【Groups】50 Matplotlib Visualizations, Python实现,源码可复现

详情请参考博客: Top 50 matplotlib Visualizations
因编译更新问题,本文将稍作更改,以便能够顺利运行。

1 Dendrogram

树状图根据给定的距离度量将相似的点组合在一起,并根据点的相似性将它们组织成树状的链接。

新建文件Dendrogram.py:

# Import Setup
from Setup import pd
from Setup import plt
import scipy.cluster.hierarchy as shc# Import Data
df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/USArrests.csv')# Plot
plt.figure(figsize=(16, 10), dpi= 80)  
plt.title("USArrests Dendograms", fontsize=22)  
dend = shc.dendrogram(shc.linkage(df[['Murder', 'Assault', 'UrbanPop', 'Rape']], method='ward'), labels=df.State.values, color_threshold=100)  
plt.xticks(fontsize=12)
plt.show()

运行结果为:

在这里插入图片描述

2 Cluster Plot

聚类图可用于划分属于同一聚类的点。下面是一个代表性示例,根据 USArrests 数据集将美国各州分为 5 个组。此聚类图使用“谋杀”和“袭击”列作为 X 轴和 Y 轴。或者,您可以使用第一个到主分量作为 x 轴和 Y 轴。

新建文件Cluster Plot.py:

# Import Setup
from Setup import pd
from Setup import plt
import numpy as np
from sklearn.cluster import AgglomerativeClustering
from scipy.spatial import ConvexHull# Import Data
df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/USArrests.csv')# Agglomerative Clustering
cluster = AgglomerativeClustering(n_clusters=5, affinity='euclidean', linkage='ward')  
cluster.fit_predict(df[['Murder', 'Assault', 'UrbanPop', 'Rape']])  # Plot
plt.figure(figsize=(14, 10), dpi= 80)  
plt.scatter(df.iloc[:,0], df.iloc[:,1], c=cluster.labels_, cmap='tab10')  # Encircle
def encircle(x,y, ax=None, **kw):if not ax: ax=plt.gca()p = np.c_[x,y]hull = ConvexHull(p)poly = plt.Polygon(p[hull.vertices,:], **kw)ax.add_patch(poly)# Draw polygon surrounding vertices    
encircle(df.loc[cluster.labels_ == 0, 'Murder'], df.loc[cluster.labels_ == 0, 'Assault'], ec="k", fc="gold", alpha=0.2, linewidth=0)
encircle(df.loc[cluster.labels_ == 1, 'Murder'], df.loc[cluster.labels_ == 1, 'Assault'], ec="k", fc="tab:blue", alpha=0.2, linewidth=0)
encircle(df.loc[cluster.labels_ == 2, 'Murder'], df.loc[cluster.labels_ == 2, 'Assault'], ec="k", fc="tab:red", alpha=0.2, linewidth=0)
encircle(df.loc[cluster.labels_ == 3, 'Murder'], df.loc[cluster.labels_ == 3, 'Assault'], ec="k", fc="tab:green", alpha=0.2, linewidth=0)
encircle(df.loc[cluster.labels_ == 4, 'Murder'], df.loc[cluster.labels_ == 4, 'Assault'], ec="k", fc="tab:orange", alpha=0.2, linewidth=0)# Decorations
plt.xlabel('Murder'); plt.xticks(fontsize=12)
plt.ylabel('Assault'); plt.yticks(fontsize=12)
plt.title('Agglomerative Clustering of USArrests (5 Groups)', fontsize=22)
plt.show()

运行结果为:

在这里插入图片描述

3 Andrews Curve

Andrews 曲线有助于可视化是否存在基于给定分组的数值特征的固有分组。如果特征(数据集中的列)不能帮助区分组 (cyl),则线将无法很好地隔离,如下所示。

新建文件Andrews Curve.py:

# Import Setup
from Setup import pd
from Setup import plt
from pandas.plotting import andrews_curves# Import
df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mtcars.csv")
df.drop(['cars', 'carname'], axis=1, inplace=True)# Plot
plt.figure(figsize=(12,9), dpi= 80)
andrews_curves(df, 'cyl', colormap='Set1')# Lighten borders
plt.gca().spines["top"].set_alpha(0)
plt.gca().spines["bottom"].set_alpha(.3)
plt.gca().spines["right"].set_alpha(0)
plt.gca().spines["left"].set_alpha(.3)plt.title('Andrews Curves of mtcars', fontsize=22)
plt.xlim(-3,3)
plt.grid(alpha=0.3)
plt.xticks(fontsize=12)
plt.yticks(fontsize=12)
plt.show()

