faster rcnn学习之rpn 的生成

接着上一节《 faster rcnn学习之rpn训练全过程》,假定我们已经训好了rpn网络,下面我们看看如何利用训练好的rpn网络生成proposal.

其网络为rpn_test.pt

# Enter your network definition here.
# Use Shift+Enter to update the visualization.
name: "VGG_CNN_M_1024"
input: "data"
input_shape {dim: 1dim: 3dim: 224dim: 224
}
input: "im_info"
input_shape {dim: 1dim: 3
}
layer {name: "conv1"type: "Convolution"bottom: "data"top: "conv1"convolution_param {num_output: 96kernel_size: 7stride: 2}
}
layer {name: "relu1"type: "ReLU"bottom: "conv1"top: "conv1"
}
layer {name: "norm1"type: "LRN"bottom: "conv1"top: "norm1"lrn_param {local_size: 5alpha: 0.0005beta: 0.75k: 2}
}
layer {name: "pool1"type: "Pooling"bottom: "norm1"top: "pool1"pooling_param {pool: MAXkernel_size: 3stride: 2}
}
layer {name: "conv2"type: "Convolution"bottom: "pool1"top: "conv2"convolution_param {num_output: 256pad: 1kernel_size: 5stride: 2}
}
layer {name: "relu2"type: "ReLU"bottom: "conv2"top: "conv2"
}
layer {name: "norm2"type: "LRN"bottom: "conv2"top: "norm2"lrn_param {local_size: 5alpha: 0.0005beta: 0.75k: 2}
}
layer {name: "pool2"type: "Pooling"bottom: "norm2"top: "pool2"pooling_param {pool: MAXkernel_size: 3stride: 2}
}
layer {name: "conv3"type: "Convolution"bottom: "pool2"top: "conv3"convolution_param {num_output: 512pad: 1kernel_size: 3}
}
layer {name: "relu3"type: "ReLU"bottom: "conv3"top: "conv3"
}
layer {name: "conv4"type: "Convolution"bottom: "conv3"top: "conv4"convolution_param {num_output: 512pad: 1kernel_size: 3}
}
layer {name: "relu4"type: "ReLU"bottom: "conv4"top: "conv4"
}
layer {name: "conv5"type: "Convolution"bottom: "conv4"top: "conv5"convolution_param {num_output: 512pad: 1kernel_size: 3}
}
layer {name: "relu5"type: "ReLU"bottom: "conv5"top: "conv5"
}#========= RPN ============layer {name: "rpn_conv/3x3"type: "Convolution"bottom: "conv5"top: "rpn/output"convolution_param {num_output: 256kernel_size: 3 pad: 1 stride: 1}
}
layer {name: "rpn_relu/3x3"type: "ReLU"bottom: "rpn/output"top: "rpn/output"
}
layer {name: "rpn_cls_score"type: "Convolution"bottom: "rpn/output"top: "rpn_cls_score"convolution_param {num_output: 18   # 2(bg/fg) * 9(anchors)kernel_size: 1 pad: 0 stride: 1}
}
layer {name: "rpn_bbox_pred"type: "Convolution"bottom: "rpn/output"top: "rpn_bbox_pred"convolution_param {num_output: 36   # 4 * 9(anchors)kernel_size: 1 pad: 0 stride: 1}
}
layer {bottom: "rpn_cls_score"top: "rpn_cls_score_reshape"name: "rpn_cls_score_reshape"type: "Reshape"reshape_param { shape { dim: 0 dim: 2 dim: -1 dim: 0 } }
}#========= RoI Proposal ============layer {name: "rpn_cls_prob"type: "Softmax"bottom: "rpn_cls_score_reshape"top: "rpn_cls_prob"
}
layer {name: 'rpn_cls_prob_reshape'type: 'Reshape'bottom: 'rpn_cls_prob'top: 'rpn_cls_prob_reshape'reshape_param { shape { dim: 0 dim: 18 dim: -1 dim: 0 } }
}
layer {name: 'proposal'type: 'Python'bottom: 'rpn_cls_prob_reshape'bottom: 'rpn_bbox_pred'bottom: 'im_info'top: 'rois'top: 'scores'python_param {module: 'rpn.proposal_layer'layer: 'ProposalLayer'param_str: "'feat_stride': 16"}
}

