Atmel megaAVR控制器 串行引导Bootloader

        开始研究下Bootloader的代码结构大笑


2015.1.9

        粗略看了下,Bootloader主要做了下板卡的初始化   ----->    然后进入for( ; ; )死循环  ----->  循环刷新串口数据   ----->   根据数据做出不同应答   ----->  如果有写数据,则将数据存入buffer     ----->  从buffer 写入EEPROM     ----->  跳转到  app_start()  处执行


        写入  EEPROM  的代码过程需要确定。


/**********************************************************/
/* Serial Bootloader for Atmel megaAVR Controllers        */
/*                                                        */
/* tested with ATmega8, ATmega128 and ATmega168           */
/* should work with other mega's, see code for details    */
/*                                                        */
/* ATmegaBOOT.c                                           */
/*                                                        */
/*                                                        */
/* 20090308: integrated Mega changes into main bootloader */
/*           source by D. Mellis                          */
/* 20080930: hacked for Arduino Mega (with the 1280       */
/*           processor, backwards compatible)             */
/*           by D. Cuartielles                            */
/* 20070626: hacked for Arduino Diecimila (which auto-    */
/*           resets when a USB connection is made to it)  */
/*           by D. Mellis                                 */
/* 20060802: hacked for Arduino by D. Cuartielles         */
/*           based on a previous hack by D. Mellis        */
/*           and D. Cuartielles                           */
/*                                                        */
/* Monitor and debug functions were added to the original */
/* code by Dr. Erik Lins, chip45.com. (See below)         */
/*                                                        */
/* Thanks to Karl Pitrich for fixing a bootloader pin     */
/* problem and more informative LED blinking!             */
/*                                                        */
/* For the latest version see:                            */
/* http://www.chip45.com/                                 */
/*                                                        */
/* ------------------------------------------------------ */
/*                                                        */
/* based on stk500boot.c                                  */
/* Copyright (c) 2003, Jason P. Kyle                      */
/* All rights reserved.                                   */
/* see avr1.org for original file and information         */
/*                                                        */
/* This program is free software; you can redistribute it */
/* and/or modify it under the terms of the GNU General    */
/* Public License as published by the Free Software       */
/* Foundation; either version 2 of the License, or        */
/* (at your option) any later version.                    */
/*                                                        */
/* This program is distributed in the hope that it will   */
/* be useful, but WITHOUT ANY WARRANTY; without even the  */
/* implied warranty of MERCHANTABILITY or FITNESS FOR A   */
/* PARTICULAR PURPOSE.  See the GNU General Public        */
/* License for more details.                              */
/*                                                        */
/* You should have received a copy of the GNU General     */
/* Public License along with this program; if not, write  */
/* to the Free Software Foundation, Inc.,                 */
/* 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA */
/*                                                        */
/* Licence can be viewed at                               */
/* http://www.fsf.org/licenses/gpl.txt                    */
/*                                                        */
/* Target = Atmel AVR m128,m64,m32,m16,m8,m162,m163,m169, */
/* m8515,m8535. ATmega161 has a very small boot block so  */
/* isn't supported.                                       */
/*                                                        */
/* Tested with m168                                       */
/**********************************************************//* $Id$ *//* some includes */
#include <inttypes.h>
#include <avr/io.h>
#include <avr/pgmspace.h>
#include <avr/interrupt.h>
#include <avr/wdt.h>
#include <util/delay.h>/* the current avr-libc eeprom functions do not support the ATmega168 */
/* own eeprom write/read functions are used instead */