运行结果为:

在这里插入图片描述

4 Parallel Coordinates

平行坐标有助于可视化一个特征是否有助于有效地隔离群体。如果隔离已经实现,该特征在预测该群体时可能非常有用。

新建文件Parallel Coordinates.py:

# Import Setup
from Setup import pd
from Setup import plt
from pandas.plotting import parallel_coordinates# Import Data
df_final = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/diamonds_filter.csv")# Plot
plt.figure(figsize=(12,9), dpi= 80)
parallel_coordinates(df_final, 'cut', colormap='Dark2')# Lighten borders
plt.gca().spines["top"].set_alpha(0)
plt.gca().spines["bottom"].set_alpha(.3)
plt.gca().spines["right"].set_alpha(0)
plt.gca().spines["left"].set_alpha(.3)plt.title('Parallel Coordinated of Diamonds', fontsize=22)
plt.grid(alpha=0.3)
plt.xticks(fontsize=12)
plt.yticks(fontsize=12)
plt.show()

运行结果为:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/25549.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

session-cookies 三个缓存 localStorage、sessionStorage、Cookies。

session-cookies session-cookies is localStorage、sessionStorage、Cookies。session-cookies This plugin is used to summarize the browser’s three caches localStorage, sessionStorage, Cookies.The plugin is designed to be quick and easy to use. Below is a sum…

鸿鹄工程项目管理系统em Spring Cloud+Spring Boot+前后端分离构建工程项目管理系统 em

​ Java版工程项目管理系统 Spring CloudSpring BootMybatisVueElementUI前后端分离 功能清单如下: 首页 工作台:待办工作、消息通知、预警信息,点击可进入相应的列表 项目进度图表:选择(总体或单个)项目…

计算机网络-性能指标

计算机网络-性能指标 文章目录 计算机网络-性能指标简介速率比特速率 带宽吞吐量时延时延计算 时延带宽积往返时间网络利用率丢包率总结 简介 性能指标可以从不同的方面来度量计算机网络的性能 常用的计算机网络的性能指标有以下8个 速率带宽吞吐量时延时延带宽积往返时间利…

C++ 学习系列 1 -- 左值、右值与万能引用

1. 何为左值&#xff1f;何为右值&#xff1f; 简单的说&#xff0c;左值可以放在等号的左边&#xff0c;右值可以放在等号的右边。 左值可以取地址&#xff0c;右值不能取地址。 1.1 左值举例&#xff1a; 变量、函数或数据成员返回左值引用的表达式 如 x、x 1、cout <…

ARCGIS地理配准出现的问题

第一种。已有省级行政区矢量数据&#xff0c;在网上随便找一个相同省级行政区图片&#xff0c;利用地理配准工具给图片添加坐标信息。 依次添加省级行政区选择矢量数据、浙江省图片。 此时&#xff0c;图层默认的坐标系与第一个加载进来的省级行政区选择矢量数据的坐标系一致…

Python(三)

诚信像一面镜子&#xff0c;一旦打破&#xff0c;你的人格就会出现裂痕。 存在短路的情景 谢谢观看 Python(三)

一百四十三、Linux——Linux的CentOS 7系统语言由中文改成英文

一、目的 之前安装CentOS 7系统的时候把语言设置成中文&#xff0c;结果Linux文件夹命名出现中文乱码的问题&#xff0c;于是决定把Linux系统语言由中文改成英文 二、实施步骤 &#xff08;一&#xff09;到etc目录下&#xff0c;找到配置文件locale.conf # cd /etc/ # ls…

flex 弹性布局

Flex 布局的使用 任何一个容器都可以指定为 Flex 布局。 .box{ display: flex; //flex作为display的一个属性使用 } 行内元素也可以使用 Flex 布局。 .box{ display: inline-flex; } 注意&#xff1a;设为 Flex 布局以后&#xff0c;子元素的float、clear和vertical-align…

