对X264/FFMPEG架构探讨---感觉不错

 

3. FFMPEG架构分析

FFMPEG是目前被应用最广泛的编解码软件库,支持多种流行的编解码器,它是C语言实现的,不仅被集成到各种PC软件,也经常被移植到多种嵌入式设备中。使用面向对象的办法来设想这样一个编解码库,首先让人想到的是构造各种编解码器的类,然后对于它们的抽象基类确定运行数据流的规则,根据算法转换输入输出对象。

在实际的代码,将这些编解码器分成encoder/decoder,muxer/demuxer和device三种对象,分别对应于编解码,输入输出格式和设备。在main函数的开始,就是初始化这三类对象。在avcodec_register_all中,很多编解码器被注册,包括视频的H.264解码器和X264编码器等,

REGISTER_DECODER (H264, h264);
REGISTER_ENCODER (LIBX264, libx264);

找到相关的宏代码如下

#define REGISTER_ENCODER(X,x) { /
          extern AVCodec x##_encoder; /
          if(CONFIG_##X##_ENCODER)  avcodec_register(&x##_encoder); }
#define REGISTER_DECODER(X,x) { /
          extern AVCodec x##_decoder; /
          if(CONFIG_##X##_DECODER)  avcodec_register(&x##_decoder); }

这样就实际在代码中根据CONFIG_##X##_ENCODER这样的编译选项来注册libx264_encoder和h264_decoder,注册的过程发生在avcodec_register(AVCodec *codec)函数中,实际上就是向全局链表first_avcodec中加入libx264_encoder、h264_decoder特定的编解码器,输入参数AVCodec是一个结构体,可以理解为编解码器的基类,其中不仅包含了名称,id等属性,而且包含了如下函数指针,让每个具体的编解码器扩展类实现。

    int (*init)(AVCodecContext *);
    int (*encode)(AVCodecContext *, uint8_t *buf, int buf_size, void *data);
    int (*close)(AVCodecContext *);
    int (*decode)(AVCodecContext *, void *outdata, int *outdata_size,
                  const uint8_t *buf, int buf_size);
    void (*flush)(AVCodecContext *);

继续追踪libx264,也就是X264的静态编码库,它在FFMPEG编译的时候被引入作为H.264编码器。在libx264.c中有如下代码

AVCodec libx264_encoder = {
    .name = "libx264",
    .type = CODEC_TYPE_VIDEO,
    .id = CODEC_ID_H264,
    .priv_data_size = sizeof(X264Context),
    .init = X264_init,
    .encode = X264_frame,
    .close = X264_close,
    .capabilities = CODEC_CAP_DELAY,
    .pix_fmts = (enum PixelFormat[]) { PIX_FMT_YUV420P, PIX_FMT_NONE },
    .long_name = NULL_IF_CONFIG_SMALL("libx264 H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10"),
};

这里具体对来自AVCodec得属性和方法赋值。其中
    .init = X264_init,
    .encode = X264_frame,
    .close = X264_close,
将函数指针指向了具体函数,这三个函数将使用libx264静态库中提供的API,也就是X264的主要接口函数进行具体实现。pix_fmts定义了所支持的输入格式,这里4:2:0
PIX_FMT_YUV420P,   ///< planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)

上面看到的X264Context封装了X264所需要的上下文管理数据,
typedef struct X264Context {
    x264_param_t params;
    x264_t *enc;
    x264_picture_t pic;
    AVFrame out_pic;
} X264Context;
它属于结构体AVCodecContext的void *priv_data变量,定义了每种编解码器私有的上下文属性,AVCodecContext也类似上下文基类一样,还提供其他表示屏幕解析率、量化范围等的上下文属性和rtp_callback等函数指针供编解码使用。

回到main函数,可以看到完成了各类编解码器,输入输出格式和设备注册以后,将进行上下文初始化和编解码参数读入,然后调用av_encode()函数进行具体的编解码工作。根据该函数的注释一路查看其过程:

1. 输入输出流初始化。
2. 根据输入输出流确定需要的编解码器,并初始化。
3. 写输出文件的各部分

 