#if !defined(__AVR_ATmega168__) || !defined(__AVR_ATmega328P__)
#include <avr/eeprom.h>
#endif/* Use the F_CPU defined in Makefile *//* 20060803: hacked by DojoCorp */
/* 20070626: hacked by David A. Mellis to decrease waiting time for auto-reset */
/* set the waiting time for the bootloader */
/* get this from the Makefile instead */
/* #define MAX_TIME_COUNT (F_CPU>>4) *//* 20070707: hacked by David A. Mellis - after this many errors give up and launch application */
#define MAX_ERROR_COUNT 5/* set the UART baud rate */
/* 20060803: hacked by DojoCorp */
//#define BAUD_RATE   115200
#ifndef BAUD_RATE
#define BAUD_RATE   19200
#endif/* SW_MAJOR and MINOR needs to be updated from time to time to avoid warning message from AVR Studio */
/* never allow AVR Studio to do an update !!!! */
#define HW_VER	 0x02
#define SW_MAJOR 0x01
#define SW_MINOR 0x10/* Adjust to suit whatever pin your hardware uses to enter the bootloader */
/* ATmega128 has two UARTS so two pins are used to enter bootloader and select UART */
/* ATmega1280 has four UARTS, but for Arduino Mega, we will only use RXD0 to get code */
/* BL0... means UART0, BL1... means UART1 */
#ifdef __AVR_ATmega128__
#define BL_DDR  DDRF
#define BL_PORT PORTF
#define BL_PIN  PINF
#define BL0     PINF7
#define BL1     PINF6
#elif defined __AVR_ATmega1280__ 
/* we just don't do anything for the MEGA and enter bootloader on reset anyway*/
#else
/* other ATmegas have only one UART, so only one pin is defined to enter bootloader */
#define BL_DDR  DDRD
#define BL_PORT PORTD
#define BL_PIN  PIND
#define BL      PIND6
#endif/* onboard LED is used to indicate, that the bootloader was entered (3x flashing) */
/* if monitor functions are included, LED goes on after monitor was entered */
#if defined __AVR_ATmega128__ || defined __AVR_ATmega1280__
/* Onboard LED is connected to pin PB7 (e.g. Crumb128, PROBOmega128, Savvy128, Arduino Mega) */
#define LED_DDR  DDRB
#define LED_PORT PORTB
#define LED_PIN  PINB
#define LED      PINB7
#else
/* Onboard LED is connected to pin PB5 in Arduino NG, Diecimila, and Duomilanuove */ 
/* other boards like e.g. Crumb8, Crumb168 are using PB2 */
#define LED_DDR  DDRB
#define LED_PORT PORTB
#define LED_PIN  PINB
#define LED      PINB5
#endif/* monitor functions will only be compiled when using ATmega128, due to bootblock size constraints */
#if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__)
#define MONITOR 1
#endif/* define various device id's */
/* manufacturer byte is always the same */
#define SIG1	0x1E	// Yep, Atmel is the only manufacturer of AVR micros.  Single source :(#if defined __AVR_ATmega1280__
#define SIG2	0x97
#define SIG3	0x03
#define PAGE_SIZE	0x80U	//128 words#elif defined __AVR_ATmega1281__
#define SIG2	0x97
#define SIG3	0x04
#define PAGE_SIZE	0x80U	//128 words#elif defined __AVR_ATmega128__
#define SIG2	0x97
#define SIG3	0x02
#define PAGE_SIZE	0x80U	//128 words#elif defined __AVR_ATmega64__
#define SIG2	0x96
#define SIG3	0x02
#define PAGE_SIZE	0x80U	//128 words#elif defined __AVR_ATmega32__
#define SIG2	0x95
#define SIG3	0x02
#define PAGE_SIZE	0x40U	//64 words#elif defined __AVR_ATmega16__
#define SIG2	0x94
#define SIG3	0x03
#define PAGE_SIZE	0x40U	//64 words#elif defined __AVR_ATmega8__
#define SIG2	0x93
#define SIG3	0x07
#define PAGE_SIZE	0x20U	//32 words#elif defined __AVR_ATmega88__
#define SIG2	0x93
#define SIG3	0x0a
#define PAGE_SIZE	0x20U	//32 words#elif defined __AVR_ATmega168__
#define SIG2	0x94
#define SIG3	0x06
#define PAGE_SIZE	0x40U	//64 words#elif defined __AVR_ATmega328P__
#define SIG2	0x95
#define SIG3	0x0F
#define PAGE_SIZE	0x40U	//64 words#elif defined __AVR_ATmega162__
#define SIG2	0x94
#define SIG3	0x04
#define PAGE_SIZE	0x40U	//64 words#elif defined __AVR_ATmega163__
#define SIG2	0x94
#define SIG3	0x02
#define PAGE_SIZE	0x40U	//64 words#elif defined __AVR_ATmega169__
#define SIG2	0x94
#define SIG3	0x05
#define PAGE_SIZE	0x40U	//64 words#elif defined __AVR_ATmega8515__
#define SIG2	0x93
#define SIG3	0x06
#define PAGE_SIZE	0x20U	//32 words#elif defined __AVR_ATmega8535__
#define SIG2	0x93
#define SIG3	0x08
#define PAGE_SIZE	0x20U	//32 words
#endif/* function prototypes */
void putch(char);
char getch(void);
void getNch(uint8_t);
void byte_response(uint8_t);
void nothing_response(void);
char gethex(void);
void puthex(char);
void flash_led(uint8_t);/* some variables */
union address_union {uint16_t word;uint8_t  byte[2];
} address;union length_union {uint16_t word;uint8_t  byte[2];