Vue3实现6位验证码输入框,用户可以连续输入和删除

实现代码 可以随意填写删除 <template><div class"verification-container"><inputv-for"(code, index) in verificationCodes":key"index"v-model"verificationCodes[index]"input"handleInput(index, $event…

python编写小程序有界面,python编写小程序的运行

大家好&#xff0c;小编为大家解答python编写小程序怎么看代码的的问题。很多人还不知道python编写小程序的运行&#xff0c;现在让我们一起来看看吧&#xff01; Python第一个简单的小游戏 temp input("请猜一猜姐姐的幸运数字是&#xff1a; ") guess int(temp) …

1、Spark SQL 概述

1、Spark SQL 概述 Spark SQL概念 Spark SQL is Apache Spark’s module for working with structured data. 它是spark中用于处理结构化数据的一个模块 Spark SQL历史 Hive是目前大数据领域&#xff0c;事实上的数据仓库标准。 Shark&#xff1a;shark底层使用spark的基于…

24届近5年南京航空航天大学自动化考研院校分析

今天给大家带来的是南京航空航天大学控制考研分析 满满干货&#xff5e;还不快快点赞收藏 一、南京航空航天大学 学校简介 南京航空航天大学创建于1952年10月&#xff0c;是新中国自己创办的第一批航空高等院校之一。1978年被国务院确定为全国重点大学&#xff1b;1981年经…

大规模基础模型!在视觉领域更强、更鲁棒!

点击蓝字 关注我们 关注并星标 从此不迷路 计算机视觉研究院 公众号ID&#xff5c;计算机视觉研究院 学习群&#xff5c;扫码在主页获取加入方式 计算机视觉研究院专栏 Column of Computer Vision Institute 今天分享的研究者提出了一种新的基于CNN的大规模基础模型&#xff0c…

一分钟完成centos7安装docker

action: 1、下载安装包2、安装docker 1、背景 使用CentOS / Redhat 7 版本的应该偏多。但是&#xff0c;Docker CE在系统中安装的时候&#xff0c;往往会出现一堆依赖包的报错&#xff0c;解决依赖包需要耗费不短的时间。 经验证&#xff0c;目前已找到兼容能力强的版本&am…

K8S系列文章之 开源的堡垒机 jumpserver

一、jumpserver作为一款开源的堡垒机&#xff0c;不管是企业还是个人&#xff0c;我觉得都是比较合适的&#xff0c;而且使用也比较简单。 二、这里记录一下安装和使用过程。 1、安装&#xff0c;直接docker不是就行 version: 3 services:xbd-mysql:image: mysql:8.0.19restart…

离散化的两种实现方式【sort或者map】

离散化 定义 把无限空间中有限的个体映射到有限的空间中去&#xff0c;以此提高算法的时空效率。通俗的说&#xff0c;离散化是在不改变数据相对大小的条件下&#xff0c;对数据进行相应的缩小。 适用范围&#xff1a;数组中元素值域很大&#xff0c;但个数不是很多。 比如将…

基于IP地址的目的地址转换

基本需求 由于来自INTERNET的对政府、企业的网络攻击日益频繁&#xff0c;因此需要对内网中向外网提供访问服务的关键设备进行有效保护。采用目的地址NAT可以有效地将内部网络地址对外隐藏。 图中&#xff1a;公网Internet用户需要通过防火墙访问WEB服务器&#xff0c;为了隐藏…

macOS下Django环境搭建

1. macOS升级pip /Library/Developer/CommandLineTools/usr/bin/python3 -m pip install --upgrade pip 2. 卸载Python3.9.5版本 $ sudo rm -rf /usr/local/bin/python3 $ sudo rm -rf /usr/local/bin/pip3 $ sudo rm -rf /Library/Frameworks/Python.framework 3. 安装P…

Redis安装以及配置隧道连接(centOs)

目录 1.centOs安装Redis 2. Redis 启动和停⽌ 3. 操作Redis 2.Xshell配置隧道 1.centOs安装Redis #使⽤yum安装Redis yum -y install redis 2. Redis 启动和停⽌ #查看是否启动 ps -ef|grep redis#启动redis: redis-server /etc/redis.conf &#停⽌Redis redis-cli sh…

【代码随想录-LeetCode第一题】二分查找及实现

LeetCode刷题第一题&#xff1a;704二分查找法 什么是二分查找&#xff1f;题目思路和边界问题 参考 代码随想录 什么是二分查找&#xff1f; 二分查找&#xff08;Binary Search&#xff09;是一种在有序数组中查找特定元素的查找算法。它通过将目标值与数组的中间元素进行比…