动态规划(用空间换时间的算法)原理逻辑代码超详细!参考自《算法导论》

动态规划(用空间换时间的算法)-实例说明和用法详解

  • 动态规划(DP)思想
  • 实例说明
    • 钢条切割问题
    • 矩阵链乘法问题
  • 应用满足的条件和场景

本篇博客以《算法导论》第15章动态规划算法为本背景,大量引用书中内容和实例,并根据书中伪代码给出python代码复现,详解算法的核心逻辑和实现过程。

动态规划(DP)思想

动态规划(Dynamic Programming)算法的核心思想是:将大问题划分为重叠的子问题进行解决,从而一步步获取最优解的处理算法。

动态规划与分治方法相似,都是通过组合子问题的解来求解原问题(在这里“programming”指的是一种表格法,并非编写计算机序)。但是分治方法将问题划分为互不相交的子问题,递归地求解子问题,再将它们的解组合起来,求出原问题的解。与之相反,动态规划应用于子问题重叠的情况,即不同的子问题具有公共的子问题(子问题的求解是递归进行的,将其划分为更小的子子问题)。

在这种情况下,分治算法会做许多不必要的工作,它会反复地求解那些公共子子问题。而动态规划算法对每个子子问题只求解一次,将其解保存在一个表格中,从而无需每次求解一个子子问题时都重新计算,避免了这种不必要的计算工作。

实例说明

动态规划方法常用来求解最优化问题,下面分别给出二个例子来说明:第一个是将钢条割成短钢条,使得总价值最高;第二个是解决如何用最少的标量乘法操作完成一个矩阵链相乘的运算

钢条切割问题

下面是钢条切割问题的背景:

问题背景说明
比如,下图给出长度为4英寸钢条所有可能的切割方案:
切割方案
其中,钢条上方的数字为每段钢条对应的价格。不同的切割方案对应不同的价格,我们发现,将一段长度为4英寸的钢条切为两段各长2英寸的钢条,将产生 P 2 P_2 P2+ P 2 P_2 P2=5+5=10的收益,为最优解,即对应上图中的方案C。

下面我们逐步分析出钢条切割问题的最优收益的递推公式:
在这里插入图片描述
更为一般的收益公式,长度为n的钢条切割后的最大收益 r n r_n rn表示如下:
在这里插入图片描述
一种更简单的递归方法:
在这里插入图片描述
其中,(15.2)式中的 p i p_i pi指长度为i的钢条对应的价格,直接查表得到,不用再进行切割。

如果用传统的递归方法求解,一旦n的规模稍微变大,程序运行的时间会变得相当长,因为这种方法反复用相同的参数值对自身进行递归调用,即它反复求解相同的子问题。时间呈指数级增长。下图给出n=4时,递归树的调用过程:
在这里插入图片描述
动态规划方法的运行时间是多项式阶的。
在这里插入图片描述
动态规划有两种等价的实现方法:
在这里插入图片描述
下面给出自底向上法的代码实现过程:
在这里插入图片描述
在上面的伪代码中,输入为两个变量,价格表数组和长度n;输出长度为n的钢条得到的最优收益。

下面计算长度为9时,钢条切割的最大收益:

import numpy as npdef Bottom_Up_Cut_Rod(p, n):r = []r.insert(0, 0)for j in range(1, n + 1):q = float('-inf')for i in range(1, j + 1):q = max(q, p[i - 1] + r[j - i])r.insert(j, q)return r[n]if __name__ == '__main__':# 出售长度为i(i=1,2,3,,,10)的钢条所对应的价格样表p = [1, 5, 8, 9, 10, 17, 17, 20, 24, 30]n = 9result = Bottom_Up_Cut_Rod(p, n)print("长度为{}时,".format(n))print("对应的最优收益值为{}。".format(result))

在这里插入图片描述
下图是长度为1、2、3…,对应的最优切割方案和收益。
在这里插入图片描述

思想:为了求解规模为 n 的原问题,我们先求解形式完全一样,但规模更小的子问题。即当完成首次切割后,我们将两段钢条看成两个独立的钢条切割问题实例。我们通过组合两个相关子问题的最优解,并在所有可能的两段切割方案中选取组合收益最大者,构成原问题的最优解。

我们称钢条切割问题满足最优子结构性质:问题的最优解由相关子问题的最优解组合而成,而这些子问题可以独立求解。

矩阵链乘法问题

矩阵链乘法问题即是多个矩阵相乘,找出最快计算次序的问题。

在这里插入图片描述
在这里插入图片描述

对矩阵链加括号的方式会对乘积运算的代价产生巨大影响,下面举例来说明:

在这里插入图片描述
因此,如果A是pXq的矩阵,B是qXr的矩阵,那么乘积 C是pXr的矩阵。计算 C所需时间由标量乘法的次数决定,即 pqr。下面我们将用标量乘法的次数来表示计算代价

在这里插入图片描述

传统方法:穷举所有可能的括号化方案不会是一个高效的算法,因为它的运行时间仍然是指数级增长的。

下面定义矩阵链问题的计算代价公式,令m[i,j]表示计算矩阵 A i , . . . , j A_{i,...,j} Ai,...,j所需标量乘法次数的最小值。

在这里插入图片描述在这里插入图片描述
在这里插入图片描述
假设最优分割点k是未知的,则递归求解公式变为:
在这里插入图片描述
下面用一个例子来说明:
在这里插入图片描述
上图是我手写的一个例子,为了帮助理解。其中, A 1 A_1 A1:2 × \times × 3 ,表示 A 1 A_1 A1的维度为2行3列,P列表存放的是四个矩阵的维度,其中前一个矩阵的列数等于后一个矩阵的行数。要求出 A 1 A_1 A1 A 2 A_2 A2 A 3 A_3 A3 A 4 A_4 A4的计算代价,假设分割点k=2,则计算顺序为 ( ( A 1 A 2 ) ( A 3 A 4 ) ) ((A_1A_2)(A_3A_4)) ((A1A2)(A3A4))。其中, ( A 1 A 2 ) (A_1A_2) (A1A2)的计算代价对应上图中的矩阵C, ( A 3 A 4 ) (A_3A_4) (A3A4)的计算代价对应上图中的矩阵D,最后再令C与D相乘,算的最后的计算代价(总次数)为48。

下面给出的过程 MATRIX-CHAIN-ORDER实现了自底向上表格法:
各输入变量的含义如下:
在这里插入图片描述
在这里插入图片描述
输出变量为最优代价矩阵m和最优分割点矩阵k。

下面给出代码的计算过程帮助理解。假设n=4, p = [ p 0 , p 1 , p 2 , p 3 , p 4 ] p = [p_0,p_1,p_2,p_3,p_4] p=[p0,p1,p2,p3,p4],求 A 1 A 2 A 3 A 4 A_1A_2A_3A_4 A1A2A3A4的最优代价,即求m[1,4]。计算过程如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

左边是最优代价矩阵,右边是最优分割点矩阵

以图15-5的数据为例,python代码如下:

import numpy as npdef MATRIX_CHAIN_ORDER(p):n = len(p) - 1# 定义计算代价矩阵mm = np.zeros((n, n))# 定义最优分割点矩阵ss = np.zeros((n, n))for l in range(2, n + 1):for i in range(1, n - l + 2):j = i + l - 1m[i - 1, j - 1] = float('inf')for k in range(i, j):q = m[i - 1, k - 1] + m[k, j - 1] + p[i - 1] * p[k] * p[j]if q < m[i - 1, j - 1]:m[i - 1, j - 1] = qs[i - 1, j - 1] = kprint(m)  # 每个元素对应长度为j-i+1的矩阵所需要最小计算代价print(s)  # 对应长度为j-i+1的矩阵最优分割点return m, sif __name__ == '__main__':p = [30, 35, 15, 5, 10, 20, 25]MATRIX_CHAIN_ORDER(p)

运行结果如下:

在这里插入图片描述
能够看出,跑出的结果与书上的两个矩阵完全相同。(只不过书中对矩阵沿主对角线方向进行了旋转)

思路:一个非平凡的矩阵链乘法问题实例的任何解都需要划分链,而任何最优解都是由子问题实例的最优解构成的。因此,为了构造一个矩阵链乘法问题实例的最优解,我们可以将问题划分为两个子问题( A i A i + 1 ⋅ ⋅ ⋅ A k A_iA_{i+1}···A_k AiAi+1⋅⋅⋅Ak A k + 1 ⋅ ⋅ ⋅ A j A_{k+1}···A_j Ak+1⋅⋅⋅Aj)子题实例的最优解,然后将子问题的最优解组合起来。我们必须保证在确定分割点时,已经考察了所有可能的划分点,这样就可以保证不会遗漏最优解。