} length;struct flags_struct {unsigned eeprom : 1;unsigned rampz  : 1;
} flags;uint8_t buff[256];
uint8_t address_high;uint8_t pagesz=0x80;uint8_t i;
uint8_t bootuart = 0;uint8_t error_count = 0;void (*app_start)(void) = 0x0000;/* main program starts here */
int main(void)
{uint8_t ch,ch2;uint16_t w;#ifdef WATCHDOG_MODSch = MCUSR;MCUSR = 0;WDTCSR |= _BV(WDCE) | _BV(WDE);WDTCSR = 0;// Check if the WDT was used to reset, in which case we dont bootload and skip straight to the code. woot.if (! (ch &  _BV(EXTRF))) // if its a not an external reset...app_start();  // skip bootloader
#elseasm volatile("nop\n\t");
#endif/* set pin direction for bootloader pin and enable pullup *//* for ATmega128, two pins need to be initialized */
#ifdef __AVR_ATmega128__BL_DDR &= ~_BV(BL0);BL_DDR &= ~_BV(BL1);BL_PORT |= _BV(BL0);BL_PORT |= _BV(BL1);
#else/* We run the bootloader regardless of the state of this pin.  Thus, don'tput it in a different state than the other pins.  --DAM, 070709This also applies to Arduino Mega -- DC, 080930BL_DDR &= ~_BV(BL);BL_PORT |= _BV(BL);*/
#endif#ifdef __AVR_ATmega128__/* check which UART should be used for booting */if(bit_is_clear(BL_PIN, BL0)) {bootuart = 1;}else if(bit_is_clear(BL_PIN, BL1)) {bootuart = 2;}
#endif#if defined __AVR_ATmega1280__/* the mega1280 chip has four serial ports ... we could eventually use any of them, or not? *//* however, we don't wanna confuse people, to avoid making a mess, we will stick to RXD0, TXD0 */bootuart = 1;
#endif/* check if flash is programmed already, if not start bootloader anyway */if(pgm_read_byte_near(0x0000) != 0xFF) {#ifdef __AVR_ATmega128__/* no UART was selected, start application */if(!bootuart) {app_start();}
#else/* check if bootloader pin is set low *//* we don't start this part neither for the m8, nor m168 *///if(bit_is_set(BL_PIN, BL)) {//      app_start();//    }
#endif}#ifdef __AVR_ATmega128__    /* no bootuart was selected, default to uart 0 */if(!bootuart) {bootuart = 1;}
#endif/* initialize UART(s) depending on CPU defined */
#if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__)if(bootuart == 1) {UBRR0L = (uint8_t)(F_CPU/(BAUD_RATE*16L)-1);UBRR0H = (F_CPU/(BAUD_RATE*16L)-1) >> 8;UCSR0A = 0x00;UCSR0C = 0x06;UCSR0B = _BV(TXEN0)|_BV(RXEN0);}if(bootuart == 2) {UBRR1L = (uint8_t)(F_CPU/(BAUD_RATE*16L)-1);UBRR1H = (F_CPU/(BAUD_RATE*16L)-1) >> 8;UCSR1A = 0x00;UCSR1C = 0x06;UCSR1B = _BV(TXEN1)|_BV(RXEN1);}
#elif defined __AVR_ATmega163__UBRR = (uint8_t)(F_CPU/(BAUD_RATE*16L)-1);UBRRHI = (F_CPU/(BAUD_RATE*16L)-1) >> 8;UCSRA = 0x00;UCSRB = _BV(TXEN)|_BV(RXEN);	
#elif defined(__AVR_ATmega168__) || defined(__AVR_ATmega328P__)#ifdef DOUBLE_SPEEDUCSR0A = (1<<U2X0); //Double speed mode USART0UBRR0L = (uint8_t)(F_CPU/(BAUD_RATE*8L)-1);UBRR0H = (F_CPU/(BAUD_RATE*8L)-1) >> 8;
#elseUBRR0L = (uint8_t)(F_CPU/(BAUD_RATE*16L)-1);UBRR0H = (F_CPU/(BAUD_RATE*16L)-1) >> 8;
#endifUCSR0B = (1<<RXEN0) | (1<<TXEN0);UCSR0C = (1<<UCSZ00) | (1<<UCSZ01);/* Enable internal pull-up resistor on pin D0 (RX), in orderto supress line noise that prevents the bootloader fromtiming out (DAM: 20070509) */DDRD &= ~_BV(PIND0);PORTD |= _BV(PIND0);
#elif defined __AVR_ATmega8__/* m8 */UBRRH = (((F_CPU/BAUD_RATE)/16)-1)>>8; 	// set baud rateUBRRL = (((F_CPU/BAUD_RATE)/16)-1);UCSRB = (1<<RXEN)|(1<<TXEN);  // enable Rx & TxUCSRC = (1<<URSEL)|(1<<UCSZ1)|(1<<UCSZ0);  // config USART; 8N1
#else/* m16,m32,m169,m8515,m8535 */UBRRL = (uint8_t)(F_CPU/(BAUD_RATE*16L)-1);UBRRH = (F_CPU/(BAUD_RATE*16L)-1) >> 8;UCSRA = 0x00;UCSRC = 0x06;UCSRB = _BV(TXEN)|_BV(RXEN);
#endif#if defined __AVR_ATmega1280__/* Enable internal pull-up resistor on pin D0 (RX), in orderto supress line noise that prevents the bootloader fromtiming out (DAM: 20070509) *//* feature added to the Arduino Mega --DC: 080930 */DDRE &= ~_BV(PINE0);PORTE |= _BV(PINE0);
#endif/* set LED pin as output */LED_DDR |= _BV(LED);/* flash onboard LED to signal entering of bootloader */
#if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__)// 4x for UART0, 5x for UART1flash_led(NUM_LED_FLASHES + bootuart);
#elseflash_led(NUM_LED_FLASHES);