重点关注一下step2和3,看看怎么利用前面分析的编解码器基类来实现多态。大概查看一下这段代码的关系,发现在FFMPEG里,可以用类图来表示大概的编解码器组合。

可以参考【3】来了解这些结构的含义(见附录)。在这里会调用一系列来自utils.c的函数,这里的avcodec_open()函数,在打开编解码器都会调用到,它将运行如下代码:
    avctx->codec = codec;
    avctx->codec_id = codec->id;
    avctx->frame_number = 0;
    if(avctx->codec->init){
        ret = avctx->codec->init(avctx);
进行具体适配的编解码器初始化,而这里的avctx->codec->init(avctx)就是调用AVCodec中函数指针定义的具体初始化函数,例如X264_init。

在avcodec_encode_video()和avcodec_encode_audio()被output_packet()调用进行音视频编码,将同样利用函数指针avctx->codec->encode()调用适配编码器的编码函数,如X264_frame进行具体工作。

从上面的分析,我们可以看到FFMPEG怎么利用面向对象来抽象编解码器行为,通过组合和继承关系具体化每个编解码器实体。设想要在FFMPEG中加入新的解码器H265,要做的事情如下:
1. 在config编译配置中加入CONFIG_H265_DECODER
2. 利用宏注册H265解码器
3. 定义AVCodec 265_decoder变量,初始化属性和函数指针
4. 利用解码器API具体化265_decoder的init等函数指针

完成以上步骤,就可以把新的解码器放入FFMPEG,外部的匹配和运行规则由基类的多态实现了。

4. X264架构分析

X264是一款从2004年有法国大学生发起的开源H.264编码器,对PC进行汇编级代码优化,舍弃了片组和多参考帧等性能效率比不高的功能来提高编码效率,它被FFMPEG作为引入的.264编码库,也被移植到很多DSP嵌入平台。前面第三节已经对FFMPEG中的X264进行举例分析,这里将继续结合X264框架加深相关内容的了解。

查看代码前,还是思考一下对于一款具体的编码器,怎么面向对象分析呢?对熵编码部分对不同算法的抽象,还有帧内或帧间编码各种估计算法的抽象,都可以作为类来构建。

在X264中,我们看到的对外API和上下文变量都声明在X264.h中,API函数中,关于辅助功能的函数在common.c中定义
void x264_picture_alloc( x264_picture_t *pic, int i_csp, int i_width, int i_height );
void x264_picture_clean( x264_picture_t *pic );
int x264_nal_encode( void *, int *, int b_annexeb, x264_nal_t *nal );
而编码功能函数定义在encoder.c
x264_t *x264_encoder_open   ( x264_param_t * );
int     x264_encoder_reconfig( x264_t *, x264_param_t * );
int     x264_encoder_headers( x264_t *, x264_nal_t **, int * );
int     x264_encoder_encode ( x264_t *, x264_nal_t **, int *, x264_picture_t *, x264_picture_t * );
void    x264_encoder_close  ( x264_t * );
在x264.c文件中,有程序的main函数,可以看作做API使用的例子,它也是通过调用X264.h中的API和上下文变量来实现实际功能。

X264最重要的记录上下文数据的结构体x264_t定义在common.h中,它包含了从线程控制变量到具体的SPS、PPS、量化矩阵、cabac上下文等所有的H.264编码相关变量。其中包含如下的结构体
    x264_predict_t      predict_16x16[4+3];
    x264_predict_t      predict_8x8c[4+3];
    x264_predict8x8_t   predict_8x8[9+3];
    x264_predict_t      predict_4x4[9+3];
    x264_predict_8x8_filter_t predict_8x8_filter;

