基于YOLOv7的密集场景行人检测识别分析系统

密集场景下YOLO系列模型的精度如何?本文的主要目的就是想要基于密集场景基于YOLOv7模型开发构建人流计数系统,简单看下效果图:

 这里实验部分使用到的数据集为VSCrowd数据集。

实例数据如下所示:

 

下载到本地解压缩后如下所示:

annotations/目录下存放的是标注数据文件如下所示:

 单个标注文件内容截图如下所示:

 videos/目录存放的是图像数据文件,如下所示:

 二者相结合不难发现单个txt标注对应单个子文件夹下面的内容数据:

 之后就可以对应解析处理数据集了,这里就不再赘述了,可以参考readme即可。

本文使用到的模型是YOLOv7x模型,模型配置文件如下所示:

# parameters
nc: 1  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple# anchors
anchors:- [12,16, 19,36, 40,28]  # P3/8- [36,75, 76,55, 72,146]  # P4/16- [142,110, 192,243, 459,401]  # P5/32# yolov7 backbone
backbone:# [from, number, module, args][[-1, 1, Conv, [40, 3, 1]],  # 0[-1, 1, Conv, [80, 3, 2]],  # 1-P1/2      [-1, 1, Conv, [80, 3, 1]],[-1, 1, Conv, [160, 3, 2]],  # 3-P2/4  [-1, 1, Conv, [64, 1, 1]],[-2, 1, Conv, [64, 1, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[-1, 1, Conv, [64, 3, 1]],[[-1, -3, -5, -7, -8], 1, Concat, [1]],[-1, 1, Conv, [320, 1, 1]],  # 13[-1, 1, MP, []],[-1, 1, Conv, [160, 1, 1]],[-3, 1, Conv, [160, 1, 1]],[-1, 1, Conv, [160, 3, 2]],[[-1, -3], 1, Concat, [1]],  # 18-P3/8  [-1, 1, Conv, [128, 1, 1]],[-2, 1, Conv, [128, 1, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[[-1, -3, -5, -7, -8], 1, Concat, [1]],[-1, 1, Conv, [640, 1, 1]],  # 28[-1, 1, MP, []],[-1, 1, Conv, [320, 1, 1]],[-3, 1, Conv, [320, 1, 1]],[-1, 1, Conv, [320, 3, 2]],[[-1, -3], 1, Concat, [1]],  # 33-P4/16  [-1, 1, Conv, [256, 1, 1]],[-2, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[[-1, -3, -5, -7, -8], 1, Concat, [1]],[-1, 1, Conv, [1280, 1, 1]],  # 43[-1, 1, MP, []],[-1, 1, Conv, [640, 1, 1]],[-3, 1, Conv, [640, 1, 1]],[-1, 1, Conv, [640, 3, 2]],[[-1, -3], 1, Concat, [1]],  # 48-P5/32  [-1, 1, Conv, [256, 1, 1]],[-2, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[[-1, -3, -5, -7, -8], 1, Concat, [1]],[-1, 1, Conv, [1280, 1, 1]],  # 58]# yolov7 head
head:[[-1, 1, SPPCSPC, [640]], # 59[-1, 1, Conv, [320, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[43, 1, Conv, [320, 1, 1]], # route backbone P4[[-1, -2], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1]],[-2, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[[-1, -3, -5, -7, -8], 1, Concat, [1]],[-1, 1, Conv, [320, 1, 1]], # 73[-1, 1, Conv, [160, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[28, 1, Conv, [160, 1, 1]], # route backbone P3[[-1, -2], 1, Concat, [1]],[-1, 1, Conv, [128, 1, 1]],[-2, 1, Conv, [128, 1, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[-1, 1, Conv, [128, 3, 1]],[[-1, -3, -5, -7, -8], 1, Concat, [1]],[-1, 1, Conv, [160, 1, 1]], # 87[-1, 1, MP, []],[-1, 1, Conv, [160, 1, 1]],[-3, 1, Conv, [160, 1, 1]],[-1, 1, Conv, [160, 3, 2]],[[-1, -3, 73], 1, Concat, [1]],[-1, 1, Conv, [256, 1, 1]],[-2, 1, Conv, [256, 1, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[-1, 1, Conv, [256, 3, 1]],[[-1, -3, -5, -7, -8], 1, Concat, [1]],[-1, 1, Conv, [320, 1, 1]], # 102[-1, 1, MP, []],[-1, 1, Conv, [320, 1, 1]],[-3, 1, Conv, [320, 1, 1]],[-1, 1, Conv, [320, 3, 2]],[[-1, -3, 59], 1, Concat, [1]],[-1, 1, Conv, [512, 1, 1]],[-2, 1, Conv, [512, 1, 1]],[-1, 1, Conv, [512, 3, 1]],[-1, 1, Conv, [512, 3, 1]],[-1, 1, Conv, [512, 3, 1]],[-1, 1, Conv, [512, 3, 1]],[-1, 1, Conv, [512, 3, 1]],[-1, 1, Conv, [512, 3, 1]],[[-1, -3, -5, -7, -8], 1, Concat, [1]],[-1, 1, Conv, [640, 1, 1]], # 117[87, 1, Conv, [320, 3, 1]],[102, 1, Conv, [640, 3, 1]],[117, 1, Conv, [1280, 3, 1]],[[118,119,120], 1, IDetect, [nc, anchors]],   # Detect(P3, P4, P5)]