#endif/* 20050803: by DojoCorp, this is one of the parts provoking thesystem to stop listening, cancelled from the original *///putch('\0');/* forever loop */for (;;) {/* get character from UART */ch = getch();/* A bunch of if...else if... gives smaller code than switch...case ! *//* Hello is anyone home ? */ if(ch=='0') {nothing_response();}/* Request programmer ID *//* Not using PROGMEM string due to boot block in m128 being beyond 64kB boundry  *//* Would need to selectively manipulate RAMPZ, and it's only 9 characters anyway so who cares.  */else if(ch=='1') {if (getch() == ' ') {putch(0x14);putch('A');putch('V');putch('R');putch(' ');putch('I');putch('S');putch('P');putch(0x10);} else {if (++error_count == MAX_ERROR_COUNT)app_start();}}/* AVR ISP/STK500 board commands  DON'T CARE so default nothing_response */else if(ch=='@') {ch2 = getch();if (ch2>0x85) getch();nothing_response();}/* AVR ISP/STK500 board requests */else if(ch=='A') {ch2 = getch();if(ch2==0x80) byte_response(HW_VER);		// Hardware versionelse if(ch2==0x81) byte_response(SW_MAJOR);	// Software major versionelse if(ch2==0x82) byte_response(SW_MINOR);	// Software minor versionelse if(ch2==0x98) byte_response(0x03);		// Unknown but seems to be required by avr studio 3.56else byte_response(0x00);				// Covers various unnecessary responses we don't care about}/* Device Parameters  DON'T CARE, DEVICE IS FIXED  */else if(ch=='B') {getNch(20);nothing_response();}/* Parallel programming stuff  DON'T CARE  */else if(ch=='E') {getNch(5);nothing_response();}/* P: Enter programming mode  *//* R: Erase device, don't care as we will erase one page at a time anyway.  */else if(ch=='P' || ch=='R') {nothing_response();}/* Leave programming mode  */else if(ch=='Q') {nothing_response();
#ifdef WATCHDOG_MODS// autoreset via watchdog (sneaky!)WDTCSR = _BV(WDE);while (1); // 16 ms
#endif}/* Set address, little endian. EEPROM in bytes, FLASH in words  *//* Perhaps extra address bytes may be added in future to support > 128kB FLASH.  *//* This might explain why little endian was used here, big endian used everywhere else.  */else if(ch=='U') {address.byte[0] = getch();address.byte[1] = getch();nothing_response();}/* Universal SPI programming command, disabled.  Would be used for fuses and lock bits.  */else if(ch=='V') {if (getch() == 0x30) {getch();ch = getch();getch();if (ch == 0) {byte_response(SIG1);} else if (ch == 1) {byte_response(SIG2); } else {byte_response(SIG3);} } else {getNch(3);byte_response(0x00);}}/* Write memory, length is big endian and is in bytes  */else if(ch=='d') {length.byte[1] = getch();length.byte[0] = getch();flags.eeprom = 0;if (getch() == 'E') flags.eeprom = 1;for (w=0;w<length.word;w++) {buff[w] = getch();	                        // Store data in buffer, can't keep up with serial data stream whilst programming pages}if (getch() == ' ') {if (flags.eeprom) {		                //Write to EEPROM one byte at a timeaddress.word <<= 1;for(w=0;w<length.word;w++) {
#if defined(__AVR_ATmega168__)  || defined(__AVR_ATmega328P__)while(EECR & (1<<EEPE));EEAR = (uint16_t)(void *)address.word;EEDR = buff[w];EECR |= (1<<EEMPE);EECR |= (1<<EEPE);
#elseeeprom_write_byte((void *)address.word,buff[w]);
#endifaddress.word++;}			}else {					        //Write to FLASH one page at a timeif (address.byte[1]>127) address_high = 0x01;	//Only possible with m128, m256 will need 3rd address byte. FIXMEelse address_high = 0x00;
#if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__) || defined(__AVR_ATmega1281__)RAMPZ = address_high;
#endifaddress.word = address.word << 1;	        //address * 2 -> byte location/* if ((length.byte[0] & 0x01) == 0x01) length.word++;	//Even up an odd number of bytes */if ((length.byte[0] & 0x01)) length.word++;	//Even up an odd number of bytescli();					//Disable interrupts, just to be sure
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega1281__)while(bit_is_set(EECR,EEPE));			//Wait for previous EEPROM writes to complete
#elsewhile(bit_is_set(EECR,EEWE));			//Wait for previous EEPROM writes to complete
#endifasm volatile("clr	r17		\n\t"	//page_word_count"lds	r30,address	\n\t"	//Address of FLASH location (in bytes)"lds	r31,address+1	\n\t""ldi	r28,lo8(buff)	\n\t"	//Start of buffer array in RAM"ldi	r29,hi8(buff)	\n\t""lds	r24,length	\n\t"	//Length of data to be written (in bytes)"lds	r25,length+1	\n\t""length_loop:		\n\t"	//Main loop, repeat for number of words in block							 							 "cpi	r17,0x00	\n\t"	//If page_word_count=0 then erase page"brne	no_page_erase	\n\t"						 "wait_spm1:		\n\t""lds	r16,%0		\n\t"	//Wait for previous spm to complete"andi	r16,1           \n\t""cpi	r16,1           \n\t""breq	wait_spm1       \n\t""ldi	r16,0x03	\n\t"	//Erase page pointed to by Z"sts	%0,r16		\n\t""spm			\n\t"							 