    x264_pixel_function_t pixf;
    x264_mc_functions_t   mc;
    x264_dct_function_t   dctf;
    x264_zigzag_function_t zigzagf;
    x264_quant_function_t quantf;
    x264_deblock_function_t loopf;
跟踪查看可以看到它们或是一个函数指针,或是由函数指针组成的结构,这样的用法很想面向对象中的interface接口声明。这些函数指针将在x264_encoder_open()函数中被初始化,这里的初始化首先根据CPU的不同提供不同的函数实现代码段,很多与可能是汇编实现,以提高代码运行效率。其次把功能相似的函数集中管理,例如类似intra16的4种和intra4的九种预测函数都被用函数指针数组管理起来。

x264_encoder_encode()是负责编码的主要函数,而其内包含的x264_slice_write()负责片层一下的具体编码,包括了帧内和帧间宏块编码。在这里,cabac和cavlc的行为是根据h->param.b_cabac来区别的,分别运行x264_macroblock_write_cabac()和x264_macroblock_write_cavlc()来写码流,在这一部分,功能函数按文件定义归类,基本按照编码流程图运行,看起来更像面向过程的写法,在已经初始化了具体的函数指针,程序就一直按编码过程的逻辑实现。如果从整体架构来看,x264利用这种类似接口的形式实现了弱耦合和可重用,利用x264_t这个贯穿始终的上下文,实现信息封装和多态。

本文大概分析了FFMPEG/X264的代码架构,重点探讨用C语言来实现面向对象编码,虽不至于强行向C++靠拢,但是也各有实现特色,保证实用性。值得规划C语言软件项目所借鉴。 

 

【参考文献】

1.“用例子说明面向对象和面向过程的区别”
2. liyuming1978,“liyuming1978的专栏”
3. “FFMpeg框架代码阅读”

 

 

附录:节选自【3】

3. 当前muxer/demuxer的匹配
在FFmpeg的文件转换过程中,首先要做的就是根据传入文件和传出文件的后缀名[FIXME]匹配
合适的demuxer和muxer。匹配上的demuxer和muxer都保存在如下所示,定义在ffmpeg.c里的
全局变量file_iformat和file_oformat中:
    static AVInputFormat *file_iformat;
    static AVOutputFormat *file_oformat;

3.1 demuxer匹配
在libavformat/utils.c中的static AVInputFormat *av_probe_input_format2(
AVProbeData *pd, int is_opened, int *score_max)函数用途是根据传入的probe data数据
,依次调用每个demuxer的read_probe接口,来进行该demuxer是否和传入的文件内容匹配的
判断。其调用顺序如下:
void parse_options(int argc, char **argv, const OptionDef *options, 
          void (* parse_arg_function)(const char *));
    static void opt_input_file(const char *filename)
        int av_open_input_file(…… )
            AVInputFormat *av_probe_input_format(AVProbeData *pd, 
                                int is_opened)
                static AVInputFormat *av_probe_input_format2(……)
opt_input_file函数是在保存在const OptionDef options[]数组中,用于
void parse_options(int argc, char **argv, const OptionDef *options)中解析argv里的
“-i” 参数,也就是输入文件名时调用的。

3.2 muxer匹配
与demuxer的匹配不同,muxer的匹配是调用guess_format函数,根据main() 函数的argv里的
输出文件后缀名来进行的。
void parse_options(int argc, char **argv, const OptionDef *options, 
          void (* parse_arg_function)(const char *));
    void parse_arg_file(const char *filename)
        static void opt_output_file(const char *filename)
            AVOutputFormat *guess_format(const char *short_name, 
                            const char *filename,
                            const char *mime_type)

3.3 当前encoder/decoder的匹配
在main()函数中除了解析传入参数并初始化demuxer与muxer的parse_options( )函数以外,
其他的功能都是在av_encode( )函数里完成的。
在libavcodec/utils.c中有如下二个函数:
    AVCodec *avcodec_find_encoder(enum CodecID id)
    AVCodec *avcodec_find_decoder(enum CodecID id)
他们的功能就是根据传入的CodecID,找到匹配的encoder和decoder。

在av_encode( )函数的开头,首先初始化各个AVInputStream和AVOutputStream,然后分别调
用上述二个函数,并将匹配上的encoder与decoder分别保存在:
AVInputStream->AVStream *st->AVCodecContext *codec->struct AVCodec *codec与
AVOutputStream->AVStream *st->AVCodecContext *codec->struct AVCodec *codec变量。