训练数据配置如下所示:

# txt path 
train: ./dataset/images/train
val: ./dataset/images/test
test: ./dataset/images/test# number of classes
nc: 1# class names
names: ['person']

默认100次epoch的迭代计算,等待训练完成后,我们直接来看结果数据如下所示:

【精确率曲线】

精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

 【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

 【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置。

 【PR曲线】
精确率-召回率曲线(Precision-Recall Curve)是一种用于评估二分类模型性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)和召回率(Recall)之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率-召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率-召回率曲线。
根据曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
精确率-召回率曲线提供了更全面的模型性能分析,特别适用于处理不平衡数据集和关注正例预测的场景。曲线下面积(Area Under the Curve, AUC)可以作为评估模型性能的指标,AUC值越高表示模型的性能越好。
通过观察精确率-召回率曲线,我们可以根据需求选择合适的阈值来权衡精确率和召回率之间的平衡点。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。

 【训练过程可视化】

 【batch计算实例】

 从训练评估效果来看检测的效果还是很不错的,在这批数据集中,目标大多是偏小目标的类型,且密度相对较高。

【可视化推理实例—图像推理计算】

 【可视化推理实例—视频推理计算】

 后续有时间可以考虑基于YOLOv7-tiny这一轻量级的网络模型来尝试开发构建密集数据场景下的目标检测模型,来对比分析。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/26530.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

找免费商用的图片素材就上这6个网站。

分享6个免费商用的高清图片素材库,你想要找到这里都能找到,赶紧收藏起来吧~ 菜鸟图库 https://www.sucai999.com/pic.html?vNTYwNDUx 网站主要是为新手设计师提供免费素材的,素材的质量都很高,类别也很多,像平面、UI…

Git Submodule 更新子库失败 fatal: Unable to fetch in submodule path

编辑本地目录 .git/config 文件 在 [submodule “Assets/CommonModule”] 项下 加入 fetch refs/heads/:refs/remotes/origin/

常规VUE项目优化实践,跟着做就对了!

总结: 主要优化方式: imagemin优化打包大小(96M->50M),但是以打包速度为代价,通过在构建过程中压缩图片来实现,可根据需求开启。字体压缩:目前项目内引用为思源字体&#xff0c…

认识所有权

专栏简介:本专栏作为Rust语言的入门级的文章,目的是为了分享关于Rust语言的编程技巧和知识。对于Rust语言,虽然历史没有C、和python历史悠远,但是它的优点可以说是非常的多,既继承了C运行速度,还拥有了Java…

oracle的管道函数

Oracle管道函数(Pipelined Table Function)oracle管道函数 1、管道函数即是可以返回行集合(可以使嵌套表nested table 或数组 varray)的函数,我们可以像查询物理表一样查询它或者将其赋值给集合变量。 2、管道函数为并行执行,在…

P1257 平面上的最接近点对

题目 思路 详见加强加强版 代码 #include<bits/stdc.h> using namespace std; #define int long long const int maxn4e510; pair<int,int> a[maxn]; int n; double d1e16; pair<int,int> vl[maxn],vr[maxn]; void read() { cin>>n;for(int i1;i<…

Android性能优化—数据结构优化

优化数据结构是提高Android应用性能的重要一环。在Android开发中&#xff0c;ArrayList、LinkedList和HashMap等常用的数据结构的正确使用对APP性能的提升有着重大的影响。 一、ArrayList ArrayList内部使用的是数组&#xff0c;默认大小10&#xff0c;当数组长度不足时&…

[Docker实现测试部署CI/CD----自由风格的CI操作[中间架构](4)]