#ifdef __AVR_ATmega163__".word 0xFFFF		\n\t""nop			\n\t"
#endif"wait_spm2:		\n\t""lds	r16,%0		\n\t"	//Wait for previous spm to complete"andi	r16,1           \n\t""cpi	r16,1           \n\t""breq	wait_spm2       \n\t"									 "ldi	r16,0x11	\n\t"	//Re-enable RWW section"sts	%0,r16		\n\t"						 			 "spm			\n\t"
#ifdef __AVR_ATmega163__".word 0xFFFF		\n\t""nop			\n\t"
#endif"no_page_erase:		\n\t"							 "ld	r0,Y+		\n\t"	//Write 2 bytes into page buffer"ld	r1,Y+		\n\t"							 "wait_spm3:		\n\t""lds	r16,%0		\n\t"	//Wait for previous spm to complete"andi	r16,1           \n\t""cpi	r16,1           \n\t""breq	wait_spm3       \n\t""ldi	r16,0x01	\n\t"	//Load r0,r1 into FLASH page buffer"sts	%0,r16		\n\t""spm			\n\t""inc	r17		\n\t"	//page_word_count++"cpi r17,%1	        \n\t""brlo	same_page	\n\t"	//Still same page in FLASH"write_page:		\n\t""clr	r17		\n\t"	//New page, write current one first"wait_spm4:		\n\t""lds	r16,%0		\n\t"	//Wait for previous spm to complete"andi	r16,1           \n\t""cpi	r16,1           \n\t""breq	wait_spm4       \n\t"
#ifdef __AVR_ATmega163__"andi	r30,0x80	\n\t"	// m163 requires Z6:Z1 to be zero during page write
#endif							 							 "ldi	r16,0x05	\n\t"	//Write page pointed to by Z"sts	%0,r16		\n\t""spm			\n\t"
#ifdef __AVR_ATmega163__".word 0xFFFF		\n\t""nop			\n\t""ori	r30,0x7E	\n\t"	// recover Z6:Z1 state after page write (had to be zero during write)
#endif"wait_spm5:		\n\t""lds	r16,%0		\n\t"	//Wait for previous spm to complete"andi	r16,1           \n\t""cpi	r16,1           \n\t""breq	wait_spm5       \n\t"									 "ldi	r16,0x11	\n\t"	//Re-enable RWW section"sts	%0,r16		\n\t"						 			 "spm			\n\t"					 		 
#ifdef __AVR_ATmega163__".word 0xFFFF		\n\t""nop			\n\t"
#endif"same_page:		\n\t"							 "adiw	r30,2		\n\t"	//Next word in FLASH"sbiw	r24,2		\n\t"	//length-2"breq	final_write	\n\t"	//Finished"rjmp	length_loop	\n\t""final_write:		\n\t""cpi	r17,0		\n\t""breq	block_done	\n\t""adiw	r24,2		\n\t"	//length+2, fool above check on length after short page write"rjmp	write_page	\n\t""block_done:		\n\t""clr	__zero_reg__	\n\t"	//restore zero register
#if defined __AVR_ATmega168__  || __AVR_ATmega328P__ || __AVR_ATmega128__ || __AVR_ATmega1280__ || __AVR_ATmega1281__ : "=m" (SPMCSR) : "M" (PAGE_SIZE) : "r0","r16","r17","r24","r25","r28","r29","r30","r31"
#else: "=m" (SPMCR) : "M" (PAGE_SIZE) : "r0","r16","r17","r24","r25","r28","r29","r30","r31"
#endif);/* Should really add a wait for RWW section to be enabled, don't actually need it since we never *//* exit the bootloader without a power cycle anyhow */}putch(0x14);putch(0x10);} else {if (++error_count == MAX_ERROR_COUNT)app_start();}		}/* Read memory block mode, length is big endian.  */else if(ch=='t') {length.byte[1] = getch();length.byte[0] = getch();
#if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__)if (address.word>0x7FFF) flags.rampz = 1;		// No go with m256, FIXMEelse flags.rampz = 0;
#endifaddress.word = address.word << 1;	        // address * 2 -> byte locationif (getch() == 'E') flags.eeprom = 1;else flags.eeprom = 0;if (getch() == ' ') {		                // Command terminatorputch(0x14);for (w=0;w < length.word;w++) {		        // Can handle odd and even lengths okayif (flags.eeprom) {	                        // Byte access EEPROM read
#if defined(__AVR_ATmega168__)  || defined(__AVR_ATmega328P__)while(EECR & (1<<EEPE));EEAR = (uint16_t)(void *)address.word;EECR |= (1<<EERE);putch(EEDR);
#elseputch(eeprom_read_byte((void *)address.word));
#endifaddress.word++;}else {if (!flags.rampz) putch(pgm_read_byte_near(address.word));
#if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__)else putch(pgm_read_byte_far(address.word + 0x10000));// Hmmmm, yuck  FIXME when m256 arrvies
#endifaddress.word++;}}putch(0x10);}}/* Get device signature bytes  */else if(ch=='u') {if (getch() == ' ') {putch(0x14);putch(SIG1);putch(SIG2);putch(SIG3);putch(0x10);} else {if (++error_count == MAX_ERROR_COUNT)app_start();}}/* Read oscillator calibration byte */else if(ch=='v') {byte_response(0x00);}#if defined MONITOR /* here come the extended monitor commands by Erik Lins *//* check for three times exclamation mark pressed */else if(ch=='!') {ch = getch();if(ch=='!') {ch = getch();if(ch=='!') {PGM_P welcome = "";
#if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__)uint16_t extaddr;
#endifuint8_t addrl, addrh;#ifdef CRUMB128welcome = "ATmegaBOOT / Crumb128 - (C) J.P.Kyle, E.Lins - 050815\n\r";
