语义分割深度学习方法集锦

转载:https://github.com/handong1587/handong1587.github.io/edit/master/_posts/deep_learning/2015-10-09-segmentation.md

Papers

Deep Joint Task Learning for Generic Object Extraction

  • intro: NIPS 2014
  • homepage: http://vision.sysu.edu.cn/projects/deep-joint-task-learning/
  • paper: http://ss.sysu.edu.cn/~ll/files/NIPS2014_JointTask.pdf
  • github: https://github.com/xiaolonw/nips14_loc_seg_testonly
  • dataset: http://objectextraction.github.io/

Highly Efficient Forward and Backward Propagation of Convolutional Neural Networks for Pixelwise Classification

  • arxiv: https://arxiv.org/abs/1412.4526
  • code(Caffe): https://dl.dropboxusercontent.com/u/6448899/caffe.zip
  • author page: http://www.ee.cuhk.edu.hk/~hsli/

Segmentation from Natural Language Expressions

  • intro: ECCV 2016
  • project page: http://ronghanghu.com/text_objseg/
  • arxiv: http://arxiv.org/abs/1603.06180
  • github(TensorFlow): https://github.com/ronghanghu/text_objseg
  • gtihub(Caffe): https://github.com/Seth-Park/text_objseg_caffe

Semantic Object Parsing with Graph LSTM

  • arxiv: http://arxiv.org/abs/1603.07063

Fine Hand Segmentation using Convolutional Neural Networks

  • arxiv: http://arxiv.org/abs/1608.07454

Feedback Neural Network for Weakly Supervised Geo-Semantic Segmentation

  • intro: Facebook Connectivity Lab & Facebook Core Data Science & University of Illinois
  • arxiv: https://arxiv.org/abs/1612.02766

FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics

  • arxiv: https://arxiv.org/abs/1612.05360

A deep learning model integrating FCNNs and CRFs for brain tumor segmentation

  • arxiv: https://arxiv.org/abs/1702.04528

Texture segmentation with Fully Convolutional Networks

  • intro: Dublin City University
  • arxiv: https://arxiv.org/abs/1703.05230

Fast LIDAR-based Road Detection Using Convolutional Neural Networks

https://arxiv.org/abs/1703.03613

Deep Value Networks Learn to Evaluate and Iteratively Refine Structured Outputs

  • arxiv: https://arxiv.org/abs/1703.04363
  • demo: https://gyglim.github.io/deep-value-net/

Annotating Object Instances with a Polygon-RNN

  • intro: CVPR 2017. CVPR Best Paper Honorable Mention Award. University of Toronto
  • project page: http://www.cs.toronto.edu/polyrnn/
  • arxiv: https://arxiv.org/abs/1704.05548

Semantic Segmentation via Structured Patch Prediction, Context CRF and Guidance CRF

  • intro: CVPR 2017
  • paper: http://openaccess.thecvf.com/content_cvpr_2017/papers/Shen_Semantic_Segmentation_via_CVPR_2017_paper.pdf
  • github(Caffe): https://github.com//FalongShen/SegModel

Nighttime sky/cloud image segmentation

  • intro: ICIP 2017
  • arxiv: https://arxiv.org/abs/1705.10583

Distantly Supervised Road Segmentation

  • intro: ICCV workshop CVRSUAD2017. Indiana University & Preferred Networks
  • arxiv: https://arxiv.org/abs/1708.06118

Superpixel clustering with deep features for unsupervised road segmentation

  • intro: Preferred Networks, Inc & Indiana University
  • arxiv: https://arxiv.org/abs/1711.05998

Learning to Segment Human by Watching YouTube

  • intro: TPAMI 2017
  • arxiv: https://arxiv.org/abs/1710.01457

W-Net: A Deep Model for Fully Unsupervised Image Segmentation

https://arxiv.org/abs/1711.08506

End-to-end detection-segmentation network with ROI convolution

  • intro: ISBI 2018
  • arxiv: https://arxiv.org/abs/1801.02722

U-Net

U-Net: Convolutional Networks for Biomedical Image Segmentation

  • intro: conditionally accepted at MICCAI 2015
  • project page: http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/
  • arxiv: http://arxiv.org/abs/1505.04597
  • code+data: http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/u-net-release-2015-10-02.tar.gz
  • github: https://github.com/orobix/retina-unet
  • github: https://github.com/jakeret/tf_unet
  • notes: http://zongwei.leanote.com/post/Pa

DeepUNet: A Deep Fully Convolutional Network for Pixel-level Sea-Land Segmentation

https://arxiv.org/abs/1709.00201

TernausNet: U-Net with VGG11 Encoder Pre-Trained on ImageNet for Image Segmentation

  • intro: Lyft Inc. & MIT
  • intro: part of the winning solution (1st out of 735) in the Kaggle: Carvana Image Masking Challenge
  • arxiv: https://arxiv.org/abs/1801.05746
  • github: https://github.com/ternaus/TernausNet

Foreground Object Segmentation

Pixel Objectness

  • project page: http://vision.cs.utexas.edu/projects/pixelobjectness/
  • arxiv: https://arxiv.org/abs/1701.05349
  • github: https://github.com/suyogduttjain/pixelobjectness

A Deep Convolutional Neural Network for Background Subtraction

  • arxiv: https://arxiv.org/abs/1702.01731

Semantic Segmentation

Fully Convolutional Networks for Semantic Segmentation

  • intro: CVPR 2015, PAMI 2016
  • keywords: deconvolutional layer, crop layer
  • arxiv: http://arxiv.org/abs/1411.4038
  • arxiv(PAMI 2016): http://arxiv.org/abs/1605.06211
  • slides: https://docs.google.com/presentation/d/1VeWFMpZ8XN7OC3URZP4WdXvOGYckoFWGVN7hApoXVnc
  • slides: http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-pixels.pdf
  • talk: http://techtalks.tv/talks/fully-convolutional-networks-for-semantic-segmentation/61606/
  • github(official): https://github.com/shelhamer/fcn.berkeleyvision.org
  • github: https://github.com/BVLC/caffe/wiki/Model-Zoo#fcn
  • github: https://github.com/MarvinTeichmann/tensorflow-fcn
  • github(Chainer): https://github.com/wkentaro/fcn
  • github(PyTorch): https://github.com/wkentaro/pytorch-fcn
  • github(Tensorflow): https://github.com/shekkizh/FCN.tensorflow
  • notes: http://zhangliliang.com/2014/11/28/paper-note-fcn-segment/

From Image-level to Pixel-level Labeling with Convolutional Networks

  • intro: CVPR 2015
  • intro: “Weakly Supervised Semantic Segmentation with Convolutional Networks”
  • intro: performs semantic segmentation based only on image-level annotations in a multiple instance learning framework
  • arxiv: http://arxiv.org/abs/1411.6228
  • paper: http://ronan.collobert.com/pub/matos/2015_semisupsemseg_cvpr.pdf

