makemid+matlab,《MATLAB基础》双语课

MATLAB双语教学视频第17讲

MATLAB双语教学视频第18讲

Summarizing Data

In this section...

“Overview” on page 5-10

“Measures of Location” on page 5-10

“Measures of Scale” on page 5-11

“Shape of a Distribution” on page 5-11Overview

Many MATLAB functions enable you to summarize the overall location, scale,

and shape of a data sample.

One of the advantages of working in MATLAB is that functions operate on

entire arrays of data, not just on single scalar values. The functions are said

to be vectorized. Vectorization allows for both efficient problem formulation,

using array-based data, and efficient computation, using vectorized statistical

functions.

Note This section continues the data analysis from “Preprocessing Data”

on page 5-3.Measures of Location

Summarize the location of a data sample by finding a “typical” value.

Common measures of location or “central tendency” are computed by the

functions mean, median, and mode:

load count.dat

x1 = mean(count)

x1 =

32.0000 46.5417 65.5833

x2 = median(count)

x2 =

23.5000 36.0000 39.0000

x3 = mode(count)

x3 =

11 9 9

Like all of its statistical functions, the MATLAB functions above summarize

data across observations (rows) while preserving variables (columns). The

functions compute the location of the data at each of the three intersections

in a single call.Measures of Scale

There are many ways to measure the scale or “dispersion” of a data sample.

The MATLAB functions max, min, std, and var compute some common

measures:

dx1 = max(count)-min(count)

dx1 =

107 136 250

dx2 = std(count)

dx2 =

25.3703 41.4057 68.0281

dx3 = var(count)

dx3 =

1.0e+003 *

0.6437 1.7144 4.6278

Like all of its statistical functions, the MATLAB functions above summarize

data across observations (rows) while preserving variables (columns). The

functions compute the scale of the data at each of the three intersections

in a single call.Shape of a Distribution

The shape of a distribution is harder to summarize than its location or

scale. The MATLAB hist function plots a histogram that provides a visual

summary:

figure

hist(count)

legend('Intersection 1',...

'Intersection 2',...

'Intersection 3')

f4ae87486daf77b3135e4f7b1e6a5716.png

Parametric models give analytic summaries of distribution shapes.

Exponential distributions, with parameter mu given by the data mean, are a

good choice for the traffic data:

c1 = count(:,1); % Data at intersection 1

[bin_counts,bin_locations] = hist(c1);

bin_width = bin_locations(2) - bin_locations(1);

hist_area = (bin_width)*(sum(bin_counts));

figure

hist(c1)

hold on

mu1 = mean(c1);

exp_pdf = @(t)(1/mu1)*exp(-t/mu1); % Integrates

% to 1

t = 0:150;

y = exp_pdf(t);

plot(t,(hist_area)*y,'r','LineWidth',2)

legend('Distribution','Exponential Fit')

f25f95f4cba227679d376600a590dfcc.png

are beyond the scope of this Getting Started guide. Statistics Toolbox

software provides functions for computing maximum likelihood estimates

of distribution parameters.

See “Descriptive Statistics” in the MATLAB Data Analysis documentation for

more information on summarizing data samples.

Visualizing Data

In this section...

“Overview” on page 5-14

“2-D Scatter Plots” on page 5-14

“3-D Scatter Plots” on page 5-16

“Scatter Plot Arrays” on page 5-18

“Exploring Data in Graphs” on page 5-19Overview

You can use many MATLAB graph types for visualizing data patterns and

trends. Scatter plots, described in this section, help to visualize relationships

among the traffic data at different intersections. Data exploration tools let

you query and interact with individual data points on graphs.

Note This section continues the data analysis from “Summarizing Data”

on page 5-10.2-D Scatter Plots

A 2-D scatter plot, created with the scatter function, shows the relationship

between the traffic volume at the first two intersections:

load count.dat

c1 = count(:,1); % Data at intersection 1

c2 = count(:,2); % Data at intersection 2

figure

scatter(c1,c2,'filled')

xlabel('Intersection 1')

ylabel('Intersection 2')

4a9681ebba5750d3e171efda4146dae1.png

The covariance, computed by the cov function measures the strength of the

linear relationship between the two variables (how tightly the data lies along

a least-squares line through the scatter):

C12 = cov([c1 c2])

C12 =

1.0e+003 *

0.6437 0.9802

0.9802 1.7144

The results are displayed in a symmetric square matrix, with the covariance

of the ith and jth variables in the (i, j)th position. The ith diagonal element

is the variance of the ith variable.

