自然语言处理从入门到应用——LangChain:记忆(Memory)-[基础知识]

分类目录:《自然语言处理从入门到应用》总目录


默认情况下,链(Chains)和代理(Agents)是无状态的,这意味着它们将每个传入的查询视为独立的(底层的LLM和聊天模型也是如此)。在某些应用程序中(如:聊天机器人),记住先前的交互则非常重要。记忆(Memory)正是为此而设计的。 LangChain提供两种形式的记忆组件。首先,LangChain提供了用于管理和操作先前聊天消息的辅助工具,这些工具都被设计为模块化的使用方式。其次,LangChain提供了将这些工具轻松整合到链中的方法。

记忆涉及了在用户与语言模型的交互过程中保持状态的概念。用户与语言模型的交互被捕捉在ChatMessage的概念中,因此这涉及到对一系列聊天消息进行摄取、捕捉、转换和提取知识。有许多不同的方法可以实现这一点,每种方法都存在作为自己的记忆类型。通常情况下,对于每种类型的记忆,有两种使用记忆的方法。一种是独立的函数,从一系列消息中提取信息,另一种是在链中使用这种类型的记忆的方法。记忆可以返回多个信息(如:最近的 N N N条消息和所有先前消息的摘要),返回的信息可以是字符串或消息列表。在本文中,我们将介绍最简单形式的记忆:"缓冲"记忆。它只涉及保持先前所有消息的缓冲区。我们将展示如何在这里使用模块化的实用函数,然后展示它如何在链中使用(返回字符串和消息列表两种形式)。

聊天消息历史ChatMessageHistory

在大多数记忆模块的核心实用类之一是ChatMessageHistory类。这是一个超轻量级的包装器,提供了保存人类消息、AI 消息以及获取所有消息的便捷方法。如果我们在链外管理记忆,则可以直接使用此类。

from langchain.memory import ChatMessageHistoryhistory = ChatMessageHistory()
history.add_user_message("hi!")history.add_ai_message("whats up?")
history.messages[HumanMessage(content='hi!', additional_kwargs={}, example=False),AIMessage(content='whats up?', additional_kwargs={}, example=False)]

ConversationBufferMemory

现在我们展示如何在链中使用这个简单的概念。首先展示ConversationBufferMemory,它只是一个对ChatMessageHistory的包装器,用于提取消息到一个变量中。我们可以首先将其提取为一个字符串:

from langchain.memory import ConversationBufferMemorymemory = ConversationBufferMemory()
memory.chat_memory.add_user_message("hi!")
memory.chat_memory.add_ai_message("whats up?")
memory.load_memory_variables({})

输出:

{'history': 'Human: hi!\nAI: whats up?'}

我们还可以将历史记录作为消息列表获取:

memory = ConversationBufferMemory(return_messages=True)
memory.chat_memory.add_user_message("hi!")
memory.chat_memory.add_ai_message("whats up?")
memory.load_memory_variables({})

输出:

{'history': [HumanMessage(content='hi!', additional_kwargs={}, example=False),
AIMessage(content='whats up?', additional_kwargs={}, example=False)]}

在链中使用

最后,让我们看看如何在链中使用这个模块,其中我们设置了verbose=True以便查看提示。

from langchain.llms import OpenAI
from langchain.chains import ConversationChainllm = OpenAI(temperature=0)
conversation = ConversationChain(llm=llm, verbose=True, memory=ConversationBufferMemory()
)
conversation.predict(input="Hi there!")

日志输出:

> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.Current conversation:Human: Hi there!
AI:> Finished chain.

输出:

" Hi there! It's nice to meet you. How can I help you today?"

输入:

conversation.predict(input="I'm doing well! Just having a conversation with an AI.")

日志输出:

> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.Current conversation:
Human: Hi there!
AI: Hi there! It's nice to meet you. How can I help you today?
Human: I'm doing well! Just having a conversation with an AI.
AI: That's great! It's always nice to have a conversation with someone new. What would you like to talk about?
Human: Tell me about yourself.
AI:> Finished chain.

输出:

" Sure! I'm an AI created to help people with their everyday tasks. I'm programmed to understand natural language and provide helpful information. I'm also constantly learning and updating my knowledge base so I can provide more accurate and helpful answers."