Feedforward semantic segmentation with zoom-out features

  • intro: CVPR 2015. Toyota Technological Institute at Chicago
  • paper: http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Mostajabi_Feedforward_Semantic_Segmentation_2015_CVPR_paper.pdf
  • bitbuckt: https://bitbucket.org/m_mostajabi/zoom-out-release
  • video: https://www.youtube.com/watch?v=HvgvX1LXQa8

DeepLab

Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs

  • intro: ICLR 2015. DeepLab
  • arxiv: http://arxiv.org/abs/1412.7062
  • bitbucket: https://bitbucket.org/deeplab/deeplab-public/
  • github: https://github.com/TheLegendAli/DeepLab-Context

Weakly- and Semi-Supervised Learning of a DCNN for Semantic Image Segmentation

  • intro: DeepLab
  • arxiv: http://arxiv.org/abs/1502.02734
  • bitbucket: https://bitbucket.org/deeplab/deeplab-public/
  • github: https://github.com/TheLegendAli/DeepLab-Context

DeepLab v2

DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs

  • intro: TPAMI
  • intro: 79.7% mIOU in the test set, PASCAL VOC-2012 semantic image segmentation task
  • intro: Updated version of our previous ICLR 2015 paper
  • project page: http://liangchiehchen.com/projects/DeepLab.html
  • arxiv: https://arxiv.org/abs/1606.00915
  • bitbucket: https://bitbucket.org/aquariusjay/deeplab-public-ver2
  • github: https://github.com/DrSleep/tensorflow-deeplab-resnet
  • github: https://github.com/isht7/pytorch-deeplab-resnet

DeepLabv2 (ResNet-101)

http://liangchiehchen.com/projects/DeepLabv2_resnet.html

DeepLab v3

Rethinking Atrous Convolution for Semantic Image Segmentation

  • intro: Google. DeepLabv3
  • arxiv: https://arxiv.org/abs/1706.05587

CRF-RNN

Conditional Random Fields as Recurrent Neural Networks

  • intro: ICCV 2015. Oxford / Stanford / Baidu
  • project page: http://www.robots.ox.ac.uk/~szheng/CRFasRNN.html
  • arxiv: http://arxiv.org/abs/1502.03240
  • github: https://github.com/torrvision/crfasrnn
  • demo: http://www.robots.ox.ac.uk/~szheng/crfasrnndemo
  • github: https://github.com/martinkersner/train-CRF-RNN

BoxSup

BoxSup: Exploiting Bounding Boxes to Supervise Convolutional Networks for Semantic Segmentation

  • arxiv: http://arxiv.org/abs/1503.01640

Efficient piecewise training of deep structured models for semantic segmentation

  • intro: CVPR 2016
  • arxiv: http://arxiv.org/abs/1504.01013

DeconvNet

Learning Deconvolution Network for Semantic Segmentation

  • intro: ICCV 2015. DeconvNet
  • intro: two-stage training: train the network with easy examples first and
    fine-tune the trained network with more challenging examples later
  • project page: http://cvlab.postech.ac.kr/research/deconvnet/
  • arxiv: http://arxiv.org/abs/1505.04366
  • slides: http://web.cs.hacettepe.edu.tr/~aykut/classes/spring2016/bil722/slides/w06-deconvnet.pdf
  • gitxiv: http://gitxiv.com/posts/9tpJKNTYksN5eWcHz/learning-deconvolution-network-for-semantic-segmentation
  • github: https://github.com/HyeonwooNoh/DeconvNet
  • github: https://github.com/HyeonwooNoh/caffe

SegNet

SegNet: A Deep Convolutional Encoder-Decoder Architecture for Robust Semantic Pixel-Wise Labelling

  • arxiv: http://arxiv.org/abs/1505.07293
  • github: https://github.com/alexgkendall/caffe-segnet
  • github: https://github.com/pfnet-research/chainer-segnet

SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation

  • homepage: http://mi.eng.cam.ac.uk/projects/segnet/
  • arxiv: http://arxiv.org/abs/1511.00561
  • github: https://github.com/alexgkendall/caffe-segnet
  • tutorial: http://mi.eng.cam.ac.uk/projects/segnet/tutorial.html

SegNet: Pixel-Wise Semantic Labelling Using a Deep Networks

  • youtube: https://www.youtube.com/watch?v=xfNYAly1iXo
  • mirror: http://pan.baidu.com/s/1gdUzDlD

Getting Started with SegNet

  • blog: http://mi.eng.cam.ac.uk/projects/segnet/tutorial.html
  • github: https://github.com/alexgkendall/SegNet-Tutorial

ParseNet

ParseNet: Looking Wider to See Better

  • intro:ICLR 2016
  • arxiv: http://arxiv.org/abs/1506.04579
  • github: https://github.com/weiliu89/caffe/tree/fcn
  • caffe model zoo: https://github.com/BVLC/caffe/wiki/Model-Zoo#parsenet-looking-wider-to-see-better

DecoupledNet

Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation

  • intro: ICLR 2016
  • project(paper+code): http://cvlab.postech.ac.kr/research/decouplednet/
  • arxiv: http://arxiv.org/abs/1506.04924
  • github: https://github.com/HyeonwooNoh/DecoupledNet

Semantic Image Segmentation via Deep Parsing Network

  • intro: ICCV 2015. CUHK
  • keywords: Deep Parsing Network (DPN), Markov Random Field (MRF)
  • homepage: http://personal.ie.cuhk.edu.hk/~lz013/projects/DPN.html
  • arxiv.org: http://arxiv.org/abs/1509.02634
  • paper: http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Liu_Semantic_Image_Segmentation_ICCV_2015_paper.pdf
  • slides: http://personal.ie.cuhk.edu.hk/~pluo/pdf/presentation_dpn.pdf

Multi-Scale Context Aggregation by Dilated Convolutions

  • intro: ICLR 2016.
  • intro: Dilated Convolution for Semantic Image Segmentation
  • homepage: http://vladlen.info/publications/multi-scale-context-aggregation-by-dilated-convolutions/
  • arxiv: http://arxiv.org/abs/1511.07122
  • github: https://github.com/fyu/dilation
  • github: https://github.com/nicolov/segmentation_keras
  • notes: http://www.inference.vc/dilated-convolutions-and-kronecker-factorisation/

Instance-aware Semantic Segmentation via Multi-task Network Cascades

  • intro: CVPR 2016 oral. 1st-place winner of MS COCO 2015 segmentation competition
  • keywords: RoI warping layer, Multi-task Network Cascades (MNC)
  • arxiv: http://arxiv.org/abs/1512.04412
  • github: https://github.com/daijifeng001/MNC

