Linux进程信号

全文目录

  • 概念
    • 什么是Linux信号?
    • 信号行为(core dump)
    • 如何理解信号被进程保存:
    • 信号发送的本质:
  • 产生信号
    • 1. 终端按键(组合键)变成信号:
    • 2. 通过系统调用接口向进程发送信号
    • 3. 软件条件产生信号
    • 4. 硬件异常产生信号
    • 总结
  • 信号阻塞
    • 概念
    • 在内核中的表示
    • sigset_t (信号集)
    • 信号集操作函数
  • 信号捕捉
    • 信号捕捉流程
    • signal函数
    • sigaction
  • 可重入函数
  • volatile
  • SIGCHLD信号

概念

信号与信号量是不同的概念。

什么是Linux信号?

本质上是一种通知机制,用户或者OS通过发送信号,告诉进程需要做什么。
例如:ctrl + c 本质就是向进程发送2号信号,终止进程。

  1. 进程要处理信号,必须具备信号“识别”的能力(看到 + 处理动作)
  2. 信号的处理不是立即的
  3. 信号会临时记录对应的信号,方便后续处理
  4. 一般而言,信号的产生相对与进程而言是异步的

通过kill -l 可以察看系统定义的信号列表:

在这里插入图片描述

[1,31]普通信号,[34,64]实时信号

信号行为(core dump)

通过man -7 signal 查看信号的处理动作

在这里插入图片描述

在这里插入图片描述

  • T e r m ( t e r m i n a l ) Term(terminal) Term(terminal) 表示终止进程
  • C o r e ( C o r e D u m p ) Core(Core Dump) Core(CoreDump) 表示核心转储,默认关闭。
    在进程等待中也出现了这个名词:
    在这里插入图片描述

首先解释什么是 C o r e D u m p Core Dump CoreDump。当一个进程要异常终止时,可以选择把进程的用户空间内存数据全部 保存到磁盘上,文件名通常是 c o r e core core,这叫做 C o r e D u m p Core Dump CoreDump。进程异常终止通常是因为有 B u g Bug Bug,比如非法内存访问导致段错误,事后可以用调试器检查 c o r e core core 文件以查清错误原因,这叫做 P o s t − m o r t e m D e b u g Post-mortem Debug PostmortemDebug(事后调试)。一个进程允许产生多大的 c o r e core core文件取决于进程的 R e s o u r c e L i m i t Resource Limit ResourceLimit(这个信息保存 在 P C B PCB PCB 中)。默认是不允许产生 c o r e core core 文件的,因为 c o r e core core 文件中可能包含用户密码等敏感信息,不安全。在开发调试阶段可以用 u l i m i t ulimit ulimit 命令改变这个限制,允许产生 c o r e core core 文件。 首先用 u l i m i t ulimit ulimit 命令改变 S h e l l Shell Shell 进程的 R e s o u r c e L i m i t Resource Limit ResourceLimit ,允许 c o r e core core 文件最大为 1024 K 1024K 1024K : $ ulimit -c 1024

在gdb中可以通过core-file core文件 命令来加载core文件,直接将定位到出错位置
在这里插入图片描述

如何理解信号被进程保存:

表示信号有两点:

  1. 什么信号
  2. 是否产生

进程必须通过数据结构来保存信号(位图),也就是在进程PCB内部有信号位图字段

信号发送的本质:

OS 向目标进程发送信号就是修改其信号位图

产生信号

1. 终端按键(组合键)变成信号:

ctrl + c   	# 终止进程

如何理解终端按键(组合键)变成信号:

键盘工作的方式是通过:中断方式进行的,能够识别每个按键,同样能识别组合键。
OS解释组合键 ——> 查看进程列表 ——> 前台运行的进程 ——> OS 写入对应信号到进程内部的位图结构中

2. 通过系统调用接口向进程发送信号

在这里插入图片描述

kill命令就是通过调用kill函数实现的

在这里插入图片描述

如何理解系统调用产生信号:

用户调用系统调用 ——> 执行OS的系统调用代码 ——> OS 提取参数 ——> OS向目标进程写入信号 ——> 修改对应进程的信号标志位 ——> 进程处理信号 ——> 执行对应的处理动作

3. 软件条件产生信号

  • 管道读端关闭,写端一直写,写的进程会自动退出,就是因为OS向该进程发送了 14) SIGPIPE 信号。

  • alarm函数

在这里插入图片描述

如何理解软件条件产生信号:

OS先识别到某种软件条件触发或不满足 ——》 OS 构建信号,发送给指定信号

4. 硬件异常产生信号

  1. 浮点数溢出错误

当程序中发生除0时,就会发生 Floating point exception(浮点数溢出) 错误,就是产生了8) SIGFPE信号。默认情况下会直接终止进程,如果通过signal自定义行为就会一直执行自定义的行为,为什么呢?