同样借用文献[1]的图 ,网络绘制出来如下:我们发现与rpn基本相同。




如上,一张大小为224*224的图片经过前面的5个卷积层,输出256张大小为13*13的 特征图(你也可以理解为一张13*13*256大小的特征图,256表示通道数),然后使用1*1的卷积输出13*13*18的rpn_cls_score,和13*13*36的rpn_bbox_pred。rpn_cls_score经过了reshape,准备进行softmax输出。


接着rpn_cls_score_reshape使用softmax输出了rpn_cls_prob,再reshape回去,输出rpn_cls_prob_reshape。


最后rpn_cls_prob_reshape(1*18*13*13),rpn_bbox_pred(1*36*13*13),im_info (1*3)输入到proposal层中输出了rois与scores。

layer {name: 'proposal'type: 'Python'bottom: 'rpn_cls_prob_reshape'bottom: 'rpn_bbox_pred'bottom: 'im_info'top: 'rois'top: 'scores'python_param {module: 'rpn.proposal_layer'layer: 'ProposalLayer'param_str: "'feat_stride': 16"}
}
我们来看看proposal_layer,

  def setup(self, bottom, top):# parse the layer parameter string, which must be valid YAMLlayer_params = yaml.load(self.param_str_)self._feat_stride = layer_params['feat_stride']anchor_scales = layer_params.get('scales', (8, 16, 32))self._anchors = generate_anchors(scales=np.array(anchor_scales))self._num_anchors = self._anchors.shape[0]if DEBUG:print 'feat_stride: {}'.format(self._feat_stride)print 'anchors:'print self._anchors# rois blob: holds R regions of interest, each is a 5-tuple# (n, x1, y1, x2, y2) specifying an image batch index n and a# rectangle (x1, y1, x2, y2)top[0].reshape(1, 5)# scores blob: holds scores for R regions of interestif len(top) > 1:top[1].reshape(1, 1, 1, 1)
anchor_target_layer.py 的setup类似,设置了top的shape,并且生成了左上角顶点的anchors。