Object Segmentation on SpaceNet via Multi-task Network Cascades (MNC)

  • blog: https://medium.com/the-downlinq/object-segmentation-on-spacenet-via-multi-task-network-cascades-mnc-f1c89d790b42
  • github: https://github.com/lncohn/pascal_to_spacenet

Learning Transferrable Knowledge for Semantic Segmentation with Deep Convolutional Neural Network

  • intro: TransferNet
  • project page: http://cvlab.postech.ac.kr/research/transfernet/
  • arxiv: http://arxiv.org/abs/1512.07928
  • github: https://github.com/maga33/TransferNet

Combining the Best of Convolutional Layers and Recurrent Layers: A Hybrid Network for Semantic Segmentation

  • arxiv: http://arxiv.org/abs/1603.04871

Seed, Expand and Constrain: Three Principles for Weakly-Supervised Image Segmentation

  • intro: ECCV 2016
  • arxiv: https://arxiv.org/abs/1603.06098
  • github: https://github.com/kolesman/SEC

ScribbleSup

ScribbleSup: Scribble-Supervised Convolutional Networks for Semantic Segmentation

  • project page: http://research.microsoft.com/en-us/um/people/jifdai/downloads/scribble_sup/
  • arxiv: http://arxiv.org/abs/1604.05144

Laplacian Reconstruction and Refinement for Semantic Segmentation

Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation

  • intro: ECCV 2016
  • arxiv: https://arxiv.org/abs/1605.02264
  • paper: https://www.ics.uci.edu/~fowlkes/papers/gf-eccv16.pdf
  • github(MatConvNet): https://github.com/golnazghiasi/LRR

Natural Scene Image Segmentation Based on Multi-Layer Feature Extraction

  • arxiv: http://arxiv.org/abs/1605.07586

Convolutional Random Walk Networks for Semantic Image Segmentation

  • arxiv: http://arxiv.org/abs/1605.07681

ENet

ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation

  • arxiv: http://arxiv.org/abs/1606.02147
  • github: https://github.com/e-lab/ENet-training
  • github(Caffe): https://github.com/TimoSaemann/ENet
  • github: https://github.com/PavlosMelissinos/enet-keras
  • github: https://github.com/kwotsin/TensorFlow-ENet
  • blog: http://culurciello.github.io/tech/2016/06/20/training-enet.html

Fully Convolutional Networks for Dense Semantic Labelling of High-Resolution Aerial Imagery

  • arxiv: http://arxiv.org/abs/1606.02585

Deep Learning Markov Random Field for Semantic Segmentation

  • arxiv: http://arxiv.org/abs/1606.07230

Region-based semantic segmentation with end-to-end training

  • intro: ECCV 2016
  • arxiv: http://arxiv.org/abs/1607.07671
  • githun: https://github.com/nightrome/matconvnet-calvin

Built-in Foreground/Background Prior for Weakly-Supervised Semantic Segmentation

  • intro: ECCV 2016
  • arxiv: http://arxiv.org/abs/1609.00446

PixelNet

PixelNet: Towards a General Pixel-level Architecture

  • intro: semantic segmentation, edge detection
  • arxiv: http://arxiv.org/abs/1609.06694

Exploiting Depth from Single Monocular Images for Object Detection and Semantic Segmentation

  • intro: IEEE T. Image Processing
  • intro: propose an RGB-D semantic segmentation method which applies a multi-task training scheme: semantic label prediction and depth value regression
  • arxiv: https://arxiv.org/abs/1610.01706

PixelNet: Representation of the pixels, by the pixels, and for the pixels

  • intro: CMU & Adobe Research
  • project page: http://www.cs.cmu.edu/~aayushb/pixelNet/
  • arxiv: https://arxiv.org/abs/1702.06506
  • github(Caffe): https://github.com/aayushbansal/PixelNet

Semantic Segmentation of Earth Observation Data Using Multimodal and Multi-scale Deep Networks

  • arxiv: http://arxiv.org/abs/1609.06846

Deep Structured Features for Semantic Segmentation

  • arxiv: http://arxiv.org/abs/1609.07916

CNN-aware Binary Map for General Semantic Segmentation

  • intro: ICIP 2016 Best Paper / Student Paper Finalist
  • arxiv: https://arxiv.org/abs/1609.09220

Efficient Convolutional Neural Network with Binary Quantization Layer

  • arxiv: https://arxiv.org/abs/1611.06764

Mixed context networks for semantic segmentation

  • intro: Hikvision Research Institute
  • arxiv: https://arxiv.org/abs/1610.05854

High-Resolution Semantic Labeling with Convolutional Neural Networks

  • arxiv: https://arxiv.org/abs/1611.01962

Gated Feedback Refinement Network for Dense Image Labeling

  • intro: CVPR 2017
  • paper: http://www.cs.umanitoba.ca/~ywang/papers/cvpr17.pdf

RefineNet

RefineNet: Multi-Path Refinement Networks with Identity Mappings for High-Resolution Semantic Segmentation

RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation

  • intro: CVPR 2017. IoU 83.4% on PASCAL VOC 2012
  • arxiv: https://arxiv.org/abs/1611.06612
  • github: https://github.com/guosheng/refinenet
  • leaderboard: http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=6#KEY_Multipath-RefineNet-Res152

Full-Resolution Residual Networks for Semantic Segmentation in Street Scenes

  • keywords: Full-Resolution Residual Units (FRRU), Full-Resolution Residual Networks (FRRNs)
  • arxiv: https://arxiv.org/abs/1611.08323
  • github(Theano/Lasagne): https://github.com/TobyPDE/FRRN
  • youtube: https://www.youtube.com/watch?v=PNzQ4PNZSzc

Semantic Segmentation using Adversarial Networks

  • intro: Facebook AI Research & INRIA. NIPS Workshop on Adversarial Training, Dec 2016, Barcelona, Spain
  • arxiv: https://arxiv.org/abs/1611.08408
  • github(Chainer): https://github.com/oyam/Semantic-Segmentation-using-Adversarial-Networks

Improving Fully Convolution Network for Semantic Segmentation

  • arxiv: https://arxiv.org/abs/1611.08986

The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation

  • intro: Montreal Institute for Learning Algorithms & Ecole Polytechnique de Montreal
  • arxiv: https://arxiv.org/abs/1611.09326
  • github: https://github.com/SimJeg/FC-DenseNet
  • github: https://github.com/titu1994/Fully-Connected-DenseNets-Semantic-Segmentation
  • github(Keras): https://github.com/0bserver07/One-Hundred-Layers-Tiramisu

Training Bit Fully Convolutional Network for Fast Semantic Segmentation

  • intro: Megvii
  • arxiv: https://arxiv.org/abs/1612.00212

Classification With an Edge: Improving Semantic Image Segmentation with Boundary Detection