如何理解除0

进行计算的时CPU这个硬件,CPU内部是有寄存器的,对于计算状态有一个单独的状态寄存器(位图),发生了浮点数溢出错误溢出标志位就会被设为1,后面每次都会检测状态寄存器都会立即检测到溢出状态并向对应进程发送 8 号信号,但是状态寄存器里面溢出标志位不会被清空,所以该进程一直都是溢出状态,一直向进程发送 8 号信号

  1. 野指针或越界错误

访问野指针或者越界会触发 11) SIGSEGV 信号,发生 segment fault(段错误)

如何理解段错误:

我们拿到的地址都是虚拟地址,访问目标地址时需要通过页表 + MMU(Memory Manage Unit,硬件)当转换成物理地址。如果时非法地址,MMU转换时会报错,也就是产生 11 号信号

总结

所有的信号都是由OS识别并发送的。

信号阻塞

概念

  • 实际执行信号的处理动作称为信号递达(Delivery)
  • 信号从产生到递达之间的状态,称为信号未决(Pending)
  • 进程可以选择阻塞 (Block )某个信号。
  • 被阻塞的信号产生时将保持在未决状态,直到进程解除对此信号的阻塞,才执行递达的动作.
  • 注意:阻塞和忽略是不同的,只要信号被阻塞就不会递达,而忽略是在递达之后可选的一种处理动作。

在内核中的表示

在这里插入图片描述

  • SIG_DFLSIG_IGN 是宏,转换成指针函数的整数 0 和 1,进行信号递达前需要先将信号处理函数转换成整数,判断是忽略函数进行默认动作。
  • 9) SIGKILL 不会被阻塞
  • 每个信号都有两个标志位分别表示阻塞(block)和未决(pending),还有一个函数指针表示处理动作。信号产生时,内核在进程控制块中设置该信号的未决标志,直到信号递达才清除该标志。在上图的例子中,SIGHUP信号未阻塞也未产生过,当它递达时执行默认处理动作。
  • 信号产生没有递达会一直处于未决状态,如果信号阻塞,信号将一直处于未决状态。即便是忽略信号也是如此
  • 常规信号在递达之前产生多次只计一次,而实时信号在递达之前产生多次可以依次放在一个队列里。

例子:

  • SIGINT信号产生过,但正在被阻塞,所以暂时不能递达。虽然它的处理动作是忽略,但在没有解除阻塞之前不能忽略这个信号,因为进程仍有机会改变处理动作之后再解除阻塞。
  • SIGQUIT信号未产生过,一旦产生SIGQUIT信号将被阻塞,它的处理动作是用户自定义函数sighandler。如果在进程解除对某信号的阻塞之前这种信号产生过多次,将如何处理?POSIX.1允许系统递送该信号一次或多次。Linux是这样实现的:常规信号在递达之前产生多次只计一次,而实时信号在递达之前产生多次可以依次放在一个队列里。

sigset_t (信号集)

每个信号只有一个bit的未决标志,非0即1,不记录该信号产生了多少次,阻塞标志也是这样表示的。因此,未决和阻塞标志可以用相同的数据类型sigset_t来存储,sigset_t称为信号集,这个类型可以表示每个信号的“有效”或“无效”状态,在阻塞信号集中“有效”和“无效”的含义是该信号是否被阻塞,而在未决信号集中“有效”和“无效”的含义是该信号是否处于未决状态。下一节将详细介绍信号集的各种操作。 阻塞信号集也叫做当前进程的信号屏蔽字(Signal Mask),这里的“屏蔽”应该理解为阻塞而不是忽略

信号集操作函数

用户只能通过特定的函数才能操作信号集:

#include <signal.h>
int sigemptyset(sigset_t *set);
int sigfillset(sigset_t *set);
int sigaddset (sigset_t *set, int signo);
int sigdelset(sigset_t *set, int signo);
int sigismember(const sigset_t *set, int signo);这四个函数都是成功返回0,出错返回-1。sigismember是一个布尔函数,
用于判断一个信号集的有效信号中是否包含某种信号,若包含则返回1,不包
含则返回0,出错返回-1
  • 函数sigemptyset初始化set所指向的信号集,使其中所有信号的对应bit清零,表示该信号集不包含 任何有效信号。
  • 函数sigfillset初始化set所指向的信号集,使其中所有信号的对应bit置位,表示该信号集的有效信号包括系统支持的所有信号。
  • 注意,在使用sigset_t类型的变量之前,一定要调 用sigemptysetsigfillset做初始化,使信号集处于确定的状态。初始化sigset_t变量之后就可以在调用sigaddsetsigdelset在该信号集中添加或删除某种有效信号

