定义好相关的函数:

import torch
from d2l import torch as d2ldef corr2d_multi_in(X, K):"""先遍历X和K的第0个维度,再把它们加起来"""return sum(d2l.corr2d(x, k) for x, k in zip(X, K))

接着构造与上图相对应的X和K,验证输出:

X = torch.tensor([[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]],[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]])
K = torch.tensor([[[0.0, 1.0], [2.0, 3.0]], [[1.0, 2.0], [3.0, 4.0]]])print(corr2d_multi_in(X, K))

最终输出结果:

tensor([[ 56., 72.],
[104., 120.]])

多输出通道

随着神经网络层数的加深,我们常会增加输出通道的维数,通过减少空间分辨率以获得更大的通道深度,我们可以将每个通道看作对不同特征的响应(比如可以分别拿来分辨猫的耳朵、嘴巴、眼睛等等)。但是现实上更复杂,因为每个通道不是独立学习的,而是为了共同使用而优化的。因此,多输出通道并不仅是学习多个单通道的检测器。
为了获得多个通道的输出,我们可以为每个输出通道创建一个形状为:
c i × k h × k w c_i×k_h×k_w ci×kh×kw
的卷积核张量,这样卷积核的形状就为:
c o × c i × k h × k w c_o×c_i×k_h×k_w co×ci×kh×kw
在互相关运算中,每个输出通道先获取所有输入通道,再以对应该输出通道的卷积核计算出结果。
如下我们实现一个计算多个通道的输出的互相关函数,通过将核张量K与K+1(K中每个元素加1)和K+2连接起来,构造了一个具有3个输出通道的卷积核。对输入张量X与卷积核张量K执行互相关运算:

import torch
from d2l import torch as d2ldef corr2d_multi_in(X, K):"""先遍历X和K的第0个维度,再把它们加起来"""return sum(d2l.corr2d(x, k) for x, k in zip(X, K))def corr2d_multi_in_out(X, K):# 迭代“K”的第0个维度,每次都对输入“X”执行互相关运算。# 最后将所有结果都叠加在一起return torch.stack([corr2d_multi_in(X, k) for k in K], 0)X = torch.tensor([[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]],[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]])
K = torch.tensor([[[0.0, 1.0], [2.0, 3.0]], [[1.0, 2.0], [3.0, 4.0]]])
K = torch.stack((K, K + 1, K + 2), 0)print(corr2d_multi_in_out(X, K))

运行结果:

tensor([[[ 56., 72.],
[104., 120.]],
[[ 76., 100.],
[148., 172.]],
[[ 96., 128.],
[192., 224.]]])

1×1卷积层

看起来似乎没有多大意义。毕竟,卷积的本质是有效提取相邻像素间的相关特征,而1×1卷积显然没有这种作用,但其仍旧十分流行。
因为使用了最小窗口,1×1卷积失去了在高度和宽度维度上,识别相邻元素间相互作用的能力,其唯一计算实际上发生在通道上。
下面展示使用了具有3个输入通道和2个输出通道的1×1卷积核。其中,输入和输出具有相同的高度和宽度。
在这里插入图片描述
我们可以使用全连接层来实现1×1卷积(注意对输入和输出的数据形状进行调整),我们可以顺便验证它在执行1×1卷积时相当于之前实现的互相关函数:

import torch
from d2l import torch as d2ldef corr2d_multi_in(X, K):"""先遍历X和K的第0个维度,再把它们加起来"""return sum(d2l.corr2d(x, k) for x, k in zip(X, K))def corr2d_multi_in_out(X, K):# 迭代“K”的第0个维度,每次都对输入“X”执行互相关运算。# 最后将所有结果都叠加在一起return torch.stack([corr2d_multi_in(X, k) for k in K], 0)def corr2d_multi_in_out_1x1(X, K):c_i, h, w = X.shapec_o = K.shape[0]X = X.reshape((c_i, h * w))K = K.reshape((c_o, c_i))# 全连接层中的矩阵乘法Y = torch.matmul(K, X)return Y.reshape((c_o, h, w))X = torch.normal(0, 1, (3, 3, 3))
K = torch.normal(0, 1, (2, 3, 1, 1))Y1 = corr2d_multi_in_out_1x1(X, K)
Y2 = corr2d_multi_in_out(X, K)
assert float(torch.abs(Y1 - Y2).sum()) < 1e-6