  • intro: “an end-to-end trainable deep convolutional neural network (DCNN) for semantic segmentation
    with built-in awareness of semantically meaningful boundaries. “
  • arxiv: https://arxiv.org/abs/1612.01337

Diverse Sampling for Self-Supervised Learning of Semantic Segmentation

  • arxiv: https://arxiv.org/abs/1612.01991

Mining Pixels: Weakly Supervised Semantic Segmentation Using Image Labels

  • intro: Nankai University & University of Oxford & NUS
  • arxiv: https://arxiv.org/abs/1612.02101

FCNs in the Wild: Pixel-level Adversarial and Constraint-based Adaptation

  • arxiv: https://arxiv.org/abs/1612.02649

Understanding Convolution for Semantic Segmentation

  • intro: UCSD & CMU & UIUC & TuSimple
  • arxiv: https://arxiv.org/abs/1702.08502
  • github(MXNet): [https://github.com/TuSimple/TuSimple-DUC]https://github.com/TuSimple/TuSimple-DUC
  • pretrained-models: https://drive.google.com/drive/folders/0B72xLTlRb0SoREhISlhibFZTRmM

Label Refinement Network for Coarse-to-Fine Semantic Segmentation

https://www.arxiv.org/abs/1703.00551

Predicting Deeper into the Future of Semantic Segmentation

  • intro: Facebook AI Research
  • arxiv: https://arxiv.org/abs/1703.07684

Guided Perturbations: Self Corrective Behavior in Convolutional Neural Networks

  • intro: University of Maryland & GE Global Research Center
  • arxiv: https://arxiv.org/abs/1703.07928

Not All Pixels Are Equal: Difficulty-aware Semantic Segmentation via Deep Layer Cascade

  • intro: CVPR 2017 spotlight paper
  • arxxiv: https://arxiv.org/abs/1704.01344

Large Kernel Matters – Improve Semantic Segmentation by Global Convolutional Network

https://arxiv.org/abs/1703.02719

Loss Max-Pooling for Semantic Image Segmentation

  • intro: CVPR 2017
  • arxiv: https://arxiv.org/abs/1704.02966

Reformulating Level Sets as Deep Recurrent Neural Network Approach to Semantic Segmentation

https://arxiv.org/abs/1704.03593

A Review on Deep Learning Techniques Applied to Semantic Segmentation

https://arxiv.org/abs/1704.06857

Joint Semantic and Motion Segmentation for dynamic scenes using Deep Convolutional Networks

  • intro: [International Institute of Information Technology & Max Planck Institute For Intelligent Systems
  • arxiv: https://arxiv.org/abs/1704.08331

ICNet

ICNet for Real-Time Semantic Segmentation on High-Resolution Images

  • intro: CUHK & Sensetime
  • project page: https://hszhao.github.io/projects/icnet/
  • arxiv: https://arxiv.org/abs/1704.08545
  • github: https://github.com/hszhao/ICNet
  • video: https://www.youtube.com/watch?v=qWl9idsCuLQ

LinkNet

Feature Forwarding: Exploiting Encoder Representations for Efficient Semantic Segmentation

LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation

  • project page: https://codeac29.github.io/projects/linknet/
  • arxiv: https://arxiv.org/abs/1707.03718
  • github: https://github.com/e-lab/LinkNet

Pixel Deconvolutional Networks

  • intro: Washington State University
  • arxiv: https://arxiv.org/abs/1705.06820

Incorporating Network Built-in Priors in Weakly-supervised Semantic Segmentation

  • intro: IEEE TPAMI
  • arxiv: https://arxiv.org/abs/1706.02189

Deep Semantic Segmentation for Automated Driving: Taxonomy, Roadmap and Challenges

  • intro: IEEE ITSC 2017
  • arxiv: https://arxiv.org/abs/1707.02432

Semantic Segmentation with Reverse Attention

  • intro: BMVC 2017 oral. University of Southern California
  • arxiv: https://arxiv.org/abs/1707.06426

Stacked Deconvolutional Network for Semantic Segmentation

https://arxiv.org/abs/1708.04943

Learning Dilation Factors for Semantic Segmentation of Street Scenes

  • intro: GCPR 2017
  • arxiv: https://arxiv.org/abs/1709.01956

A Self-aware Sampling Scheme to Efficiently Train Fully Convolutional Networks for Semantic Segmentation

https://arxiv.org/abs/1709.02764

One-Shot Learning for Semantic Segmentation

  • intro: BMWC 2017
  • arcxiv: https://arxiv.org/abs/1709.03410
  • github: https://github.com/lzzcd001/OSLSM

An Adaptive Sampling Scheme to Efficiently Train Fully Convolutional Networks for Semantic Segmentation

https://arxiv.org/abs/1709.02764

Semantic Segmentation from Limited Training Data

https://arxiv.org/abs/1709.07665

Unsupervised Domain Adaptation for Semantic Segmentation with GANs

https://arxiv.org/abs/1711.06969

Neuron-level Selective Context Aggregation for Scene Segmentation

https://arxiv.org/abs/1711.08278

Road Extraction by Deep Residual U-Net

https://arxiv.org/abs/1711.10684

Mix-and-Match Tuning for Self-Supervised Semantic Segmentation

  • intro: AAAI 2018
  • project page: http://mmlab.ie.cuhk.edu.hk/projects/M&M/
  • arxiv: https://arxiv.org/abs/1712.00661
  • github: https://github.com/XiaohangZhan/mix-and-match/
  • github: https://github.com//liuziwei7/mix-and-match

Error Correction for Dense Semantic Image Labeling

https://arxiv.org/abs/1712.03812

Semantic Segmentation via Highly Fused Convolutional Network with Multiple Soft Cost Functions

https://arxiv.org/abs/1801.01317

Instance Segmentation

Simultaneous Detection and Segmentation

  • intro: ECCV 2014
  • author: Bharath Hariharan, Pablo Arbelaez, Ross Girshick, Jitendra Malik
  • arxiv: http://arxiv.org/abs/1407.1808
  • github(Matlab): https://github.com/bharath272/sds_eccv2014

Convolutional Feature Masking for Joint Object and Stuff Segmentation

  • intro: CVPR 2015
  • keywords: masking layers
  • arxiv: https://arxiv.org/abs/1412.1283
  • paper: http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Dai_Convolutional_Feature_Masking_2015_CVPR_paper.pdf

Proposal-free Network for Instance-level Object Segmentation

  • paper: http://arxiv.org/abs/1509.02636

Hypercolumns for object segmentation and fine-grained localization

  • intro: CVPR 2015
  • arxiv: https://arxiv.org/abs/1411.5752
  • paper: http://www.cs.berkeley.edu/~bharath2/pubs/pdfs/BharathCVPR2015.pdf