在这里插入图片描述

[外链图片转存中…(img-6d1bac13463fafe114937ff59004.png)

信号捕捉

信号有三种处理方法:

  1. 默认行为(OS定义的行为)
  2. 忽略(不做任何处理)
  3. 自定义行为(用户自定义的行为)

如果信号的处理动作是用户自定义函数,在信号递达时就调用这个函数,这称为捕捉信号。

信号捕捉流程

在这里插入图片描述

简化一下就是:

在这里插入图片描述

如果信号的处理动作是用户自定义函数,在信号递达时就调用这个函数,这称为捕捉信号。由于信号处理函数的代码是在用户空间的,处理过程比较复杂,举例如下: 用户程序注册了SIGQUIT信号的处理函数sighandler。 当前正在执行main函数,这时发生中断或异常切换到内核态。 在中断处理完毕后要返回用户态的main函数之前检查到有信号SIGQUIT递达。 内核决定返回用户态后不是恢复main函数的上下文继续执行,而是执行sighandler函 数,sighandler和main函数使用不同的堆栈空间,它们之间不存在调用和被调用的关系,是 两个独立的控制流程。 sighandler函数返回后自动执行特殊的系统调用sigreturn再次进入内核态。 如果没有新的信号要递达,这次再返回用户态就是恢复main函数的上下文继续执行了。

进程如何从用户态进入内核态:

CPU有两套寄存器,一套用来计算,一套自用,自用中有一个CR3表示当前CPU的权限。发生异常或者调用系统调用时,会先执行 int 80 将权限转为内核态。想要执行进程地址空间中的 3~4G 系统代码,也是如此。

通过signal函数自定义对应信号的捕捉动作

signal函数

在这里插入图片描述

9号信号不会被捕捉

sigaction

#include <signal.h>int sigaction(int signo, const struct sigaction *act, struct sigaction *oact);struct sigaction {void     (*sa_handler)(int); 	# 信号处理方法void     (*sa_sigaction)(int, siginfo_t *, void *);sigset_t   sa_mask; 	# 信号集int        sa_flags;void     (*sa_restorer)(void);
};参数:sigaction函数可以读取和修改与指定信号相关联的处理动作。调用成功则返回0,出错则返回- 1。signo是指定信号的编号。若act指针非空,则根据act修改该信号的处理动作。若oact指针非 空,则通过oact传出该信号原来的处理动作。act和oact指向sigaction结构体:将sa_handler赋值为常数SIG_IGN传给sigaction表示忽略信号,赋值为常数SIG_DFL表示执行系统默认动作,赋值为一个函数指针表示用自定义函数捕捉信号,或者说向内核注册了一个信号处理函 数,该函数返回值为void,可以带一个int参数,通过参数可以得知当前信号的编号,这样就可以用同一个函数处理多种信号。显然,这也是一个回调函数,不是被main函数调用,而是被系统所调用。

处理信号时的信号屏蔽:

当某个信号的处理函数被调用时,内核自动将当前信号加入进程的信号屏蔽字,当信号处理函数返回时自动恢复原来的信号屏蔽字,这样就保证了在处理某个信号时,如果这种信号再次产生,那么 它会被阻塞到当前处理结束为止。 如果在调用信号处理函数时,除了当前信号被自动屏蔽之外,还希望自动屏蔽另外一些信号,则用sa_mask字段说明这些需要额外屏蔽的信号,当信号处理函数返回时自动恢复原来的信号屏蔽字。

可重入函数

在这里插入图片描述

main函数调用insert函数向一个链表head中插入节点node1,插入操作分为两步,刚做完第一步的 时候,因为硬件中断使进程切换到内核,再次回用户态之前检查到有信号待处理,于是切换 到sighandler函数,sighandler也调用insert函数向同一个链表head中插入节点node2,插入操作的 两步都做完之后从sighandler返回内核态,再次回到用户态就从main函数调用的insert函数中继续 往下执行,先前做第一步之后被打断,现在继续做完第二步。结果是,main函数和sighandler先后 向链表中插入两个节点,而最后只有一个节点真正插入链表中了。

像上例这样,insert函数被不同的控制流程调用,有可能在第一次调用还没返回时就再次进入该函数,这称为重入,insert函数访问一个全局链表,有可能因为重入而造成错乱,像这样的函数称为 不可重入函数,反之,如果一个函数只访问自己的局部变量或参数,则称为可重入(Reentrant) 函数大部分的函数都是不可重入的,可重入函数的成本要比不可重入函数的成本高得多