Covariances have the disadvantage of depending on the units used to measure

the individual variables. You can divide a covariance by the standard

deviations of the variables to normalize values between +1 and –1. The

corrcoef function computes correlation coefficients:

R12 = corrcoef([c1 c2])

R12 =

1.0000 0.9331

0.9331 1.0000

r12 = R12(1,2) % Correlation coefficient

r12 =

0.9331

r12sq = r12^2 % Coefficient of determination

r12sq =

0.8707

Because it is normalized, the value of the correlation coefficient is readily

comparable to values for other pairs of intersections. Its square, the coefficient

of determination, is the variance about the least-squares line divided by

the variance about the mean. Thus, it is the proportion of variation in the

response (in this case, the traffic volume at intersection 2) that is eliminated

or statistically explained by a least-squares line through the scatter.

3-D Scatter Plots

A 3-D scatter plot, created with the scatter3 function, shows the relationship

between the traffic volume at all three intersections. Use the variables c1,

c2, and c3 that you created in the previous step:

figure

scatter3(c1,c2,c3,'filled')

xlabel('Intersection 1')

ylabel('Intersection 2')

zlabel('Intersection 3')

2360a75ac676094b35d3eb09bca6398d.png

Measure the strength of the linear relationship among the variables in the

3-D scatter by computing eigenvalues of the covariance matrix with the eig

function:

vars = eig(cov([c1 c2 c3]))

vars =

1.0e+003 *

0.0442

0.1118

6.8300

explained = max(vars)/sum(vars)

explained =

0.9777

The eigenvalues are the variances along the principal components of the data.

The variable explained measures the proportion of variation explained by the

first principal component, along the axis of the data. Unlike the coefficient

of determination for 2-D scatters, this measure distinguishes predictor and

response variables.Scatter Plot Arrays

Use the plotmatrix function to make comparisons of the relationships

between multiple pairs of intersections:

figure

plotmatrix(count)

c595591990e56fcba0f7fbb80c469c89.png

The plot in the (i, j)th position of the array is a scatter with the i th variable

on the vertical axis and the jth variable on the horizontal axis. The plot in the

ith diagonal position is a histogram of the ith variable.

For more information on statistical visualization, see “Plotting Data” and

“Interactive Data Exploration” in the MATLAB Data Analysis documentation.Exploring Data‍ in Graphs

Using your mouse, you can pick observations on almost any MATLAB graph

with two tools from the figure toolbar:

• Data Cursor

• Data Brushing

These tools each place you in exploratory modes in which you can select data

points on graphs to identify their values and create workspace variables to

contain specific observations. When you use data brushing, you can also copy,

remove or replace the selected observations.

For example, make a scatter plot of the first and third columns of count:

load count.dat

scatter(count(:,1),count(:,3))

Select the Data Cursor Tool and click the right-most data point. A datatip

displaying the point’s x and y value is placed there.

443c2a00eed6945518b0c5103db8bcd7.png

Datatips display x-, y-, and z- (for 3-D plots) coordinates by default. You

can drag a datatip from one data point to another to see new values or add

additional datatips by right-clicking a datatip and using the context menu.

You can also customize the text that datatips display using MATLAB code.

For more information, see the datacursormode function and “Interacting with

Graphed Data” in the MATLAB Data Analysis documentation.

Data brushing is a related feature that lets you highlight one or more

observations on a graph by clicking or dragging. To enter data brushing

mode, click the left side of the Data Brushing tool on the figure toolbar.

Clicking the arrow on the right side of the tool icon drops down a color palette

for selecting the color with which to brush observations. This figure shows

the same scatter plot as the previous figure, but with all observations beyond

one standard deviation of the mean (as identified using the Tools > Data

Statistics GUI) brushed in red.

0c21bcfd0f6fd39d5c471dafb3756d45.png

After you brush data observations, you can perform the following operations

on them:

• Delete them.

• Replace them with constant values.

• Replace them with NaN values.

• Drag or copy, and paste them to the Command Window.

• Save them as workspace variables.

For example, use the Data Brush context menu or the

Tools > Brushing > Create new variable option to create a new

variable called count13high.

fcdb2d388afe1592194819f58b4d0dc0.png

A new variable in the workspace results:

count13high

count13high =

61 186

75 180

114 257

For more information, see the MATLAB brush function and “Marking Up

Graphs with Data Brushing” in the MATLAB Data Analysis documentation.

Linked plots, or data linking, is a feature closely related to data brushing. A

plot is said to be linked when it has a live connection to the workspace data it

depicts. The copies of variables stored in a plot object’s XData, YData, (and,

where appropriate, ZData), automatically updated whenever the workspace

variables to which they are linked change or are deleted. This causes the

graphs on which they appear to update automatically.