SDS using hypercolumns

  • github: https://github.com/bharath272/sds

Learning to decompose for object detection and instance segmentation

  • intro: ICLR 2016 Workshop
  • keyword: CNN / RNN, MNIST, KITTI
  • arxiv: http://arxiv.org/abs/1511.06449

Recurrent Instance Segmentation

  • intro: ECCV 2016
  • porject page: http://romera-paredes.com/ris
  • arxiv: http://arxiv.org/abs/1511.08250
  • github(Torch): https://github.com/bernard24/ris
  • poster: http://www.eccv2016.org/files/posters/P-4B-46.pdf
  • youtube: https://www.youtube.com/watch?v=l_WD2OWOqBk

Instance-sensitive Fully Convolutional Networks

  • intro: ECCV 2016. instance segment proposal
  • arxiv: http://arxiv.org/abs/1603.08678

Amodal Instance Segmentation

  • intro: ECCV 2016
  • arxiv: http://arxiv.org/abs/1604.08202

Bridging Category-level and Instance-level Semantic Image Segmentation

  • keywords: online bootstrapping
  • arxiv: http://arxiv.org/abs/1605.06885

Bottom-up Instance Segmentation using Deep Higher-Order CRFs

  • intro: BMVC 2016
  • arxiv: http://arxiv.org/abs/1609.02583

DeepCut: Object Segmentation from Bounding Box Annotations using Convolutional Neural Networks

  • arxiv: http://arxiv.org/abs/1605.07866

End-to-End Instance Segmentation and Counting with Recurrent Attention

  • intro: ReInspect
  • arxiv: http://arxiv.org/abs/1605.09410

TA-FCN / FCIS

Translation-aware Fully Convolutional Instance Segmentation

Fully Convolutional Instance-aware Semantic Segmentation

  • intro: CVPR 2017 Spotlight paper. winning entry of COCO segmentation challenge 2016
  • arxiv: https://arxiv.org/abs/1611.07709
  • github: https://github.com/msracver/FCIS
  • slides: https://onedrive.live.com/?cid=f371d9563727b96f&id=F371D9563727B96F%2197213&authkey=%21AEYOyOirjIutSVk

InstanceCut: from Edges to Instances with MultiCut

  • arxiv: https://arxiv.org/abs/1611.08272

Deep Watershed Transform for Instance Segmentation

  • arxiv: https://arxiv.org/abs/1611.08303

Object Detection Free Instance Segmentation With Labeling Transformations

  • arxiv: https://arxiv.org/abs/1611.08991

Shape-aware Instance Segmentation

  • arxiv: https://arxiv.org/abs/1612.03129

Interpretable Structure-Evolving LSTM

  • intro: CMU & Sun Yat-sen University & National University of Singapore & Adobe Research
  • intro: CVPR 2017 spotlight paper
  • arxiv: https://arxiv.org/abs/1703.03055

Mask R-CNN

  • intro: ICCV 2017 Best paper award. Facebook AI Research
  • arxiv: https://arxiv.org/abs/1703.06870
  • github: https://github.com/TuSimple/mx-maskrcnn
  • github(Keras+TensorFlow): https://github.com/matterport/Mask_RCNN

Semantic Instance Segmentation via Deep Metric Learning

https://arxiv.org/abs/1703.10277

Pose2Instance: Harnessing Keypoints for Person Instance Segmentation

https://arxiv.org/abs/1704.01152

Pixelwise Instance Segmentation with a Dynamically Instantiated Network

  • intro: CVPR 2017
  • arxiv: https://arxiv.org/abs/1704.02386

Instance-Level Salient Object Segmentation

  • intro: CVPR 2017
  • arxiv: https://arxiv.org/abs/1704.03604

Semantic Instance Segmentation with a Discriminative Loss Function

  • intro: Published at “Deep Learning for Robotic Vision”, workshop at CVPR 2017. KU Leuven
  • arxiv: https://arxiv.org/abs/1708.02551

SceneCut: Joint Geometric and Object Segmentation for Indoor Scenes

https://arxiv.org/abs/1709.07158

S4 Net: Single Stage Salient-Instance Segmentation

  • arxiv: https://arxiv.org/abs/1711.07618
  • github: https://github.com/RuochenFan/S4Net

Deep Extreme Cut: From Extreme Points to Object Segmentation

https://arxiv.org/abs/1711.09081

Learning to Segment Every Thing

  • intro: UC Berkeley & Facebook AI Research
  • keywords: MaskX R-CNN
  • arxiv: https://arxiv.org/abs/1711.10370

Recurrent Neural Networks for Semantic Instance Segmentation

  • project page: https://imatge-upc.github.io/rsis/
  • arxiv: https://arxiv.org/abs/1712.00617
  • github: https://github.com/imatge-upc/rsis

MaskLab

MaskLab: Instance Segmentation by Refining Object Detection with Semantic and Direction Features

https://arxiv.org/abs/1712.04837

Recurrent Pixel Embedding for Instance Grouping

  • intro: learning to embed pixels and group them into boundaries, object proposals, semantic segments and instances.
  • project page: http://www.ics.uci.edu/~skong2/SMMMSG.html
  • arxiv: https://arxiv.org/abs/1712.08273
  • github: https://github.com/aimerykong/Recurrent-Pixel-Embedding-for-Instance-Grouping
  • slides: http://www.ics.uci.edu/~skong2/slides/pixel_embedding_for_grouping_public_version.pdf
  • poster: http://www.ics.uci.edu/~skong2/slides/pixel_embedding_for_grouping_poster.pdf

Specific Segmentation

A CNN Cascade for Landmark Guided Semantic Part Segmentation

  • project page: http://aaronsplace.co.uk/
  • paper: https://aaronsplace.co.uk/papers/jackson2016guided/jackson2016guided.pdf

End-to-end semantic face segmentation with conditional random fields as convolutional, recurrent and adversarial networks

  • arxiv: https://arxiv.org/abs/1703.03305

Face Parsing via Recurrent Propagation

  • intro: BMVC 2017
  • arxiv: https://arxiv.org/abs/1708.01936

Face Parsing via a Fully-Convolutional Continuous CRF Neural Network

https://arxiv.org/abs/1708.03736

Boundary-sensitive Network for Portrait Segmentation

https://arxiv.org/abs/1712.08675

Segment Proposal

Learning to Segment Object Candidates

  • intro: Facebook AI Research (FAIR)
  • intro: DeepMask. learning segmentation proposals
  • arxiv: http://arxiv.org/abs/1506.06204
  • github: https://github.com/facebookresearch/deepmask
  • github: https://github.com/abbypa/NNProject_DeepMask

Learning to Refine Object Segments

  • intro: ECCV 2016. Facebook AI Research (FAIR)
  • intro: SharpMask. an extension of DeepMask which generates higher-fidelity masks using an additional top-down refinement step.
  • arxiv: http://arxiv.org/abs/1603.08695
  • github: https://github.com/facebookresearch/deepmask