小结

1、多输入多输出通道可以用来扩展卷积层的模型。
2、当以每像素为基础应用时,1×1卷积层相当于全连接层。
3、1×1卷积层通常用于调整网络层的通道数量和控制模型复杂性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/27696.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++三个线程依次打印abc

代码 #include<iostream> #include<thread> #include<mutex> #include<condition_variable> using namespace std; mutex mtx; condition_variable cv; int flag0; void A(){unique_lock<mutex>lk(mtx);int count0;while(count<10){while(fl…

Jmeter录制HTTPS脚本

Jmeter录制HTTPS脚本 文章目录 添加“HTTP代理服务器”设置浏览器代理证书导入存在问题 添加“HTTP代理服务器” 设置浏览器代理 保持端口一致 证书导入 点击一下启动让jmeter自动生成证书&#xff0c;放在bin目录下&#xff1a; 打开jmeter的SSL管理器选择刚刚生成的证书&…

Vue——formcreate表单设计器自定义组件实现(二)

前面我写过一个自定义电子签名的formcreate表单设计器组件&#xff0c;那时初识formcreate各种使用也颇为生疏&#xff0c;不过总算套出了一个组件不是。此次时隔半年又有机会接触formcreate&#xff0c;重新熟悉和领悟了一番各个方法和使用指南。趁热打铁将此次心得再次分享。…

THS4301 振荡问题排查及解决过程

项目背景简介: 本项目是基于一款微弱信号处理前级模拟电路设计方案。 问题描述: 在生产标定中,发现以前的程序在小量程标定后,切换到差分和单端后,两者的直流偏置不一样,且切换到差分输入时,能发现有振荡现象(有设备单端输入也有振荡); 排查分析过程: 1)首先可以…

tomcat上部署jpress

一.确保有jdk&#xff0c;tomcat和mysql环境 二.新建jpress数据库&#xff0c;新建jpress用户并赋予所有权限 三.将jpress的war上传到tomcat/apache-tomcat-8.5.70/webapps&#xff0c;具体根据你的实际tomcat安装路径为准&#xff0c;上传完成后他会自己解包 四.到浏览器完…

JAVA实现图书管理系统(思路,和完整代码)

因为文件过多每个文件之间的关系如下&#xff08;每个文件中都只有一个类&#xff09;&#xff1a; 因为JAVA属于面向对象编程的语言&#xff0c;所以我们想要实现图书管理系统就得分以下几步&#xff1a; 找出其中的所有的对象实现所有的对象完成对象之间的交互 在图书管理系…

【产品经理】高阶产品如何提出有效解决方案?(1方法论+2案例+1清单)

每一件事情总有它的解决方案&#xff0c;在工作中亦是如此&#xff0c;而有效的解决方案&#xff0c;一定是具有系统性的。 有效的解决方案&#xff0c;一定是系统性的解决方案。 什么是系统性解决方案&#xff1f; 从系统结构&#xff08;或连接关系&#xff09;入手&#x…

【C语言】初识C语言+进阶篇导读

✨个人主页&#xff1a; Anmia.&#x1f389;所属专栏&#xff1a; C Language &#x1f383;操作环境&#xff1a; Visual Studio 2019 版本 本篇目的是面向编程新手&#xff0c;没接触过编程的人。以及C进阶的导读。 内容是C语言重要知识点的简单解释&#xff0c;不做详解。给…

73. 矩阵置零

题目链接&#xff1a;力扣 解题思路&#xff1a; 方法一&#xff1a;比较容易想到的方向&#xff0c;使用两个数组row和col保存有0的行或者列&#xff0c;然后将有0的那一行或那一列的所有元素都设置为0 AC代码 class Solution {public void setZeroes(int[][] matrix) {in…