保存消息记录

我们可能经常需要保存消息,并在以后使用时加载它们。我们可以通过将消息首先转换为普通的Python字典来轻松实现此操作,然后将其保存(如:保存为JSON格式),然后再加载。以下是一个示例:

import json
from langchain.memory import ChatMessageHistory
from langchain.schema import messages_from_dict, messages_to_dicthistory = ChatMessageHistory()history.add_user_message("hi!")history.add_ai_message("whats up?")
dicts = messages_to_dict(history.messages)
dicts

输出:

[{'type': 'human','data': {'content': 'hi!', 'additional_kwargs': {}, 'example': False}},{'type': 'ai','data': {'content': 'whats up?', 'additional_kwargs': {}, 'example': False}}]

输入:

new_messages = messages_from_dict(dicts)
new_messages

输出:

[HumanMessage(content='hi!', additional_kwargs={}, example=False),AIMessage(content='whats up?', additional_kwargs={}, example=False)]

参考文献:
[1] LangChain官方网站:https://www.langchain.com/
[2] LangChain 🦜️🔗 中文网,跟着LangChain一起学LLM/GPT开发:https://www.langchain.com.cn/
[3] LangChain中文网 - LangChain 是一个用于开发由语言模型驱动的应用程序的框架:http://www.cnlangchain.com/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/25996.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

用Rust实现23种设计模式之原型模式

在 Rust 中,原型模式可以通过实现 Clone trait 来实现。原型模式是一种创建型设计模式,它允许通过复制现有对象来创建新对象,而无需显式地使用构造函数。下面是一个使用 Rust 实现原型模式的示例,带有详细的代码注释和说明&#x…

shell 入门练习小记

一、hello world #!/bin/bash echo "Hello World !"#! 为约定的标记,告诉系统这个脚本需要什么解释器执行,后接绝对路径 /bin/bash 表示期望 bash去解析并运行shell echo用于向窗口输出文本 chmod x ./test.sh #给脚本赋执行权限 ./test.sh …

Centos7克隆快速复制多台虚拟机|互通互联

背景:有时候,我们在用虚拟机的时候会用到多个进行使用。重新安装会花费大量的时间,此时,我们可以通过vmware虚拟机自带的功能快速克隆出完全相同的系统。 前提:被克隆的虚拟机系统要处于关闭状态 步骤:…

Android入门教程||Android 架构||Android 应用程序组件

Android 架构 Android 操作系统是一个软件组件的栈,在架构图中它大致可以分为五个部分和四个主要层。 Linux内核 在所有层的最底下是 Linux - 包括大约115个补丁的 Linux 3.6。它提供了基本的系统功能,比如进程管理,内存管理,设…

ChatGPT FAQ指南

问:chatgpt 国内不开放注册吗? OpenAI不允许大陆和香港用户注册访问 openai可以的,chatGPT不行 以下国家IP不支持使用 中国(包含港澳台) 俄罗斯 乌克兰 阿富汗 白俄罗斯 委内瑞拉 伊朗 埃及 问:ChatGPT和GPT-3什么关系? GPT-3是OpenAI推出的AI大语言模型 ChatGPT是在G…

spring eurake中使用IP注册

在开发spring cloud的时候遇到一个很奇葩的问题,就是服务向spring eureka中注册实例的时候使用的是机器名,然后出现localhost、xxx.xx等这样的内容,如下图: eureka.instance.perferIpAddresstrue 我不知道这朋友用的什么spring c…

H263压缩码流如何分解为一个一个单元并查询到其宽高?

H263码流尺寸规格有限,只有以下几种: H263码流有四个分层: 1、图像层 2、块组 3、宏块 4、块 下面分别介绍: 具体介绍如下,5.1.3中红色框选部分就是压缩码流的宽高指示: 图像层 上面就是H263的图像层&am…

【回眸】备考PMP考点汇总 四(距离考试还有12天)

目录 前言 【回眸】备考PMP考点汇总 四(距离考试还有12天) 3、敏捷阶段框架 4、Scrum敏捷实践 5、敏捷交付框架 6、推测阶段 7、用户故事卡片 8、用户故事优先级 9、风险调整代办事项列表 10、用户故事估算 11:Scrum敏捷实践 12、…

使用docker部署一个jar项目

简介: 通过docker镜像, docker可以在服务器上运行包含项目所需运行环境的docker容器, 在线仓库里有很多各个软件公司官方发布的镜像, 或者第三方的镜像. 如果我们需要使用docker把我们的应用程序打包成镜像, 别的机器上只要安装了docker, 就可以直接运行镜像, 而不需要再安装应…