FastMask: Segment Object Multi-scale Candidates in One Shot

  • intro: CVPR 2017. University of California & Fudan University & Megvii Inc.
  • arxiv: https://arxiv.org/abs/1612.08843
  • github: https://github.com/voidrank/FastMask

Scene Labeling / Scene Parsing

Indoor Semantic Segmentation using depth information

  • arxiv: http://arxiv.org/abs/1301.3572

Recurrent Convolutional Neural Networks for Scene Parsing

  • arxiv: http://arxiv.org/abs/1306.2795
  • slides: http://people.ee.duke.edu/~lcarin/Yizhe8.14.2015.pdf
  • github: https://github.com/NP-coder/CLPS1520Project
  • github: https://github.com/rkargon/Scene-Labeling

Learning hierarchical features for scene labeling

  • paper: http://yann.lecun.com/exdb/publis/pdf/farabet-pami-13.pdf

Multi-modal unsupervised feature learning for rgb-d scene labeling

  • intro: ECCV 2014
  • paper: http://www3.ntu.edu.sg/home/wanggang/WangECCV2014.pdf

Scene Labeling with LSTM Recurrent Neural Networks

  • paper: http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Byeon_Scene_Labeling_With_2015_CVPR_paper.pdf

Attend, Infer, Repeat: Fast Scene Understanding with Generative Models

  • arxiv: http://arxiv.org/abs/1603.08575
  • notes: http://www.shortscience.org/paper?bibtexKey=journals/corr/EslamiHWTKH16

“Semantic Segmentation for Scene Understanding: Algorithms and Implementations” tutorial

  • intro: 2016 Embedded Vision Summit
  • youtube: https://www.youtube.com/watch?v=pQ318oCGJGY

Semantic Understanding of Scenes through the ADE20K Dataset

  • arxiv: https://arxiv.org/abs/1608.05442

Learning Deep Representations for Scene Labeling with Guided Supervision

Learning Deep Representations for Scene Labeling with Semantic Context Guided Supervision

  • intro: CUHK
  • arxiv: https://arxiv.org/abs/1706.02493

Spatial As Deep: Spatial CNN for Traffic Scene Understanding

  • intro: AAAI 2018
  • arxiv: https://arxiv.org/abs/1712.06080

MPF-RNN

Multi-Path Feedback Recurrent Neural Network for Scene Parsing

  • arxiv: http://arxiv.org/abs/1608.07706

Scene Labeling using Recurrent Neural Networks with Explicit Long Range Contextual Dependency

  • arxiv: https://arxiv.org/abs/1611.07485

PSPNet

Pyramid Scene Parsing Network

  • intro: CVPR 2017
  • intro: mIoU score as 85.4% on PASCAL VOC 2012 and 80.2% on Cityscapes,
    ranked 1st place in ImageNet Scene Parsing Challenge 2016
  • project page: http://appsrv.cse.cuhk.edu.hk/~hszhao/projects/pspnet/index.html
  • arxiv: https://arxiv.org/abs/1612.01105
  • slides: http://image-net.org/challenges/talks/2016/SenseCUSceneParsing.pdf
  • github: https://github.com/hszhao/PSPNet
  • github: https://github.com/Vladkryvoruchko/PSPNet-Keras-tensorflow

Open Vocabulary Scene Parsing

https://arxiv.org/abs/1703.08769

Deep Contextual Recurrent Residual Networks for Scene Labeling

https://arxiv.org/abs/1704.03594

Fast Scene Understanding for Autonomous Driving

  • intro: Published at “Deep Learning for Vehicle Perception”, workshop at the IEEE Symposium on Intelligent Vehicles 2017
  • arxiv: https://arxiv.org/abs/1708.02550

FoveaNet: Perspective-aware Urban Scene Parsing

https://arxiv.org/abs/1708.02421

BlitzNet: A Real-Time Deep Network for Scene Understanding

  • intro: INRIA
  • arxiv: https://arxiv.org/abs/1708.02813

Semantic Foggy Scene Understanding with Synthetic Data

https://arxiv.org/abs/1708.07819

Restricted Deformable Convolution based Road Scene Semantic Segmentation Using Surround View Cameras

https://arxiv.org/abs/1801.00708

Benchmarks

MIT Scene Parsing Benchmark

  • homepage: http://sceneparsing.csail.mit.edu/
  • github(devkit): https://github.com/CSAILVision/sceneparsing

Semantic Understanding of Urban Street Scenes: Benchmark Suite

https://www.cityscapes-dataset.com/benchmarks/

Challenges

Large-scale Scene Understanding Challenge

  • homepage: http://lsun.cs.princeton.edu/

Places2 Challenge

http://places2.csail.mit.edu/challenge.html

Human Parsing

Human Parsing with Contextualized Convolutional Neural Network

  • intro: ICCV 2015
  • paper: http://www.cv-foundation.org/openaccess/content_iccv_2015/html/Liang_Human_Parsing_With_ICCV_2015_paper.html

Look into Person: Self-supervised Structure-sensitive Learning and A New Benchmark for Human Parsing

  • intro: CVPr 2017. SYSU & CMU
  • keywords: Look Into Person (LIP)
  • project page: http://hcp.sysu.edu.cn/lip/
  • arxiv: https://arxiv.org/abs/1703.05446
  • github: https://github.com/Engineering-Course/LIP_SSL

Cross-domain Human Parsing via Adversarial Feature and Label Adaptation

  • intro: AAAI 2018
  • arxiv: https://arxiv.org/abs/1801.01260

Video Object Segmentation

Fast object segmentation in unconstrained video

  • project page: http://calvin.inf.ed.ac.uk/software/fast-video-segmentation/
  • paper: http://calvin.inf.ed.ac.uk/wp-content/uploads/Publications/papazoglouICCV2013-camera-ready.pdf

Recurrent Fully Convolutional Networks for Video Segmentation

  • arxiv: https://arxiv.org/abs/1606.00487

Object Detection, Tracking, and Motion Segmentation for Object-level Video Segmentation

  • arxiv: http://arxiv.org/abs/1608.03066

Clockwork Convnets for Video Semantic Segmentation

  • intro: ECCV 2016 Workshops
  • intro: evaluated on the Youtube-Objects, NYUD, and Cityscapes video datasets
  • arxiv: http://arxiv.org/abs/1608.03609
  • github: https://github.com/shelhamer/clockwork-fcn

STFCN: Spatio-Temporal FCN for Semantic Video Segmentation

  • arxiv: http://arxiv.org/abs/1608.05971

One-Shot Video Object Segmentation

  • intro: OSVOS
  • project: http://www.vision.ee.ethz.ch/~cvlsegmentation/osvos/
  • arxiv: https://arxiv.org/abs/1611.05198
  • github: https://github.com/kmaninis/OSVOS-caffe
  • github: https://github.com/scaelles/OSVOS-TensorFlow