目录 10、自由风格的CI操作&#xff08;中间架构&#xff09;中间架构图创建web项目Idea提交项目到远程仓库提交代码到本地库提交代码到远程库从jenkins拉取代码新建任务jenkins集成gitlab立即构建 将项目打为jar包Jenkins 配置 mvn 命令重新构建 代码质量检测jenkins将代码推送…

Java on Azure Tooling 6月更新|标准消费和专用计划及本地存储账户(Azurite)支持

作者&#xff1a;Jialuo Gan - Program Manager, Developer Division at Microsoft 排版&#xff1a;Alan Wang 大家好&#xff0c;欢迎阅读 Java on Azure 工具的六月更新。在本次更新中&#xff0c;我们将介绍 Azure Spring Apps 标准消费和专用计划支持以及本地存储账户&…

黑马大数据学习笔记5-案例

目录 需求分析背景介绍目标需求数据内容DBeaver连接到Hive建库建表加载数据 ETL数据清洗数据问题需求实现查看结果扩展 指标计算需求需求指标统计 可视化展示BIFineBI的介绍及安装FineBI配置数据源及数据准备 可视化展示 P73~77 https://www.bilibili.com/video/BV1WY4y197g7?…

如何使用自己域名进行远程访问内网群晖NAS 6.X

使用自己的域名远程访问内网群晖NAS 6.X【内网穿透】 文章目录 使用自己的域名远程访问内网群晖NAS 6.X【内网穿透】 在之前的文章中&#xff0c;我们向大家演示了如何使用cpolar&#xff0c;创建一条固定的、能够在公共互联网登录内网群晖NAS的数据隧道。这条隧道已经能够应对…

深度分析卡尔曼滤波算法原理

一、什么是卡尔曼滤波? 你可以在任何含有不确定信息的动态系统中使用卡尔曼滤波&#xff0c;对系统下一步的走向做出有根据的预测&#xff0c;即使伴随着各种干扰&#xff0c;卡尔曼滤波总是能指出真实发生的情况。 在连续变化的系统中使用卡尔曼滤波是非常理想的&#xff0c…

java+springboot摄影作品竞赛报名系统 微信小程序--论文

随着Internet的发展&#xff0c;人们的日常生活已经离不开网络。未来人们的生活与工作将变得越来越数字化&#xff0c;网络化和电子化。网上管理&#xff0c;它将是直接管理摄影竞赛小程序的最新形式。本小程序是以构建摄影竞赛为目标&#xff0c;使用java技术制作&#xff0c;…

程序员编写文档的 10 个技巧

编写好的文档在软件开发领域具有重大意义。文档是概述特定问题陈述、方法、功能、工作流程、架构、挑战和开发过程的书面数据或指令。文档可以让你全面了解解决方案的功能、安装和配置。 文档不仅是为其他人编写的&#xff0c;也是为自己编写的。它让我们自己知道我们以前做过什…

大数据Flink(五十八):Flink on Yarn的三种部署方式介绍

文章目录 Flink on Yarn的三种部署方式介绍 一、​​​​​​​Session模式

F5 LTM 知识点和实验 12-使用规则和本地流量策略定制应用程序交付

第十一章:iapp(忽略) 第十二章:使用规则和本地流量策略定制应用程序交付 用最简单的术语来说,iRule是在网络流量通过BIGIP系统时对其执行的脚本。其思想非常简单:规则使您能够编写简单的网络感知代码片段,这些代码以各种方式影响您的网络流量。无论您是希望以BIG-IP内置…

前沿分享-100 μAh 微型电池

这是SMD 组件形状的固态锂离子微型电池&#xff0c;容量高达 100Ah&#xff0c;在22年的慕尼黑电子展上出现过。 因为是可重复使用的&#xff0c;未来该产品甚至有机会取代容量更高&#xff08;例如100 Ah 时&#xff09;的不可充电硬币电池。 一般应用于超低功率的传感器&…

宋浩概率论笔记(四)数字特征

本帖更新数字特征&#xff0c;包含期望、方差、相关系数等&#xff0c;要点在于记忆性质中的各种公式&#xff0c;遇到题目时能迅速利用已知条件计算答案。

IDEA删除本地git仓库、创建本地git仓库、关联其他仓库并上传

IDEA删除本地git仓库、创建本地git仓库、关联其他仓库并上传 删除本地Git仓库 创建本地Git仓库 关联其他仓库并上传 要在IntelliJ IDEA中删除本地Git仓库并创建新的本地Git仓库&#xff0c;以及关联其他仓库并上传&#xff0c;请按照以下步骤进行操作&#xff1a; 删除本地G…