Linking plots to variables lets you track specific observations through

different presentations of them. When you brush data points in linked plots,

brushing one graph highlights the same observations in every graph that is

linked to the same variables.

Data linking establishes immediate, two-way communication between

figures and workspace variables, in the same way that the Variable Editor

communicates with workspace variables. You create links by activating the

Data Linking tool on a figure’s toolbar. Activating this tool causes the

Linked Plot information bar, displayed in the next figure, to appear at the top

of the plot (possibly obscuring its title). You can dismiss the bar (shown in

the following figure) without unlinking the plot; it does not print and is not

saved with the figure.

The following two graphs depict scatter plot displays of linked data after

brushing some observations on the left graph. The common variable, count

carries the brush marks to the right figure. Even though the right graph

is not in data brushing mode, it displays brush marks because it is linked

to its variables.

figure

scatter(count(:,1),count(:,2))

xlabel ('count(:,1)')

ylabel ('count(:,2)')

figure

scatter(count(:,3),count(:,2))

xlabel ('count(:,3)')

ylabel ('count(:,2)')

a4877c5732e9383ad6a2e87509c2b5b5.png

1bac8fbd3f56615944fec32af31f7001.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/267309.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

素数对猜想之python3实现

题目 让我们定义d​n​​为&#xff1a;d​n​​p​n1​​−p​n​​&#xff0c;其中p​i​​是第i个素数。显然有d​1​​1&#xff0c;且对于n>1有d​n​​是偶数。“素数对猜想”认为“存在无穷多对相邻且差为2的素数”。 现给定任意正整数N(<)&#xff0c;请计算不超…

java 获取六个月账期,应收帐龄分析里面账期分析能不能改为0-30天?

怎样安装摄像头的驱动程序怎样安装摄像头的驱动程序注意&#xff1a;请不要在未安装摄像头的驱动程序前将PC摄像头插入计算机USB接口中&#xff1b;如果在没有安装驱动程序的情况下提前插上摄像头&#xff0c;当WINDOWS提示安装驱动程序时&#xff0c;请点击取消键并将其拨出&a…

ribbon源码(1) 概述

ribbon的核心功能是提供客户端在进行网络请求时负载均衡的能力。主要有以下几个模块&#xff1a; 负载均衡器模块 负载均衡器模块提供了负载均衡能力&#xff0c;详细参见ribbon源码之负载均衡器。 配置模块 配置模块管理ribbon的配置信息&#xff0c;ribbon各个模块都通过配置…

Linux软件安装解决方案

Linux软件安装解决方案 在linux中安装软件是一件并不算轻松的工作&#xff0c;有很多中解决方案供你选择&#xff0c;但需要的是你的一点点耐心与智慧&#xff01;下面我将就Linux中最常见的安装方式&#xff0c;由浅入深的逐一做简单介绍与说明&#xff0c;希望可以给您带来帮…

php获取页面的可视内容高度,网页制作技巧:获取页面可视区域的高度_css

文章简介&#xff1a;获取页面可视区域高度&#xff0c;获取页面高度&#xff0c;获取滚动条滚动上去的页面高度.function getWH(){ var wh {}; "Height Width".replace(/[^/s]/g,function(a){ var b a.toLowerCase(); wh[b]window["inner".concat(a)] d…

axios和ajax的区别

Axios和Ajax都是用于在Web应用程序中发送HTTP请求的技术&#xff0c;但它们之间存在一些重要的差异。 环境适用性&#xff1a;Axios可以在浏览器和Node.js环境中使用&#xff0c;而Ajax最初是为了在浏览器中创建交互式网页而设计的。易用性&#xff1a;Axios基于Promise&#…

矩阵学习摘记,欢迎指正

矩阵乘法学习摘记 ​ ——JZYshuraK 18.4.8 http://www.matrix67.com/blog/archives/276 例题1 ​ 为什么一定要将本来只有两维的点设为一个\(1\cdot 3​\)矩阵&#xff0c;原因在于&#xff0c;我们在处理所有操作时&#xff0c;必须使得每一个操作矩阵都是正方形(显然)&#…

安装与配置-以前的某个程序安装已在安装计算机上创建挂起的文件操作......

今日在Windows XP SP2的计算机上&#xff0c;安装SQL Server 2000 Standard Edition&#xff0c;安装不上&#xff0c;错误信息如下&#xff1a; 文字描述为&#xff1a; 以前的某个程序安装已在安装计算机上创建挂起的文件操作。运行安装程序之前必须重新启动计算机。 解决方法…

拦截器和过滤器的区别

一、拦截器基于 java 的反射机制&#xff0c;过滤器是基于函数回调的。 二、过滤器依赖于 servlet 容器&#xff0c;拦截器不依赖 servlet 容器。 三、拦截器只对 Action 起作用&#xff0c; 过滤器对所有请求都起左右 四、拦截器可以访问 Action 的上下文 和 值栈里面的对象&a…

php mail ld preload,读《利用环境变量LD_PRELOAD来绕过php disable_function执行系统命令》有感...