Video Object Segmentation Without Temporal Information

https://arxiv.org/abs/1709.06031

Convolutional Gated Recurrent Networks for Video Segmentation

  • arxiv: https://arxiv.org/abs/1611.05435

Learning Video Object Segmentation from Static Images

  • arxiv: https://arxiv.org/abs/1612.02646

Semantic Video Segmentation by Gated Recurrent Flow Propagation

  • arxiv: https://arxiv.org/abs/1612.08871

FusionSeg: Learning to combine motion and appearance for fully automatic segmention of generic objects in videos

  • project page: http://vision.cs.utexas.edu/projects/fusionseg/
  • arxiv: https://arxiv.org/abs/1701.05384
  • github: https://github.com/suyogduttjain/fusionseg

Unsupervised learning from video to detect foreground objects in single images

https://arxiv.org/abs/1703.10901

Semantically-Guided Video Object Segmentation

https://arxiv.org/abs/1704.01926

Learning Video Object Segmentation with Visual Memory

https://arxiv.org/abs/1704.05737

Flow-free Video Object Segmentation

https://arxiv.org/abs/1706.09544

Online Adaptation of Convolutional Neural Networks for Video Object Segmentation

https://arxiv.org/abs/1706.09364

Video Object Segmentation using Tracked Object Proposals

  • intro: CVPR-2017 workshop, DAVIS-2017 Challenge
  • arxiv: https://arxiv.org/abs/1707.06545

Video Object Segmentation with Re-identification

  • intro: CVPR 2017 Workshop, DAVIS Challenge on Video Object Segmentation 2017 (Winning Entry)
  • arxiv: https://arxiv.org/abs/1708.00197

Pixel-Level Matching for Video Object Segmentation using Convolutional Neural Networks

  • intro: ICCV 2017
  • arxiv: https://arxiv.org/abs/1708.05137

SegFlow: Joint Learning for Video Object Segmentation and Optical Flow

  • project page: https://sites.google.com/site/yihsuantsai/research/iccv17-segflow
  • arxiv: https://arxiv.org/abs/1709.06750
  • github: https://github.com/JingchunCheng/SegFlow

Video Semantic Object Segmentation by Self-Adaptation of DCNN

https://arxiv.org/abs/1711.08180

Learning to Segment Moving Objects

https://arxiv.org/abs/1712.01127

Instance Embedding Transfer to Unsupervised Video Object Segmentation

  • intro: University of Southern California & Google Inc
  • arxiv: https://arxiv.org/abs/1801.00908

Panoptic Segmentation

  • intro: Facebook AI Research (FAIR) & Heidelberg University
  • arxiv: https://arxiv.org/abs/1801.00868

Challenge

DAVIS: Densely Annotated VIdeo Segmentation

  • homepage: http://davischallenge.org/
  • arxiv: https://arxiv.org/abs/1704.00675

DAVIS Challenge on Video Object Segmentation 2017

http://davischallenge.org/challenge2017/publications.html

Projects

TF Image Segmentation: Image Segmentation framework

  • intro: Image Segmentation framework based on Tensorflow and TF-Slim library
  • github: https://github.com/warmspringwinds/tf-image-segmentation

KittiSeg: A Kitti Road Segmentation model implemented in tensorflow.

  • keywords: MultiNet
  • intro: KittiSeg performs segmentation of roads by utilizing an FCN based model.
  • github: https://github.com/MarvinTeichmann/KittiBox

Semantic Segmentation Architectures Implemented in PyTorch

  • intro: Segnet/FCN/U-Net/Link-Net
  • github: https://github.com/meetshah1995/pytorch-semseg

PyTorch for Semantic Segmentation

https://github.com/ZijunDeng/pytorch-semantic-segmentation

3D Segmentation

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

  • intro: Stanford University
  • project page: http://stanford.edu/~rqi/pointnet/
  • arxiv: https://arxiv.org/abs/1612.00593
  • github: https://github.com/charlesq34/pointnet

DA-RNN: Semantic Mapping with Data Associated Recurrent Neural Networks

https://arxiv.org/abs/1703.03098

SqueezeSeg: Convolutional Neural Nets with Recurrent CRF for Real-Time Road-Object Segmentation from 3D LiDAR Point Cloud

  • intro: UC Berkeley
  • arxiv: https://arxiv.org/abs/1710.07368

SEGCloud: Semantic Segmentation of 3D Point Clouds

  • intro: International Conference of 3D Vision (3DV) 2017 (Spotlight). Stanford University
  • homepage: http://segcloud.stanford.edu/
  • arxiv: https://arxiv.org/abs/1710.07563

Leaderboard

Segmentation Results: VOC2012 BETA: Competition “comp6” (train on own data)

http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?cls=mean&challengeid=11&compid=6

Blogs

Deep Learning for Natural Image Segmentation Priors

http://cs.brown.edu/courses/csci2951-t/finals/ghope/

Image Segmentation Using DIGITS 5

https://devblogs.nvidia.com/parallelforall/image-segmentation-using-digits-5/

Image Segmentation with Tensorflow using CNNs and Conditional Random Fields
http://warmspringwinds.github.io/tensorflow/tf-slim/2016/12/18/image-segmentation-with-tensorflow-using-cnns-and-conditional-random-fields/

Fully Convolutional Networks (FCNs) for Image Segmentation

  • blog: http://warmspringwinds.github.io/tensorflow/tf-slim/2017/01/23/fully-convolutional-networks-(fcns)-for-image-segmentation/
  • ipn: https://github.com/warmspringwinds/tensorflow_notes/blob/master/fully_convolutional_networks.ipynb

Image segmentation with Neural Net

  • blog: https://medium.com/@m.zaradzki/image-segmentation-with-neural-net-d5094d571b1e#.s5f711g1q
  • github: https://github.com/mzaradzki/neuralnets/tree/master/vgg_segmentation_keras

A 2017 Guide to Semantic Segmentation with Deep Learning

http://blog.qure.ai/notes/semantic-segmentation-deep-learning-review

Talks

Deep learning for image segmentation

  • intro: PyData Warsaw - Mateusz Opala & Michał Jamroż
  • youtube: https://www.youtube.com/watch?v=W6r_a5crqGI

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/258570.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

员工培训与开发实训心得体会_公司新员工培训心得体会800字范文

点击蓝字关注我们培训是一次能够快速提升我们的机会,而每个新员工也是通过培训尽快的融入公司的。因此,我们要更加重视培训一些!下面是小编为大家整理的公司新员工培训心得体会,希望对大家有帮助。公司新员工培训心得体会800字为了让我们新进…