拆分PDBQT文件并将其转换为PDB格式

拆分PDBQT文件转为PDB格式 1. vina_split拆分PDBQT文件 假设你用AutoDock Vina做了对接,那么所有预测的结合构象都被放入一个多构象 PDBQT 文件中,如果需要拆分后进行可视化分析,那么Vina官方自带了vina_split来进行拆分。下面是vina_split…

⛳ Java 枚举

目录 ⛳ 枚举**🎨 例子:使用常量表示线程状态**🏭 例子:使用枚举表示线程状态📢 例子:订单状态的枚举 ⛳ 枚举 类的对象只有有限个,确定的。 使用场景: 星期: Monday(星…

CentOS 安装 Jenkins

本文目录 1. 安装 JDK2. 获取 Jenkins 安装包3. 将安装包上传到服务器4. 修改 Jenkins 配置5. 启动 Jenkins6. 打开浏览器访问7. 获取并输入 admin 账户密码8. 跳过插件安装9. 添加管理员账户 1. 安装 JDK Jenkins 需要依赖 JDK,所以先安装 JDK1.8。输入以下命令&a…

鸿蒙终于不套壳了?纯血 HarmonyOS NEXT 即将到来

对于移动开发者来说,特别是 Android 开发而言,鸿蒙是不是套壳 Android 一直是一个「热门」话题,类似的问题一直是知乎的「热点流量」之一,特别是每次鸿蒙发布新版本之后,都会有「套娃式」的问题出现。 例如最近 HDC 刚…

Tomcat 编程式启动 JMX 监控

通过这篇文章,我们可以了解到,利用 JMX 技术可以方便获取 Tomcat 监控情况。但是我们采用自研的框架而非大家常见的 SpringBoot,于是就不能方便地通过设置配置开启 Tomcat 的 JMX,——尽管我们也是基于 Tomcat 的 Web 容器&#x…

解决npm ERR! code ERESOLVE -npm ERR! ERESOLVE could not resolve

当使用一份vue源码开发项目时,npm install 报错了 npm ERR! code ERESOLVEnpm ERR! ERESOLVE could not resolvenpm ERR!npm ERR! While resolving: vue-admin-template4.4.0npm ERR! Found: webpack4.46.0npm ERR! node_modules/webpacknpm ERR! webpack"^4.0…

uni-app 支持 app端, h5端,微信小程序端 图片转换文件格式 和 base64

uni-app 支持 app端 h5端,微信小程序端 图片转换文件格式 和 base64,下方是插件市场的地址app端 h5端,微信小程序端 图片转换文件格式 和 base64 - DCloud 插件市场

9、Kubernetes核心技术 - Volume

目录 一、概述 二、卷的类型 三、emptyDir 四、hostPath 五、NFS 5.1、master服务器上搭建nfs服务器 5.2、各个slave节点上安装nfs客户端 5.3、创建Pod 六、PV和PVC 6.1、PV 6.1.1、PV资源清单文件示例 6.1.2、PV属性说明 6.1.3、PV的状态 6.2、PVC 6.2.1、PVC资…

Java数据类型,你不想不学会都不行~

——每一种数据都定义了明确的数据类型,在内存中分配了不同大小的内存空间(字节) 思维导图 一.整数类型 1.什么是整数类型 —— 用int、short、byte、long存储的整数值就是整数类型 2.整数的类型 类型 所占的字节数 数值…

【《深入浅出计算机网络》学习笔记】第1章 概述

内容来自b站湖科大教书匠《深入浅出计算机网络》视频和《深入浅出计算机网络》书籍 目录 1.1 信息时代的计算机网络 1.1.1 计算机网络的各类应用 1.1.2 计算机网络带来的负面问题 1.2 因特网概述 1.2.1 网络、互联网与因特网的区别与关系 1.2.1.1 网络 1.2.1.2 互联网 …

探讨|使用或不使用机器学习

动动发财的小手,点个赞吧! 机器学习擅长解决某些复杂问题,通常涉及特征和结果之间的困难关系,这些关系不能轻易地硬编码为启发式或 if-else 语句。然而,在决定 ML 是否是当前给定问题的良好解决方案时,有一…