#elif defined PROBOMEGA128welcome = "ATmegaBOOT / PROBOmega128 - (C) J.P.Kyle, E.Lins - 050815\n\r";
#elif defined SAVVY128welcome = "ATmegaBOOT / Savvy128 - (C) J.P.Kyle, E.Lins - 050815\n\r";
#elif defined __AVR_ATmega1280__ welcome = "ATmegaBOOT / Arduino Mega - (C) Arduino LLC - 090930\n\r";
#endif/* turn on LED */LED_DDR |= _BV(LED);LED_PORT &= ~_BV(LED);/* print a welcome message and command overview */for(i=0; welcome[i] != '\0'; ++i) {putch(welcome[i]);}/* test for valid commands */for(;;) {putch('\n');putch('\r');putch(':');putch(' ');ch = getch();putch(ch);/* toggle LED */if(ch == 't') {if(bit_is_set(LED_PIN,LED)) {LED_PORT &= ~_BV(LED);putch('1');} else {LED_PORT |= _BV(LED);putch('0');}} /* read byte from address */else if(ch == 'r') {ch = getch(); putch(ch);addrh = gethex();addrl = gethex();putch('=');ch = *(uint8_t *)((addrh << 8) + addrl);puthex(ch);}/* write a byte to address  */else if(ch == 'w') {ch = getch(); putch(ch);addrh = gethex();addrl = gethex();ch = getch(); putch(ch);ch = gethex();*(uint8_t *)((addrh << 8) + addrl) = ch;}/* read from uart and echo back */else if(ch == 'u') {for(;;) {putch(getch());}}
#if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__)/* external bus loop  */else if(ch == 'b') {putch('b');putch('u');putch('s');MCUCR = 0x80;XMCRA = 0;XMCRB = 0;extaddr = 0x1100;for(;;) {ch = *(volatile uint8_t *)extaddr;if(++extaddr == 0) {extaddr = 0x1100;}}}
#endifelse if(ch == 'j') {app_start();}} /* end of monitor functions */}}}/* end of monitor */
#endifelse if (++error_count == MAX_ERROR_COUNT) {app_start();}} /* end of forever loop */}char gethexnib(void) {char a;a = getch(); putch(a);if(a >= 'a') {return (a - 'a' + 0x0a);} else if(a >= '0') {return(a - '0');}return a;
}char gethex(void) {return (gethexnib() << 4) + gethexnib();
}void puthex(char ch) {char ah;ah = ch >> 4;if(ah >= 0x0a) {ah = ah - 0x0a + 'a';} else {ah += '0';}ch &= 0x0f;if(ch >= 0x0a) {ch = ch - 0x0a + 'a';} else {ch += '0';}putch(ah);putch(ch);
}void putch(char ch)
{
#if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__)if(bootuart == 1) {while (!(UCSR0A & _BV(UDRE0)));UDR0 = ch;}else if (bootuart == 2) {while (!(UCSR1A & _BV(UDRE1)));UDR1 = ch;}
#elif defined(__AVR_ATmega168__)  || defined(__AVR_ATmega328P__)while (!(UCSR0A & _BV(UDRE0)));UDR0 = ch;
#else/* m8,16,32,169,8515,8535,163 */while (!(UCSRA & _BV(UDRE)));UDR = ch;
#endif
}char getch(void)
{
#if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__)uint32_t count = 0;if(bootuart == 1) {while(!(UCSR0A & _BV(RXC0))) {/* 20060803 DojoCorp:: Addon coming from the previous Bootloader*/               /* HACKME:: here is a good place to count times*/count++;if (count > MAX_TIME_COUNT)app_start();}return UDR0;}else if(bootuart == 2) {while(!(UCSR1A & _BV(RXC1))) {/* 20060803 DojoCorp:: Addon coming from the previous Bootloader*/               /* HACKME:: here is a good place to count times*/count++;if (count > MAX_TIME_COUNT)app_start();}return UDR1;}return 0;
#elif defined(__AVR_ATmega168__)  || defined(__AVR_ATmega328P__)uint32_t count = 0;while(!(UCSR0A & _BV(RXC0))){/* 20060803 DojoCorp:: Addon coming from the previous Bootloader*/               /* HACKME:: here is a good place to count times*/count++;if (count > MAX_TIME_COUNT)app_start();}return UDR0;
#else/* m8,16,32,169,8515,8535,163 */uint32_t count = 0;while(!(UCSRA & _BV(RXC))){/* 20060803 DojoCorp:: Addon coming from the previous Bootloader*/               /* HACKME:: here is a good place to count times*/count++;if (count > MAX_TIME_COUNT)app_start();}return UDR;
#endif
}void getNch(uint8_t count)
{while(count--) {
#if defined(__AVR_ATmega128__) || defined(__AVR_ATmega1280__)if(bootuart == 1) {while(!(UCSR0A & _BV(RXC0)));UDR0;} else if(bootuart == 2) {while(!(UCSR1A & _BV(RXC1)));UDR1;}
#elif defined(__AVR_ATmega168__)  || defined(__AVR_ATmega328P__)getch();
#else/* m8,16,32,169,8515,8535,163 *//* 20060803 DojoCorp:: Addon coming from the previous Bootloader*/               //while(!(UCSRA & _BV(RXC)));//UDR;getch(); // need to handle time out
#endif		}
}void byte_response(uint8_t val)
{if (getch() == ' ') {putch(0x14);putch(val);putch(0x10);} else {if (++error_count == MAX_ERROR_COUNT)app_start();}
}void nothing_response(void)
{if (getch() == ' ') {putch(0x14);putch(0x10);} else {if (++error_count == MAX_ERROR_COUNT)app_start();}
}void flash_led(uint8_t count)
{while (count--) {LED_PORT |= _BV(LED);_delay_ms(100);LED_PORT &= ~_BV(LED);_delay_ms(100);}
}/* end of file ATmegaBOOT.c */