Nginx ab压力测试

20-ab压力测试及nginx性能统计模块 优化的启发,打开的文件太多 Nginx 错误日志显示,打开文件数太多 系统层面 more /proc/sys/net/core/somaxconn 单个Nginx 测试index.html 没优化前 [root/home/www]#ab -c 4000 -n 100000 http://test.demo.com/inde…

Code First02---CodeFirst配置实体与数据库映射的两种方式

Code First有两种配置数据库映射的方式,一种是使用数据属性DataAnnotation,另一种是Fluent API.这两种方式分别是什么呢?下面进行一一解释:DataAnnotation的配置方式需要你给定义实体和值对象的类和类中的属性加上与数据库映射相关…

sigmoid函数的数值稳定性

在深度学习中,我们常常选用sigmoid函数作为激活函数。sigmoid函数的具体形式如下: f(x)11e−xf(x)=\frac{1}{1+e^{-x}}曲线表示为: 再画大一点,取x区间更大一些,则为: 显然从图像上看,sigmoid函…

windows远程连接ubuntu 黑屏_Windows跟Windows远程连接传输文件

关注奕奇科技,学习更多小妙招电脑小知识,值得收藏我们一般在使用windows远程连接时需要传输文件该怎么办?我们可以插入U盘导入导出,但这样很是麻烦而且如果身边暂时没有U盘的情况就要通过社交工具传播文件,大的文件也更…

思维导图分析http之前端组成

思维导图分析http前端组成全文总览本文分为三个部分:前端组成,http协议,http服务器应用程序。http的应用按照我自己的理解分为前端应用以及后端应用,所以我分别写了前端组成以及http服务器应用程序两章,中间穿插了一章…

caffe 关于Deconvolution的初始化注意事项

对于fcn,经常要使用到Deconvolution进行上采样。对于caffe使用者,使用Deconvolution上采样,其参数往往直接给定,不需要通过学习获得。 给定参数的方式很有意思,可以通过两种方式实现,但是这两种方式并非完…

多目标进化优化_SDIM 学术讲座|分解多目标优化与帕累托多任务学习

分解多目标优化与帕累托多任务学习2020年11月4日晚,香港城市大学电脑学系讲座教授、博士生导师、IEEE Fellow张青富教授应我院王振坤教授的邀请,在线举办了一场主题为“分解多目标优化与帕累托多任务学习”的学术讲座。此次讲座采用线上和线下两种渠道&a…

安装oracle-java,并覆盖原先的OpenJDK

Centos默认安装openJDK只安装了java,没有安装javac.如果需要安装javac,需要install the openjdk-8-jdk package。参考:http://openjdk.java.net/install/ 为了完整地安装java,我们转而选择使用oracle-java,由于我们没有root权限&a…

反射创建对象_如何应用Java反射技术灵活地创建程序类的对象实例

软件项目实训及课程设计指导——如何应用Java反射技术灵活地创建程序类的对象实例1、如何应用属性配置文件实现对系统中的配置信息进行读写操作Java中的属性配置文件主要可以作为软件应用系统及项目的配置文件,比如许多J2EE的开源框架系统中都提供了属性配置文件作为…

js回到顶部

2019独角兽企业重金招聘Python工程师标准>>> <html xmlns"http://www.w3.org/1999/xhtml"> <head runat"server"> <title></title> <style type"text/css"> #control_pannel …

OSEK简介

What is OSEKA specification for an RTOS•With standard software interfaces (OS API)•Including intertask & interprocessor communication (COM)•Including network management (NM)•Including the language used to statically declare OS elements used in an a…

门道多:一次MaxCompute PS任务的问题排查之旅

关于PS是什么&#xff0c;可以参考一下以下两个介绍&#xff1a;基于参数服务器的大规模在线学习算法和Parameter Server。更多问题可以咨询玄乐。下面主要总结一下这回遇到一个PS任务跑不起来的问题排查过程。不想看过程的直接看最后一点总结就行。一 为什么要分享一个问题排查…

Volley简单学习使用五—— 源代码分析三

一、Volley工作流程图&#xff1a; 二、Network在NetworkDispatcher中须要处理的网络请求。由以下进行处理&#xff1a;NetworkResponse networkResponse mNetwork.performRequest(request);看一下mNetwork的定义&#xff1a;&#xff08;定义在NetworkDispatcher中&#xff0…

html5 - history 历史管理

参考文章&#xff1a; w3c : http://www.w3.org/html/ig/zh/wiki/HTML5/history 张鑫旭 : http://www.zhangxinxu.com/wordpress/2013/06/html5-history-api-pushstate-replacestate-ajax/ zawa : http://zawa.iteye.com/blog/1271031  Demo : Demo 截图&#xff…

Android开发学习---使用Intelij idea 13.1 进行android 开发

Android开发学习---使用Intelij idea 13.1 进行android 开发 原文:Android开发学习---使用Intelij idea 13.1 进行android 开发1.为什么放弃eclipse?太卡!! 实在受不了eclipse的卡了,运行WEB项目还好,但android开发实在太慢,太慢!经常卡死,CPU经常被占满! 看网上很多人都说比I…

Logcat打印调试信息

Android Logcat调试中的V、D、I、W、E的分别代表什么&#xff1f; Log.v -- 黑色 -- verbose infoLog.d -- 蓝色 -- debug infoLog.i -- 绿色 -- infoLog.w -- 橙色 -- warnLog.e -- 红色 -- error info//Log.ASSERT -- 断言 //Log.wtf() (1、Log.v 的调试颜色为黑色的&#xf…

C# .net core 使用自定义的WebProxy

为什么80%的码农都做不了架构师&#xff1f;>>> 因为.net core 的System.Net 中没有提供WebProxy这个方法,所以可以根据需求实现一个. public class CoreWebProxy : IWebProxy{public readonly Uri Uri;private readonly bool bypass;public CoreWebProxy(Uri uri,…

2015年08月

2015年07月 - 2015年09月 ● 一般而言。。。 一般而言&#xff0c;牙周病轻者有口臭、牙龈红肿疼痛、刷牙流血等症状&#xff0c;严重时会造成牙龈萎缩、牙齿敏感、牙齿摇动等情况。口腔没有在饮食后30分钟清洁就会逐渐转化为酸性环境&#xff08;PH值约5.5&#xff09;&#x…

scala case class 继承_数字硬件系统设计之一:Scala快速入门(2)

原想简单笼统介绍一下scala&#xff0c;后感觉这么做意思不大&#xff0c;网友看了和没看一样&#xff0c;还是应该稍微详细具体一点&#xff0c;故而把系列编号由(上)(中)(下)&#xff0c;改为(上)(2)(3)(4)(5)....,(上)就是(1)吧&#xff0c;以下内容部分节选于我们即将出版的…