如果一个函数符合以下条件之一则是不可重入的:

  • 调用了malloc或free,因为malloc也是用全局链表来管理堆的。

  • 调用了标准I/O库函数。标准I/O库的很多实现都以不可重入的方式使用全局数据结构。

volatile

有时编译器将会对代码进行优化,例如:一个全局变量在main函数中没有被修改,那么CPU访问该变量时将会是直接通过寄存器访问,也就是内存不可见。当该变量在函数中被修改时,可能会影响到程序的运行结果。

volatile可以解决该问题,保持内存可见性

volatile int flag = 0;

SIGCHLD信号

子进程在终止时会给父进程发SIGCHLD信号,该信号的默认处理动作是忽略,父进程可以自 定义SIGCHLD信号的处理函数,这样父进程只需专心处理自己的工作,不必关心子进程了,子进程 终止时会通知父进程,父进程在信号处理函数中调用wait清理子进程即可。

子进程退出时,父进程不处理会产生僵尸进程,要想不产生僵尸进程还有另外一种办法:父进程调 用sigaction将SIGCHLD的处理动作置为SIG_IGN,这样fork出来的子进程在终止时会自动清理掉,不 会产生僵尸进程,也不会通知父进程。系统默认的忽略动作和用户用sigaction函数自定义的忽略 通常是没有区别的,但这是一个特例。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/25589.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【笔记】湖仓一体架构演进与发展

https://www.bilibili.com/video/BV1oF411F7rQ/?spm_id_from333.788.recommend_more_video.0&vd_sourcefa36a95b3c3fa4f32dd400f8cabddeaf

Camunda 7.x 系列【2】开源工作流引擎框架

有道无术&#xff0c;术尚可求&#xff0c;有术无道&#xff0c;止于术。 本系列Spring Boot 版本 2.7.9 本系列Camunda 版本 7.19.0 源码地址&#xff1a;https://gitee.com/pearl-organization/camunda-study-demo 文章目录 1. 前言2. 开源工作流引擎框架2.1 jBPM2.2 Activ…

setmap使用

目录 set使用 set的模板参数 构造函数 成员函数 insert iterator ​编辑 find count pair pair 的模板参数 make_pair multiset使用 multiset 的模板参数 set 与 multiset 的区别 count map使用 map 的模板参数 构造函数 insert iterator find ​编辑 cou…

【SpringCloud】深入探究Eureka:构建微服务架构中的高效服务发现系统

&#x1f468;‍&#x1f4bb;博主主页&#xff1a;小尘要自信 在现代的软件开发中&#xff0c;微服务架构已经成为了一个热门的话题。微服务架构的一个关键组成部分就是服务发现。而在服务发现领域&#xff0c;Eureka无疑是一个备受推崇的解决方案。本篇博客将为您介绍什么是E…

git面试题

文章目录 git经常用哪些指令git出现代码冲突怎么解决你们团队是怎么管理git分支的如何实现Git的免密操作 git经常用哪些指令 产生代码库 新建一个git代码库 git init下载远程项目和它的整个代码历史 git clone 远程仓库地址配置 显示配置 git config --list [--global]编辑配置…

Python IDE

Python IDE 本文为大家推荐几款款不错的 Python IDE&#xff08;集成开发环境&#xff09;&#xff0c;比较推荐 PyCharm&#xff0c;当然你可以根据自己的喜好来选择适合自己的 Python IDE。 PyCharm PyCharm 是由 JetBrains 打造的一款 Python IDE。 PyCharm 具备一般 Pyt…

机器学习——SMO算法推导与实践

一、 硬间隔-SMO算法推导 明天再说&#xff0c;啊。。。。感觉天空明朗了很多&#xff0c;即使现在已经很晚了 还是要打开柯南&#xff0c;看看电视&#xff0c;等待天气预报所说的台风天吧&#xff01; 一时之间&#xff0c;忽然失去了用markdown语法写下推导过程的勇气。。。…

ip网络广播系统网络音频解码终端公共广播SV-7101

SV-7101V网络音频终端产品简介 网络广播终端SV-7101V&#xff0c;接收网络音频流&#xff0c;实时解码播放。本设备只有网络广播功能&#xff0c;是一款简单的网络广播终端。提供一路线路输出接功放或有源音箱。 产品特点 ■ 提供固件网络远程升级■ 标准RJ45网络接口&…