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/255324.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MapReduce入门2-流量监控

3、流量监控汇总&#xff08;使用LongWritable实现&#xff09; hdfs文件路径&#xff1a;/tmp/flow.txt 查看文件内容&#xff1a; 13770759991 50 100 25 400 13770759991 800 600 500 100 13770759992 400 300 250 1400 13770759992 800 1200 600 900字符串含义&#xff1a;…

【fiddler学习问题记录】——手机端证书下载页打不开、无法将此证书安装(已解决)

目录 1、手机端下载页打不开 解决方法1&#xff09;电脑端——将网络设置成公用&#xff08;亲测有效&#xff09; 解决方法2&#xff09;手机端将fiddler设置为信任应用&#xff0c;不被拦截 &#xff08;未试&#xff09; 2、无法将此证书安装 方法一&#xff1a;修改证书…

舵机的原理和控制

控制信号由接收机的通道进入信号调制芯片&#xff0c;获得直流偏置电压。它内部有一个基准电路&#xff0c;产生周期为20ms&#xff0c;宽度为1.5ms的基准信号&#xff0c;将获得的直流偏置电压与电位器的电压比较&#xff0c;获得电压差输出。最后&#xff0c;电压差的正负输出…

HDFS清理坏块

报错 Failed with exception java.io.IOException:org.apache.hadoop.hdfs.BlockMissingException: Could not obtain block: BP-1921057509-192.168.57.129-1517160177567:blk_1073741930_1106 file/user/hive/warehouse/db_hive.db/student/student.txt Time taken: 0.104 se…

如何在PowerDesigner将PDM导出生成WORD文档或者html文件

a) 使用PowerDesigner打开pdm文件 b) 点击Report Temlates 制作模板 点击PowerDesigner菜单栏“Report” -> “Report Templates” c) 选择模板数据项 完成步骤a&#xff09;&#xff0c;得到如下界面&#xff0c;左右2个区&#xff0c;Aavailable区…

【软件测试】——基础篇(软件测试技术体系、过程管理)

目录 软件测试技术体系 软件测试过程管理​编辑 接口测试用例设计 手机端测试流程​编辑 软件测试技术体系 软件测试过程管理 接口测试用例设计 手机端测试流程

小米出招黑科技,5S或成全球首款”Under glass“指纹识别手机

这一次&#xff0c;小米PK苹果&#xff0c;小米胜。 不得不说&#xff0c;最近的手机圈真是热闹&#xff0c;继三星Note 7爆炸、苹果iPhone 7发布一度成为新闻热点之后&#xff0c;小米又来暗戳戳地抢风头了。 最近小米即将发布的两款新旗舰消息扎堆&#xff0c;其中基本已经确…

sql中实现取得某字段中数字值

ALTER function [dbo].[GetNum](a nvarchar(4000)) returns nvarchar(4000) as begin while patindex(%[^0-9]%,a)>0 begin set astuff(a,patindex(%[^0-9]%,a),1,) end--select a --299 return a end 例如: 转载于:https://www.cnblogs.com/fish-ycq/p/6433562.ht…