    def forward(self, bottom, top):# Algorithm:## for each (H, W) location i#   generate A anchor boxes centered on cell i#   apply predicted bbox deltas at cell i to each of the A anchors# clip predicted boxes to image# remove predicted boxes with either height or width < threshold# sort all (proposal, score) pairs by score from highest to lowest# take top pre_nms_topN proposals before NMS# apply NMS with threshold 0.7 to remaining proposals# take after_nms_topN proposals after NMS# return the top proposals (-> RoIs top, scores top)assert bottom[0].data.shape[0] == 1, \'Only single item batches are supported'cfg_key = str(self.phase) # either 'TRAIN' or 'TEST'pre_nms_topN  = cfg[cfg_key].RPN_PRE_NMS_TOP_Npost_nms_topN = cfg[cfg_key].RPN_POST_NMS_TOP_Nnms_thresh    = cfg[cfg_key].RPN_NMS_THRESHmin_size      = cfg[cfg_key].RPN_MIN_SIZE# the first set of _num_anchors channels are bg probs   (前9个是背景,后面的是前景预测)# the second set are the fg probs, which we wantscores = bottom[0].data[:, self._num_anchors:, :, :]bbox_deltas = bottom[1].dataim_info = bottom[2].data[0, :]if DEBUG:print 'im_size: ({}, {})'.format(im_info[0], im_info[1])print 'scale: {}'.format(im_info[2])# 1. Generate proposals from bbox deltas and shifted anchorsheight, width = scores.shape[-2:]if DEBUG:print 'score map size: {}'.format(scores.shape)# Enumerate all shiftsshift_x = np.arange(0, width) * self._feat_strideshift_y = np.arange(0, height) * self._feat_strideshift_x, shift_y = np.meshgrid(shift_x, shift_y)shifts = np.vstack((shift_x.ravel(), shift_y.ravel(),shift_x.ravel(), shift_y.ravel())).transpose()# Enumerate all shifted anchors:## add A anchors (1, A, 4) to# cell K shifts (K, 1, 4) to get# shift anchors (K, A, 4)# reshape to (K*A, 4) shifted anchorsA = self._num_anchorsK = shifts.shape[0]anchors = self._anchors.reshape((1, A, 4)) + \shifts.reshape((1, K, 4)).transpose((1, 0, 2))anchors = anchors.reshape((K * A, 4))# Transpose and reshape predicted bbox transformations to get them# into the same order as the anchors:## bbox deltas will be (1, 4 * A, H, W) format# transpose to (1, H, W, 4 * A)# reshape to (1 * H * W * A, 4) where rows are ordered by (h, w, a)# in slowest to fastest order# 为了与anchors的shape对应,故做了此变换bbox_deltas = bbox_deltas.transpose((0, 2, 3, 1)).reshape((-1, 4))# Same story for the scores:## scores are (1, A, H, W) format# transpose to (1, H, W, A)# reshape to (1 * H * W * A, 1) where rows are ordered by (h, w, a)# 为了与anchors的shape对应,故做了此变换scores = scores.transpose((0, 2, 3, 1)).reshape((-1, 1))# Convert anchors into proposals via bbox transformations,生成预测(x1,y1,x2,y2)proposals = bbox_transform_inv(anchors, bbox_deltas)# 2. clip predicted boxes to imageproposals = clip_boxes(proposals, im_info[:2])# 3. remove predicted boxes with either height or width < threshold# (NOTE: convert min_size to input image scale stored in im_info[2])keep = _filter_boxes(proposals, min_size * im_info[2])proposals = proposals[keep, :]scores = scores[keep]# 4. sort all (proposal, score) pairs by score from highest to lowest# 5. take top pre_nms_topN (e.g. 6000)order = scores.ravel().argsort()[::-1]if pre_nms_topN > 0:order = order[:pre_nms_topN]proposals = proposals[order, :]scores = scores[order]# 6. apply nms (e.g. threshold = 0.7)# 7. take after_nms_topN (e.g. 300)# 8. return the top proposals (-> RoIs top)keep = nms(np.hstack((proposals, scores)), nms_thresh)if post_nms_topN > 0:keep = keep[:post_nms_topN]proposals = proposals[keep, :]scores = scores[keep]# Output rois blob# Our RPN implementation only supports a single input image, so all# batch inds are 0# rois 的shape为1*5,(n,x1,y1,x2,y2) ,这里生成的box的尺度是缩放后的。batch_inds = np.zeros((proposals.shape[0], 1), dtype=np.float32)blob = np.hstack((batch_inds, proposals.astype(np.float32, copy=False)))top[0].reshape(*(blob.shape))top[0].data[...] = blob# [Optional] output scores blobif len(top) > 1:top[1].reshape(*(scores.shape))top[1].data[...] = scores
而forward中,先是生成了所有的anchor,然后利用预测地偏移量与生成的anchor一起生成proposal.

再接着进行了一些删减操作以及nms去重。返回前景分数最高的一些proposals及对应的scores.注意生成的proposal是相对于

输入尺度的,也就是缩放后的尺度。



我们再回到train_faster_rcnn_alt_opt中。看Stage 1 RPN, generate proposals'

  mp_kwargs = dict(queue=mp_queue,imdb_name=args.imdb_name,rpn_model_path=str(rpn_stage1_out['model_path']),cfg=cfg,rpn_test_prototxt=rpn_test_prototxt)p = mp.Process(target=rpn_generate, kwargs=mp_kwargs)p.start()rpn_stage1_out['proposal_path'] = mp_queue.get()['proposal_path']p.join()

在rpn_generate中,载入了网络,且使用了生成的rpn网络,接下来imdb_proposals根据网络与imdb生成了rpn_proposals。

imdb_proposals在generate.py中。 

def im_proposals(net, im):"""Generate RPN proposals on a single image."""blobs = {}blobs['data'], blobs['im_info'] = _get_image_blob(im)net.blobs['data'].reshape(*(blobs['data'].shape))net.blobs['im_info'].reshape(*(blobs['im_info'].shape))blobs_out = net.forward(data=blobs['data'].astype(np.float32, copy=False),im_info=blobs['im_info'].astype(np.float32, copy=False))scale = blobs['im_info'][0, 2]boxes = blobs_out['rois'][:, 1:].copy() / scalescores = blobs_out['scores'].copy()return boxes, scoresdef imdb_proposals(net, imdb):"""Generate RPN proposals on all images in an imdb."""_t = Timer()imdb_boxes = [[] for _ in xrange(imdb.num_images)]for i in xrange(imdb.num_images):im = cv2.imread(imdb.image_path_at(i))_t.tic()imdb_boxes[i], scores = im_proposals(net, im)_t.toc()print 'im_proposals: {:d}/{:d} {:.3f}s' \.format(i + 1, imdb.num_images, _t.average_time)if 0:dets = np.hstack((imdb_boxes[i], scores))# from IPython import embed; embed()_vis_proposals(im, dets[:3, :], thresh=0.9)plt.show()return imdb_boxes
可以看到在im_proposals中有

