深度学习,计算机视觉任务

目录

计算机视觉任务

1.K近邻算法

2.得分函数

3.损失函数的作用

4.向前传播整体流程

5.反向传播计算方法

计算机视觉任务

机器学习的流程

  1. 数据获取

  2. 特征工程

  3. 建立模型

  4. 评估与应用

计算机视觉

图像表示:计算机眼中的图像,而一张图片被表示为三维数组的形式,每个像素的值从0到255。

计算机视觉面临的挑战:照射角度、形状改变、部分遮蔽和背景混入

1.K近邻算法

K(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:在特征空间中,如果一个样本附近的k个最近(即特征空间中最邻近)样本的大多数属于某一个类别,则该样本也属于这个类别。

K近邻计算流程

  1. 计算已知类型数据集中的点与当前点的距离

  2. 按照距离依次排序

  3. 选取与当前点距离最小的K个点

  4. 确定前K个点所在的类别的出现概率

  5. 返回前K个点出现频率最高的类别作为当前点预测分类

数据库样例:CIFAR-10

数据库简介:

10类标签、50000个训练数据、10000个测试数据、大小均为32*32

图像的距离计算方式实际上与矩阵的加减法很相似。

K近邻的局限性:不能用来图像分类,因为背景主导是一个最大的问题,我们关注的是主体(主要成分)

2.得分函数

根据得分函数,计算出每个输入的类别得分如下:我们只有类别的得分并不能评判分类效果,损失函数便是用来评估分类效果的好坏程度。

线性函数:从输入--->输出的映射

f(x, W) = Wx

得分函数公式是一种用来描述某种情况下得分的计算方式,一般用于评分、评价等方面。得分函数公式通常由多个参数组成,每个参数代表一种影响因素,通过对这些参数进行加权运算得出最终得分。

3.损失函数的作用

损失函数(loss function)是将随机事件或其有关随机变量的取值映射为非负实数的函数。

在机器学习中,损失函数用于度量模型预测结果和真实结果之间的差距,通常是越小越好。比如在回归问题中,可以使用均方误差(MSE)和平均绝对误差(MAE)等作为损失函数;在分类问题中,可以用交叉熵(CrossEntropy)作为损失函数,或者用二分类问题的二元交叉熵(BCELoss)等。

矩阵来源是优化而来的结果。

神经网络的作用是通过适合的矩阵Wi来处理相应的问题。

uTools_1688799265492

做不同任务就是损失函数的不同。

损失函数其实有很多,我们需要的是一个最贴近实际的函数形式。

损失函数

这里的1相当于是一个近似值的估计。

uTools_1688799735799

虽然这两个模型的损失函数值相同,模型A考虑的是局部,模型B考虑的是全局,它们两的侧重方向是不一样的,只是结果恰好相同而已。

损失函数=数据损失+正则化惩罚项(R(W))

我们总是希望模型不要太复杂,过拟合的模型是没有用的。

uTools_1688802832405

4.向前传播整体流程

正向传播算法,也叫前向传播算法,顾名思义,是由前往后进行的一个算法。

Softmax分类器

现在我们得到的是一个输入的得分值,但如果给我一个概率值岂不更好!

如何把一个得分值转换成一个慨率值呢?

这和数学建模有共同之处,往往能除以一个相近的函数就能得到一个概率值。

uTools_1688803136943

归一化和计算损失值

向前传播:

uTools_1688803485728

5.反向传播计算方法

举一个例子:

uTools_1688803749742

它的函数式是:f(x,y,z) = (x+y)z

q=x+y f=q*z

uTools_1688803849371

想要求的值:f对x的偏导,f对y求偏导,f对z求偏导。

这就是我们在高数中学到的链式法则,梯度是一步一步传播的

uTools_1688804086446

我们所看到的绿色线就是我们上一部分向前传播计算,红色的部分会把上一次的梯度携带到下一层的反向传播的计算中。

反向传播算法,简称BP算法,适合于多层神经元网络的一种学习算法,它建立在梯度下降法的基础上。BP网络的输入输出关系实质上是一种映射关系:一个n输入m输出的BP神经网络所完成的功能是从n维欧氏空间向m维欧氏空间中一有限域的连续映射,这一映射具有高度非线性。它的信息处理能力来源于简单非线性函数的多次复合,因此具有很强的函数复现能力。这是BP算法得以应用的基础。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/26254.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

万界星空科技/免费开源MES系统/免费仓库管理

仓库管理(仓储管理),指对仓库及仓库内部的物资进行收发、结存等有效控制和管理,确保仓储货物的完好无损,保证生产经营活动的正常进行,在此基础上对货物进行分类记录,通过报表分析展示仓库状态、…

开源项目如何贡献代码

以腾讯犀牛鸟开源项目ncnn为例 目录 fork项目仓库 添加远程仓库 同步更新仓库 贡献代码提交新PR PR未merge更新PR fork项目仓库 只需要做一次 到仓库页面点击fork,然后create forkTencent/ncnn: ncnn is a high-performance neural network inference frame…

性能测试浅谈

早期的性能测试更关注后端服务的处理能力。 一个用户去访问一个页面的请求过程,如上图。 数据传输时间 当你从浏览器输入网址,敲下回车,开始... 真实的用户场景请不要忽视数据传输时间,想想你给远方的朋友写信,信件…

龙架构 Arch Linux 发行版发布

导读近日,龙架构 Arch Linux 发行版官方网站宣布结束 beta 状态,正式支持龙架构 (LoongArch)。 Arch Linux 是一种轻量级、可定制、灵活的 Linux 操作系统。作为一款简单、现代、开放的操作系统,Arch Linux 旨在基于 “KISS 原则”&#xff0…