应用满足的条件和场景

应用动态规划方法求解的最优化问题应该具备的两个要素:最优子结构子问题重叠

在这里插入图片描述
在这里插入图片描述

动态规划算法可以用来求解最优化问题,除了本文给出的两个例子外,常用的场景包括求解斐波那契数列,求解最长公共子序列、01背包问题和最优二叉搜索树等。想要深入了解该算法的原理和应用场景,具体可以阅读《算法导论》,我有电子版的,需要的兄弟姐妹可以私信我取。

综上所述,满足最优子结构和子问题重叠性质的问题可以利用动态规划思想建模,这种方法会开辟内存,存储以往的运算结果,再下次遇到时直接调用而不再重复计算,因此大大节省了时间,是一种经典的用空间换时间的算法,而大多数情况下,项目对时间的要求往往更严格,相比对内存的占用情况就宽松很多了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/27354.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

PE半透明屏,在建筑行业中,有哪些应用展示?

PE半透明屏是一种新型的屏幕材料&#xff0c;具有半透明的特点。 它由聚乙烯&#xff08;PE&#xff09;材料制成&#xff0c;具有良好的透明度和柔韧性。 PE半透明屏广泛应用于建筑、广告、展览等领域&#xff0c;具有很高的市场潜力。 PE半透明屏的特点之一是其半透明性。…

Maven: ‘mvn‘ is not recognized as an internal or external command

下载并配置好Maven之后&#xff0c;CMD测试安装是否成功&#xff1a;mvn -v 提示&#xff1a; mvn is not recognized as an internal or external command, operable program or batch file. 检查环境变量&#xff1a; MAVEN_HOME: %MAVEN_HOME%\bin: 看上去没问题&#x…

常用开源的弱口令检查审计工具

常用开源的弱口令检查审计工具 1、SNETCracker 1.1、超级弱口令检查工具 SNETCracker超级弱口令检查工具是一款开源的Windows平台的弱口令安全审计工具&#xff0c;支持批量多线程检查&#xff0c;可快速发现弱密码、弱口令账号&#xff0c;密码支持和用户名结合进行检查&am…

photoshop生成器引入到electron项目(electron与photoshop建立通信)

Photoshop引入了nodejs&#xff0c;在启动的时候&#xff0c;通过pipe调起nodejs运行时核心generator-builtin&#xff0c;通过KLVR机制与ps进行通信和交互&#xff0c;同时会加载用户编写的扩展。 这里记录一下引入时的踩坑过程 generator-core就是它的源码&#xff0c;elect…

码云 Gitee + Jenkins 配置教程

安装jdk 安装maven 安装Jenkins https://blog.csdn.net/minihuabei/article/details/132151292?csdn_share_tail%7B%22type%22%3A%22blog%22%2C%22rType%22%3A%22article%22%2C%22rId%22%3A%22132151292%22%2C%22source%22%3A%22minihuabei%22%7D 插件安装 前往 Manage Jen…

ESP32学习笔记(52)————三轴加速度ADXL345使用(SPI方式)

一、简介 ADXL345 是一款 ADI 公司推出的基于 iMEMS 技术的超低功耗3轴加速度计&#xff0c;分辨率高(13位)&#xff0c;测量范围达 16g。数字输出数据为 16 位二进制补码格式&#xff0c;可通过 SPI(3线或4线) 或 I2C 数字接口访问。ADXL345 非常适合移动设备应用。它可以在倾…

电商数据获取:网络爬虫还是付费数据接口?

随着电商行业的迅速发展&#xff0c;对电商数据的需求也越来越大。在获取电商数据时&#xff0c;常常面临一个选择&#xff1a;是自己编写网络爬虫进行数据爬取&#xff0c;还是使用现有的付费数据接口呢&#xff1f;本文将从成本、可靠性、数据质量等多个角度进行分析&#xf…

揭示CTGAN的潜力:利用生成AI进行合成数据

推荐&#xff1a;使用 NSDT场景编辑器 助你快速搭建可编辑的3D应用场景 我们都知道&#xff0c;GAN在生成非结构化合成数据&#xff08;如图像和文本&#xff09;方面越来越受欢迎。然而&#xff0c;在使用GAN生成合成表格数据方面所做的工作很少。合成数据具有许多好处&#x…

排序第二课【选择排序】直接选择排序 与 堆排序

目录 1. 排序的概念&#xff1a; 2.选择排序的基本思想 3.直接选择排序 4.堆排序 1. 排序的概念&#xff1a; 排序&#xff1a;所谓排序&#xff0c;就是使一串记录&#xff0c;按照其中的某个或某些关键字的大小&#xff0c;递增或递减的排列起来的操作。 稳定性&#xf…