  boxes = blobs_out['rois'][:, 1:].copy() / scale
所以rpn生成的proposal经过了缩放,又回到了原始图片的尺度。

imdb_boxes的shape是N*5.N为盒子的序号。


参考:

1. http://blog.csdn.net/zy1034092330/article/details/62044941

2. https://www.zhihu.com/question/35887527/answer/140239982





本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/258634.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

初学java之常用组件

1 2 import javax.swing.*;3 4 import java.awt.*;5 class Win extends JFrame6 {7 JTextField mytext; // 设置一个文本区8 JButton mybutton;9 JCheckBox mycheckBox[]; 10 JRadioButton myradio[]; 11 ButtonGroup group; //为一…

anaconda 安装在c盘_最省心的Python版本和第三方库管理——初探Anaconda

打算把公众号和知乎专栏的文章搬运一点过来。 历史文章可以去关注我的公众号&#xff1a;不二小段&#xff0c;或者知乎&#xff1a;段小草。也欢迎来看我的视频学Python↓↓↓跟不二学Python这篇文章可以作为Python入门的第一站可以结合这期视频来看&#xff0c;基本上是这期视…

Iris recognition papers in the top journals in 2017

转载自&#xff1a;https://kiennguyenstuff.wordpress.com/2017/10/05/iris-recognition-papers-in-the-top-journals-in-2017/ Top journals: – IEEE Transaction on Pattern Analysis and Machine Intelligence (PAMI) – Pattern Recognition (PR) – IEEE Transaction on…

判断浏览器是否为IE内核的最简单的方法

没啥说的&#xff0c;直接贴代码&#xff0c;算是ie hack了。 if (![1,]) {alert(is ie); } 转载于:https://www.cnblogs.com/jasondan/p/3716660.html

dubbo控制中心部署,权重配置,以及管控台中各个配置的简单查看

dubbo给我们提供了现成的后台管理网站&#xff0c;专门管理这些服务&#xff0c;应用&#xff0c;路由规则&#xff0c;动态配置&#xff0c;访问控制、权重控制、负载均衡等等&#xff0c;还可以查看系统日志&#xff0c;系统状态&#xff0c;系统环境等等&#xff0c;功能很是…

给git配置http代理

1. 安装socat apt-get install socat 2. 创建配置文件&#xff0c;取名gitproxy填入以下内容&#xff1a; #!/bin/sh_proxy135.245.48.33_proxyport8000 exec socat STDIO PROXY:$_proxy:$1:$2,proxyport$_proxyport 加上可执行权限chmod x gitproxy&#xff0c;将此文件放在环…

faster rcnn在自己的数据集上训练

本文是一个总结&#xff0c;参考了网上的众多资料&#xff0c;汇集而成&#xff0c;以供自己后续参考。 一般说来&#xff0c;训练自己的数据&#xff0c;有两种方法&#xff1a;第一种就是将自己的数据集完全改造成VOC2007的形式&#xff0c;然后放到py-faster-rcnn/data 目录…

1001种玩法 | 1001种玩法--数据存储(2)

新智云www.enncloud.cn第二趴 Flockdb&#xff1a;一个高容错的分布式图形数据库 FlockDB是一个存储图数据的分布式数据库&#xff0c;图数据库的存储对象是数学概念图论里面的图&#xff0c;而非图片。Twitter使用它来存储人与人之间的关系图&#xff0c;这些关系包括&#xf…

python逻辑量有什么_Python中的逻辑运算符有什么?