小尺寸、高效率的88W8997-A0-CBQ2E005-T无线互连芯片,NV24C64DWVLT3G 64Kb EEPROM存储器

88W8997-A0-CBQ2E005-T 是业界尺寸最小、能效最高的MU-MIMO无线互连组合芯片&#xff0c;面向企业级和消费级市场。88W8997是业界首款全面支持Bluetooth 4.2以及未来Bluetooth 5.0全套功能的28nm 2 x 2 802.11ac Wave-2组合芯片。该器件实现了高达867Mbps的峰值数据传送速率&am…

9-数据结构-栈(C语言版)

数据结构-栈&#xff08;C语言版&#xff09; 目录 数据结构-栈&#xff08;C语言版&#xff09; 1.栈的基础知识 1.入栈&#xff0c;出栈的排列组合 情景二&#xff1a;Catalan函数&#xff08;计算不同出栈的总数&#xff09; 2.栈的基本操作 1.顺序存储 (1)顺序栈-定义…

自学python,学了又忘,感觉学不好是为啥呢

一、前言 最近发现&#xff0c;身边很多的小伙伴学Python都会遇到一个问题&#xff0c;就是资料也看了很多&#xff0c;也花了很多时间去学习但还是很迷茫&#xff0c;时间长了又发现之前学的知识点很多都忘了&#xff0c;都萌生出了想半路放弃的想法。 其实造成这样情况根本的…

使用toad库进行机器学习评分卡全流程

1 加载数据 导入模块 import pandas as pd from sklearn.metrics import roc_auc_score,roc_curve,auc from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression import numpy as np import math import xgboost as xgb …

搭建 elasticsearch8.8.2 伪集群 windows

下载windows 版本 elasticsearch8.8.2 以下链接为es 历史版本下载地址&#xff1a; Past Releases of Elastic Stack Software | Elastic windows 单节点建立方案&#xff1a; 下载安装包 elasticsearch-8.8.2-windows-x86_64.zip https://artifacts.elastic.co/download…

element-plus:el-date-picker日期只选择年月不要日

<el-date-picker v-model"value" type"month" format"YYYY-MM" value-format"YYYY-MM" />使用format属性将时间显示格式修改为YYYY–MM 年月格式 使用value-format将绑定值的格式修改为YYYY–MM年月格式

一台电脑给另外一台电脑共享网络

这里写自定义目录标题 有网的电脑上操作一根网线连接两台电脑没网的电脑上 有网的电脑上操作 右键->属性->共享 如同选择以太网&#xff0c;勾选。确认。 一根网线连接两台电脑 没网的电脑上 没网的电脑为mips&麒麟V10 新增个网络配置ww&#xff0c;设置如下。 …

携手区块链技术,踏上可信“双碳”之路 | 研讨会回顾

自中央明确提出碳达峰碳中和的“双碳”目标以来&#xff0c;区块链技术凭借能为碳排放、碳足迹打上可信标签的天赋异禀&#xff0c;引起了政策部门、学术界及产业实践代表们的高度重视。 7月11日&#xff0c;在第33个全国节能宣传周之际、全国低碳日前夕&#xff0c;微众区块链…

R语言安装包Seurat

环境Ubuntu22&#xff0c;R4.1 also installing the dependencies ‘curl’, ‘openssl’, ‘httr’, ‘plotly’ R包安装的时候报了这个错误ERROR: dependencies httr, plotly are not available for package Seurat 解决方法&#xff0c;退出R&#xff0c;在terminal中键入…

C# OpenCvSharp 读取rtsp流

效果 项目 代码 using OpenCvSharp; using OpenCvSharp.Extensions; using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Linq; using System.Text; using System.Threading; using Syste…

k8s --pod详解

目录 一、Pod基础概念 1、pod简介 2、在Kubrenetes集群中Pod有如下两种使用方式 3、pause容器使得Pod中的所有容器可以共享两种资源&#xff1a;网络和存储。 &#xff08;1&#xff09;网络 &#xff08;2&#xff09;存储 4、kubernetes中的pause容器主要为每个容器提供…