今天看来一篇文章&#xff1a;http://cb.drops.wiki/wooyun/drops/tips-16054.html复现了一下&#xff0c;感觉有点坑我把复现的过程&#xff0c;结果和遇到问题在这里总结一下我的实验环境是centos7 php 5.4首先按照要求编译一个so1.创建一个hehe.c#include #include #include…

带预览图的js切换效果!

效果图&#xff1a; js代码&#xff1a; var isIE (document.all) ? true : false;var $ function (id) {return "string" typeof id ? document.getElementById(id) : id; };var Class {create: function() {return function() { this.initialize.apply(this,…

[BZOJ4033][HAOI2015]树上染色(树形DP)

4033: [HAOI2015]树上染色 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 2437 Solved: 1034[Submit][Status][Discuss]Description 有一棵点数为N的树&#xff0c;树边有边权。给你一个在0~N之内的正整数K&#xff0c;你要在这棵树中选择K个点&#xff0c;将其染成黑色&a…

php数组添加省会城市,【JSON数据】中国各省份省会城市经纬度 JSON

[{ name: 北京, value: [ 116.3979471, 39.9081726, 78 ] },{ name: 上海, value: [ 121.4692688, 31.2381763, 75 ] },{ name: 天津, value: [ 117.2523808, 39.1038561, 95 ] },{ name: 重庆, value: [ 106.548425, 29.5549144, 78 ] },{ name: 河北, value: [ 114.4897766, …

CentOS 6.0安装JDK7

CentOS 6.0安装JDK7 - Sea Wang - 博客园CentOS 6.0安装JDK7话说在CentOS下安装JDK7&#xff08;下载地址&#xff1a;http://www.oracle.com/technetwork/java/javase/downloads/java-se-jdk-7-download-432154.html&#xff09;&#xff0c;同事直接告诉我说双击jdk-7-linux-…

Python成长之路【第七篇】:Python基础之装饰器

一、什么是装饰器 装饰&#xff1a;装饰既修饰&#xff0c;意指为其他函数添加新功能 器&#xff1a;器既函数 装饰器定义&#xff1a;本质就是函数&#xff0c;功能是为其他函数添加新功能 二、装饰器需要遵循的原则 1、不能修改装饰器的源代码&#xff08;开放封闭原则&#…

php中改变函数路由,php – 如何修改codeigniter中的路由

我终于找到了我想要的东西.以下是我的代码在routes.php中的样子./* Custom Routes. */// Store Normal Pages.$route[home/(:any)] "base/home/$1";$route[about/(:any)] "base/about/$1";$route[services/(:any)] "base/services/$1";$route…

主域控宕机无法恢复后,如何配置辅助域控继续工作

情况如下&#xff1a; 系统基础结构如下&#xff1a;一个主域控&#xff0c;一个辅助域控且都安装AD与DNS集成区。 如果&#xff1a; 主域控宕机且无法恢复&#xff0c;请问辅助域应做些什么才能替代主域控继续工作&#xff1f; 第一步&#xff1a;在辅助域控上清除主域控AD数…

$.get、$.post 和 $().load()

一、$.get() 用于get方式进行异步请求。 结构&#xff1a; $.get( url, data, callback, type)&#xff1b; url - 请求路径&#xff08;string&#xff09;; data - 发送至服务器的键值对数据 &#xff08;object&#xff09;; callback - 状态为success时的回调函数&a…

sql数据库与oracle数据库同步,[sql数据库同步]Oracle与SQL Server如何实现表数据同步...

在线QQ客服&#xff1a;1922638专业的SQL Server、MySQL数据库同步软件数据库的Oracle版本为10.2&#xff0c;并安装在Linux系统上。数据库SQL Server的版本是SQL 2005&#xff0c;已安装在Windows XP系统上。现在我们需要做的是在两个数据库表之间同步数据。现在&#xff0c;最…

零食嘴----美食领域的美丽说

零食嘴美食分享社区首页 阿里巴巴参谋长曾鸣曾说过&#xff1a;“淘宝等美丽说模式整整等了两年。不仅在女性领域&#xff0c;阿里希望在各个维度都出现‘美丽说’。” 零食嘴就是美食领域美丽说。 所谓的美丽说模式&#xff0c;是指社会化电子商务分享的模式&#xff0c;在一个…