逻辑运算符用于组合多个条件测试语句。假设“我今年18岁”和“我身高2米”这两个语句&#xff0c;前一个语句是真的&#xff0c;后一个语句是假的&#xff0c;因此&#xff0c;“我今年18岁&#xff0c;并且我身高2米”这个语句是假的。其中&#xff0c;“并且”可以认为是逻辑…

时区日期处理及定时 (NSDate,NSCalendar,NSTimer,NSTimeZone)

NSDate存储的是世界标准时(UTC)&#xff0c;输出时需要根据时区转换为本地时间 Dates NSDate类提供了创建date&#xff0c;比较date以及计算两个date之间间隔的功能。Date对象是不可改变的。 如果你要创建date对象并表示当前日期&#xff0c;你可以alloc一个NSDate对象并调用in…

Android ListView分页,动态添加数据

1.ListView分页的实现&#xff0c;重点在于实现OnScrollListener接口&#xff0c;判断滑动到最后一项时&#xff0c;是否还有数据可以加载&#xff0c; 我们可以利用listView.addFootView(View v)方法进行提示 自定义一个ListView&#xff08;这里本来想进行一些自定已修改的。…

faster rcnn的测试

当训练结束后&#xff0c;faster rcnn的模型保存在在py-faster-rcnn/output目录下&#xff0c;这时就可以用已有的模型对新的数据进行测试。 下面简要说一下测试流程。 测试的主要代码是./tools/test_net.py&#xff0c;并且使用到了fast_rcnn中test.py。 主要流程就是&…

python重点知识 钻石_python——子类对象如何访问父类的同名方法

1. 为什么只说方法不说属性关于“子类对象如何访问父类的同名属性“是没有意义的。因为父类的属性子类都有&#xff0c;子类还有父类没有的属性&#xff0c;在初始化时&#xff0c;给子类对象具体化所有的给定属性&#xff0c;完全没必要访问父类的属性&#xff0c;因为是一样的…

Android-Universal-Image-Loader 的使用说明

这个图片异步载入并缓存的类已经被非常多开发人员所使用&#xff0c;是最经常使用的几个开源库之中的一个&#xff0c;主流的应用&#xff0c;随便反编译几个火的项目&#xff0c;都能够见到它的身影。但是有的人并不知道怎样去使用这库怎样进行配置&#xff0c;网上查到的信息…

faster rcnn end2end 训练与测试

除了前面讲过的rpn与fast rcnn交替训练外&#xff0c;faster rcnn还提供了一种近乎联合的训练&#xff0c;姑且称为end2end训练。 根据论文所讲&#xff0c;end2end的训练一气呵成&#xff0c;对于前向传播&#xff0c;rpn可以作为预设的网络提供proposal.而在后向传播中&…

jquery ui动态切换主题的一种实现方式

这两天看coreservlets上的jQuery教程&#xff0c;虽然比较老了&#xff0c;不过讲得还是不错。最后一部分讲jQuery ui 主题切换&#xff0c;用他介绍的方法实现不了。于是自己修改了下&#xff0c;可以了。代码如下&#xff1a;html部分&#xff1a;<fieldset class"ui…

[学习总结]7、Android AsyncTask完全解析,带你从源码的角度彻底理解

我们都知道&#xff0c;Android UI是线程不安全的&#xff0c;如果想要在子线程里进行UI操作&#xff0c;就需要借助Android的异步消息处理机制。之前我也写过了一篇文章从源码层面分析了Android的异步消息处理机制&#xff0c;感兴趣的朋友可以参考 Android Handler、Message完…

python字频统计软件_python结巴分词以及词频统计实例

python结巴分词以及词频统计实例发布时间&#xff1a;2018-03-20 14:52,浏览次数&#xff1a;773, 标签&#xff1a;python# codingutf-8Created on 2018年3月19日author: chenkai结巴分词支持三种分词模式&#xff1a;精确模式: 试图将句子最精确地切开&#xff0c;适合文…

html从入门到卖电脑(三)

CSS3中和动画有关的属性有三个 transform、 transition 和 animation。下面来一一说明: transform 从字面来看transform的释义为改变&#xff0c;使…变形&#xff1b;转换 。这里我们就可以理解为变形。那都能怎么变呢&#xff1f; none 表示不进行变换&#xff1b; rotat…

visual studio 2015安装 无法启动程序,因为计算机丢失D3DCOMPILER_47.dll 的解决方法

对于题目中的解决方法&#xff0c;我查到了微软提供的一个方案&#xff1a;https://support.microsoft.com/en-us/help/4019990/update-for-the-d3dcompiler-47-dll-component-on-windows 进入如下页面&#xff1a;http://www.catalog.update.microsoft.com/Search.aspx?qKB4…