Gof23设计模式之享元模式

1.定义 运用共享技术来有效地支持大量细粒度对象的复用。它通过共享已经存在的对象来大幅度减少需要创建的对象数量、避免大量相似对象的开销&#xff0c;从而提高系统资源的利用率。 2.结构 享元&#xff08;Flyweight &#xff09;模式中存在以下两种状态&#xff1a; 内…

vue+iviewUi+oss直传阿里云上传文件

前端实现文件上传到oss&#xff08;阿里云&#xff09;适用于vue、react、uni-app&#xff0c;获取视频第一帧图片 用户获取oss配置信息将文件上传到阿里云&#xff0c;保证了安全性和减轻服务器负担。一般文件资源很多直接上传到服务器会加重服务器负担此时可以选择上传到oss&…

SpringBoot容器--注解的使用

文章目录 容器功能--注解Spring 注入组件的注解Component、Controller、Service、Repository案例演示 Configuration应用实例传统方式应用实例使用SpringBoot 的Configuration 添加/注入组件 Configuration 注意事项和细节 Import应用实例 ConditionalConditional 介绍应用实例…

VSCode配置SSH远程免密登录服务器

VScode远程开发时&#xff0c;每次都需要输入密码&#xff0c;其实同理可以和其他应用类似配置免密登录&#xff0c;流程也类似。 1.在本地主机生成公钥和秘钥 ssh-keygen 2.将公钥内容添加至服务器 将生成钥对时会给出其保存路径&#xff0c;找到公钥&#xff0c;复制内容&am…

最小二乘拟合二维直线

目录 1. 原理概述2. python实现3. matlab实现4. C实现 爬虫网站自重。 1. 原理概述 平面直线的表达式为&#xff1a; y k x b (1) ykxb \tag{1} ykxb(1)   假设有 n n n个点 ( x i , y i ) &#xff08; 0 ≤ i < n &#xff09; (x_i, y_i)&#xff08;0≤i<n&…

一起来看看 Compose Accompanist

好久不见&#xff0c;真的挺久了&#xff0c;之前一个月写的文章比现在多半年的都多。今年第一篇文章是简单写了下 Android 14 的适配&#xff1a;Android 14 又来了&#xff1f;别扶&#xff01;抬起我来吧&#xff01; 今天咱们来一起看看 Compose Accompanist 吧&#xff0…

docker菜谱

DockerHub&#xff1a;https://hub.docker.com/ 记录docker常用软件安装&#xff0c;欢迎大家投稿。&#x1f60e;&#x1f60e;&#x1f60e; 文章目录 1. Redis 1. Redis 1、下载redis镜像&#xff1a; docker pull redis:6.2.8 docker pull redis:7.0.02、启动容器&#x…

DAY02_Spring—第三方资源配置管理Spring容器Spring注解开发Spring整合Mybatis和Junit

目录 一 第三方资源配置管理1 管理DataSource连接池对象问题导入1.1 管理Druid连接池1.2 管理c3p0连接池 2 加载properties属性文件问题导入2.1 基本用法2.2 配置不加载系统属性2.3 加载properties文件写法 二 Spring容器1 Spring核心容器介绍问题导入1.1 创建容器1.2 获取bean…

sigmoid ReLU 等激活函数总结

sigmoid ReLU sigoid和ReLU对比 1.sigmoid有梯度消失问题&#xff1a;当sigmoid的输出非常接近0或者1时&#xff0c;区域的梯度几乎为0&#xff0c;而ReLU在正区间的梯度总为1。如果Sigmoid没有正确初始化&#xff0c;它可能在正区间得到几乎为0的梯度。使模型无法有效训练。 …

TCP和UDP

目录 TCP和UDP是什么&#xff1f; TCP和UDP有什么区别? 三次握手和四次挥手 TCP维护可靠的通信方式 拥塞控制 滑动窗口的原理 什么是粘包以及粘包的原因 粘包的处理方式 TCP和UDP使用场景 TCP和UDP是什么&#xff1f; TCP&#xff1a; 传输控制协议&#xff08;TCP&am…

HarmonyOS元服务开发实践:桌面卡片字典

一、项目说明 1.DEMO创意为卡片字典。 2.不同卡片显示不同内容&#xff1a;微卡、小卡、中卡、大卡&#xff0c;根据不同卡片特征显示同一个字的不同内容&#xff0c;基于用户习惯可选择喜欢的卡片。 3.万能卡片刷新&#xff1a;用户点击卡片刷新按钮查看新内容&#xff0c;同时…