WorkTool企微机器人自动接收图片回传(方案三)

自动接收图片并上传到服务器,仅适用企业微信应用 前言 WorkTool企微机器人可以接收客户群的消息,但接收图片一直是个问题,前面也介绍过两种图片接收方案,但都会影响运行效率,并且不能达到100%的图片接收率&#xff0…

小研究 - Mysql快速全同步复制技术的设计和应用(一)

Mysql半同步复制技术在高性能的数据管理中被广泛采用,但它在可靠性方面却存在不足.本文对半同步复制技术进行优化,提出了一种快速全同步复制技术,通过对半同步数据复制过程中的事务流程设置、线程资源合理应用、批量日志应用等技术手段&#…

[LitCTF 2023]Http pro max plus

打开环境后提示说,只允许在本地访问,本地访问,还是想到了XFF字段 好家伙的,直接被嘲讽,还是了解太少了,都不知道还有没有其他方式可以控制ip地址信息 经过查看wp,得知一种新的方式 Client-IP …

【FIFO IP系列】FIFO IP参数配置与使用示例

Vivado IP核提供了强大的FIFO生成器,可以通过图形化配置快速生成FIFO IP核。 本文将详细介绍如何在Vivado中配置一个FIFO IP核,以及如何调用这个FIFO IP核。 一、FIFO IP核的配置 1、新建FIFO IP 在Vivado的IP Catalog中找到FIFO Generator IP核,双击…

“算法详解”系列第3卷贪心算法和动态规划出版

“算法详解”系列图书共有4卷,目前1到3卷已经出版。最新出版的是第3卷—贪心算法和动态规划。 算法详解 卷3 贪心算法和动态规划 “算法详解”系列图书共有4卷,本书是第3卷—贪心算法和动态规划。其中贪心算法主要包括调度、最小生成树、集群、哈夫曼编…

golang代码热加载,热更新库air库实践

windows下先生成air.exe文件,然后移动到golang的执行目录: 2.简介 air是一款基于golang开发的实时热加载工具,通过使用该工具,使得开发人员能专注于coding,而不会被编译过程打断。 项目地址: https://github.com/cos…

深度学习和OpenCV的对象检测(MobileNet SSD视频流实时识别)

上期文章,我们分享了如何使用opencv 与MobileNet SSD模型来检测给定的图片,有网友反馈能否提供一下视频流的实时检测代码,其实我们在分享人脸识别的时候,分享了如何使用cv2.videoCpature 类来从视频中实时提取视频中的图片,进行人脸的识别,视频流的对象检测跟opencv的人脸…

@Transactional是如何工作的 事物

Spring源码学习之十二:Transactional是如何工作的 - 掘金 在需要进行事务操作的时候,Spring会在调用目标类的目标方法之前进行开启事务、调用异常回滚事务、调用完成会提交事务。Spring并不会对所有类型异常都进行事务回滚操作,默认是只对Unc…

Mir 2.14 正式发布,Ubuntu 使用的 Linux 显示服务器

Canonical 公司最近发布了 Mir 2.14,这是该项目的最新版本。 Mir 2.14 在 Wayland 方面通过 ext-session-lock-v1 协议增加了对屏幕锁定器 (screen lockers) 的支持,并最终支持 Wayland 拖放。此外还整合了渲染平台的实现,放弃了之前在 Raspb…

本地mvn仓库清理无用jar包

背景 开发java时间久了,本地的m2仓库就会产生很多过期的jar包,不清理的话比较占空间。 原理 是通过比较同一目录下,对应jar包的版本号的大小,保留最大版本号那个,删除其他的。 脚本 执行脚本见文章顶部 执行方式 …

8月16日起!亚马逊新商品上架需更新产品类型的274个属性!

亚马逊美国站发布公告称为了帮助买家更轻松地搜索产品,改善买家的购买决策提高卖家的销量,8月16日起受影响的200种产品类型的274个属性在上架前需更新属性,以下是公告内容: 自2023年8月16日起,200种产品类型的274个属…

【网络基础实战之路】设计网络划分的实战详解

系列文章传送门: 【网络基础实战之路】设计网络划分的实战详解 【网络基础实战之路】一文弄懂TCP的三次握手与四次断开 【网络基础实战之路】基于MGRE多点协议的实战详解 【网络基础实战之路】基于OSPF协议建立两个MGRE网络的实验详解 PS:本要求基于…

六、JVM-垃圾收集器浅析

垃圾收集器浅析 主 JVM参数 3.1.1 标准参数 -version -help -server -cp3.1.2 -X参数 非标准参数,也就是在JDK各个版本中可能会变动 -Xint 解释执行 -Xcomp 第一次使用就编译成本地代码 -Xmixed 混合模式,JVM自己来决定3.1.3 -XX参数 使用得…

大麦订单生成器 大麦一键生成订单

后台一键生成链接,独立后台管理 教程:修改数据库config/Conn.php 不会可以看源码里有教程 下载源码程序:https://pan.baidu.com/s/16lN3gvRIZm7pqhvVMYYecQ?pwd6zw3

怎么进行流程图制作?用这个工具制作很方便

怎么进行流程图制作?流程图是一种非常有用的工具,可以帮助我们更好地理解和展示各种复杂的业务流程和工作流程。它可以将复杂的过程简化为易于理解的图形和文本,使得人们更容易理解和跟踪整个流程。因此,制作流程图是在日常工作中…

【c++】rand()随机函数的应用(一)——rand()函数详解和实例

c语言中可以用rand()函数生成随机数,今天来探讨一下rand()函数的基本用法和实际应用。 本系列文章共分两讲,今天主要介绍一下伪随机数生成的原理,以及在伪随机数生成的基础上,生成随机数的技巧,下一讲主要介绍无重复随…