推荐几款主流的Css Reset

CSS Reset CSS Reset&#xff08;CSS重置&#xff09;是一种技术&#xff0c;用于消除不同浏览器之间默认样式的差异&#xff0c;以确保网页在各个浏览器中的显示一致性。由于不同浏览器对元素的默认样式有所不同&#xff0c;使用CSS Reset可以将这些默认样式归零或统一&#x…

echarts 柱状图 实例

实例效果&#xff1a; 代码&#xff1a; draw(data1, data2,data3) {var option {// backgroundColor: rgb(10,36,68),tooltip: {trigger: axis,axisPointer: {type: shadow,},formatter: function (params: any, ticket: any, callback: any) {const item params[0];var str…

【excel常用文本函数大全上】

目录索引 LEFT&#xff1a;公式&#xff1a;举例&#xff1a; RIGHT&#xff1a;公式&#xff1a;举例&#xff1a; MID&#xff1a;公式&#xff1a;举例&#xff1a; FIND&#xff1a;公式&#xff1a;举例&#xff1a; LEN&#xff1a;公式&#xff1a;举例&#xff1a; LEN…

解决mvn clean install遇到testng单元测试失败时打包也失败的问题

解决mvn clean install遇到testng单元测试失败时打包也失败的问题 看这个之前请先看这个 Jenkins执行Testng 比如我现在就有一个单元测试失败的项目 执行mvn clean install的时候就会报错 下面是我现在的pom.xml 但我们不希望这样&#xff0c;怎么办 <plugin><gr…

vuejs源码分析之全局API(vm.$off)

vue在初始化的时候会给vue对象本身挂载一些全局的api。今天我们一个一个来看这些api。 vm.$off方法 这个方法是用来移除自定义事件监听器。 他的用法 vm.$off(event, calback)第一个参数event取值可以是string字符串&#xff0c;也可以是Array<string>也就是说既可以删…

安卓:UDP通信

目录 一、介绍 网络通信的三要素&#xff1a; &#xff08;1&#xff09;、IP地址&#xff1a; IPv4: IPv6: IP地址形式&#xff1a; IP常用命令&#xff1a; IP地址操作类: &#xff08;2&#xff09;、端口&#xff1a; &#xff08;3&#xff09;、协议: UDP协…

RabbitMQ(二)

二、高级特性、应用问题以及集群搭建 高级特性 1.消息的可靠性投递 在使用RabbitMQ的时候&#xff0c;作为消息发送方希望杜绝任何消息丢失或者投递失败场景。RabbitMQ 为我们提供了两种方式用来控制消息的投递可靠性模式。 rabbitMQ整个消息投递的路径为&#xff1a; produ…

基于PHP+vue的网上订餐系统的设计与开发_769b9

快速发展的社会中&#xff0c;人们的生活水平都在提高&#xff0c;生活节奏也在逐渐加快。为了节省时间和提高工作效率&#xff0c;越来越多的人选择利用互联网进行线上打理各种事务&#xff0c;通过线上管理订餐也就相继涌现。与此同时&#xff0c;人们开始接受方便的生活方式…

汽车维修保养记录查询API:实现车辆健康状况一手掌握

在当今的数字化世界中&#xff0c;汽车维修保养记录的查询和管理变得前所未有地简单和便捷。通过API&#xff0c;我们可以轻松地获取车辆的维修和保养记录&#xff0c;从而实现对手中车辆健康状况的实时掌握。 API&#xff08;应用程序接口&#xff09;是进行数据交换和通信的标…

【LeetCode 75】第二十一题(1207)独一无二的出现次数

目录 题目: 示例: 分析: 代码运行结果: 题目: 示例: 分析: 用两个unordered_map来分别存放每个数字的出现次数和出现的次数这个数,有点绕,比如说有给的数组有两个1,那么第一个map存放的是(1,2),表示1这个数子出现了两次,而第二个map存放的是(2,true),表示有出现次数为2的数…

mysql 笔记(一)-mysql的架构原理

mysql体系结构 mysql Server 架构自顶向下大致可以分为网络连接层,服务层,存储引擎和系统文件层.体系架构图如下: 网络连接层提供与mysql服务器建立的支持.常见的java.c.python/.net ,它们通过各自API技术与mysql建立连接. 服务层是Mysql Server 的核心,主要包含系统管理和控…

Redis 基础

1.定义 Redis 是一个高性能的key-value数据库&#xff0c;key是字符串类型。 2.核心特点&#xff1a; 单进程&#xff1a; Redis的服务器程序采用的是单进程模型来处理客户端的请求。对读写时间的响 应是通过对epoll函数的包装来做到的。 3.数据类型&#xff1a; 键的类型…