C语言条件编译及编译预处理阶段

一、C语言由源代码生成的各阶段如下&#xff1a; C源程序&#xff0d;>编译预处理&#xff0d;>编译&#xff0d;>优化程序&#xff0d;>汇编程序&#xff0d;>链接程序&#xff0d;>可执行文件其中 编译预处理阶段&#xff0c;读取c源程序&#xff0c;对其中…

网上书店 买方数据库

买方表 属性 字段名 类型 键值 是否空 用户ID UserId char(5) 主键 用户名称 UserName nvarchar(50) 用户密码 UserPwd nvarchar(50) 用户真实姓名 UserRealName nvarchar(50) 用户地址 UserAddress nvarchar(100) …

Web开发模式(MVC设计模式)

1.MVC&#xff1a;(Model-View-Controller)操作流程 显示层View:主要负责接收Servlet传递的内容&#xff0c;并调用JavaBean把内容显示给用户。 控制层Controller:负责所有的用户请求参数&#xff0c;判断请求参数是否合法&#xff0c;根据请求方式调用JavaBean进行处理&#x…

Arduino IDE 配置文件

最近学习Arduino。 Arduino开源硬件和Arduino IDE是一个很容易上手的系统。 目前arduino已经支持很多种板类型&#xff0c;甚至已经支持了部分arm芯片。比如arduino ng、arduino uno、arduino mini、pro mini等。但是大多数情况&#xff0c;都是使用的atmega8/at…

vue封装axios接口

一、安装axios axios安装命令&#xff1a;cnpm install axios 二、在文件中引用axios 一开始我是放在src下的main.js这个文件里面&#xff0c;后来发现mounted钩子读取接口方法为undefined&#xff0c;百度了才发现是vue生命周期的原因&#xff0c;最好的解决办法是把axios单独…

编写Arduino支持的C++类库

以下为摘抄的例子&#xff0c;已经亲自验证过&#xff0c;例子是正确的 我们在上一讲中实现了一个TN901红外温度传感器51程序到Arduino程序的转换&#xff0c;如果代码越来越多这样程序的可维护性会随之降低&#xff0c;也不适合团度开发。我们应该把常用的文件封装成C库&#…

【机器学习实战】——常见函数积累

目录 第二章 k近邻算法 1、array.sum(axies 1) : 2、array.argsort(axies0/1) 3、array.tile(mat,(m,n)) 4、dict.get(key,value) 5、sorted函数 6、string.strip()函数 7、string.split() 8、scatter&#xff08;&#xff09;函数 9、min()&max() 10、enumera…

安装oracle 11g 客户端,检查过程中报物理内存不足的解决

今早接到同事电话&#xff0c;说安装oracle 11g客户端的时候&#xff0c;在检查先决条件的时候&#xff0c;报错&#xff0c;说内存不足&#xff0c;但是本机的内存是2G&#xff0c;肯定够用&#xff1a;如图&#xff1a; 找了一圈&#xff0c;原来Oracle执行先决条件检查是依赖…

Codeforces Round #401 (Div. 2) D. Cloud of Hashtags

题目链接&#xff1a;D. Cloud of Hashtags 题意&#xff1a; 给你n个字符串&#xff0c;让你删后缀&#xff0c;使得这些字符串按字典序排列&#xff0c;要求是删除的后缀最少 题解&#xff1a; 由于n比较大&#xff0c;我们可以将全部的字符串存在一个数组里面&#xff0c;然…

史陶比尔机器人的 LLI (Low Level Interface)

史陶比尔机器人的 LLI &#xff08;Low Level Interface&#xff09; 史陶比尔机器人拥有 Low Level Interface (LLI)接口选项. 在CS8C控制器的时代&#xff0c;LLI 接口仍然可用。这是一个选项接口。.这是除了VAL3编程语言之外的替代操作系统。通过C程序替代你的程序。 这里的…

HALCON示例程序check_bottle_crate.hdev啤酒箱内酒瓶数检测

HALCON示例程序check_bottle_crate.hdev啤酒箱内酒瓶数检测 示例程序源码&#xff08;加注释&#xff09; 获取系统关于“空白区域储存的设置” get_system (‘store_empty_region’, StoreEmptyRegion)系统“空白区域储存”设置为 ‘false’ set_system (‘store_empty_regi…

单片机平台的最小偏差圆弧插补算法

在CNC机床的G代码中&#xff0c;最常见的有G0、G1、G2、G3代码&#xff0c;分别表示直线和圆弧插补&#xff0c;直线插补对于单片机来说&#xff0c;比较容易实现&#xff0c;只需要将位移增量转换为脉冲增量然后输出给步进电机就可以了&#xff0c;但对于圆弧插补&#xff0c;…