霍夫变换(限量版)
基于matlab的霍夫变换 一、简单介绍
Hough变换是图像处理中从图像中识别几何形状的基本方法之一。
Hough变换的基本原理在于利用点与线的对偶性,将原始图像空间的给定的曲线通过曲线表达形式变为参数空间的一个点。这样就把原始图像中给定曲线的检测问题转化为寻找参数空间中的峰值问题。也即把检测整体特性转化为检测局部特性。比如直线、椭圆、圆、弧线等。
二、基本原理
Hough变换的基本原理在于,利用点与线的对偶性,将图像空间的线
条变为参数空间的聚集点,从而检测给定图像是否存在给定性质的曲线(圆的方程为:(x-a)^2+(y-b)^2=r^2,通过Hough变换,将图像空间对应到参数空间)。
霍夫变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进算法。最基本的霍夫变换是从黑白图像中检测直线(线段)。
三、hough变换检测直线
设已知一黑白图像上画了一条直线,要求出这条直线所在的位置。我们知道,直线的方程可以用y=k*x+b 来表示,其中k和b是参数,分别是斜率和截距。过某一点(x0,y0)的所有直线的参数都会满足方程y0=kx0+b。即点(x0,y0)确定了一族直线。方程y0=kx0+b在参数k--b平面上是一条直线,(你也可以是方程b=-x0*k+y0对应的直线)。如下图1所示:
从图1中可看出,x-y坐标和k-b坐标有点----线的对偶性。x-y坐标中的点P1、P2对应于k-b坐标中的L1、L2;而k-b坐标中的点P0对应于x-y坐标中的线L0 。
这样,图像x--y平面上的一个前景像素点就对应到参数平面上的一条直线。我们举个例子说明解决前面那个问题的原理。设图像上的直线是y=x, 我