4. 其他主要数据结构
4.1 AVFormatContext
AVFormatContext是FFMpeg格式转换过程中实现输入和输出功能、保存相关数据的主要结构。
每一个输入和输出文件,都在如下定义的指针数组全局变量中有对应的实体。
    static AVFormatContext *output_files[MAX_FILES];
    static AVFormatContext *input_files[MAX_FILES];
对于输入和输出,因为共用的是同一个结构体,所以需要分别对该结构中如下定义的iformat
或oformat成员赋值。
    struct AVInputFormat *iformat;
    struct AVOutputFormat *oformat;
对一个AVFormatContext来说,这二个成员不能同时有值,即一个AVFormatContext不能同时
含有demuxer和muxer。在main( )函数开头的parse_options( )函数中找到了匹配的muxer和
demuxer之后,根据传入的argv参数,初始化每个输入和输出的AVFormatContext结构,并保
存在相应的output_files和input_files指针数组中。在av_encode( )函数中,output_files
和input_files是作为函数参数传入后,在其他地方就没有用到了。

4.2 AVCodecContext
保存AVCodec指针和与codec相关数据,如video的width、height,audio的sample rate等。
AVCodecContext中的codec_type,codec_id二个变量对于encoder/decoder的匹配来说,最为
重要。
    enum CodecType codec_type;    /* see CODEC_TYPE_xxx */
    enum CodecID codec_id;        /* see CODEC_ID_xxx */

如上所示,codec_type保存的是CODEC_TYPE_VIDEO,CODEC_TYPE_AUDIO等媒体类型,
codec_id保存的是CODEC_ID_FLV1,CODEC_ID_VP6F等编码方式。

以支持flv格式为例,在前述的av_open_input_file(…… ) 函数中,匹配到正确的
AVInputFormat demuxer后,通过av_open_input_stream( )函数中调用AVInputFormat的
read_header接口来执行flvdec.c中的flv_read_header( )函数。在flv_read_header( )函数
内,根据文件头中的数据,创建相应的视频或音频AVStream,并设置AVStream中
AVCodecContext的正确的codec_type值。codec_id值是在解码过程中flv_read_packet( )函
数执行时根据每一个packet头中的数据来设置的。

4.3 AVStream
AVStream结构保存与数据流相关的编解码器,数据段等信息。比较重要的有如下二个成员:
    AVCodecContext *codec; /**< codec context */
    void *priv_data;
其中codec指针保存的就是上节所述的encoder或decoder结构。priv_data指针保存的是和具
体编解码流相关的数据,如下代码所示,在ASF的解码过程中,priv_data保存的就是
ASFStream结构的数据。
    AVStream *st;
    ASFStream *asf_st;  
    … …
    st->priv_data = asf_st;

4.4 AVInputStream/ AVOutputStream
根据输入和输出流的不同,前述的AVStream结构都是封装在AVInputStream和AVOutputStream
结构中,在av_encode( )函数中使用。AVInputStream中还保存的有与时间有关的信息。
AVOutputStream中还保存有与音视频同步等相关的信息。

4.5 AVPacket
AVPacket结构定义如下,其是用于保存读取的packet数据。
typedef struct AVPacket {
    int64_t pts;            ///< presentation time stamp in time_base units
    int64_t dts;            ///< decompression time stamp in time_base units
    uint8_t *data;
    int  size;
    int  stream_index;
    int  flags;
    int  duration;        ///< presentation duration in time_base units (0 if not available)
    void (*destruct)(struct AVPacket *);
    void *priv;
    int64_t pos;          ///< byte position in stream, -1 if unknown
} AVPacket;

在av_encode()函数中,调用AVInputFormat的
(*read_packet)(struct AVFormatContext *, AVPacket *pkt)接口,读取输入文件的一帧数
据保存在当前输入AVFormatContext的AVPacket成员中。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/254998.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何快糙好猛的使用Shiqi.Yu老师的公开人脸检测库(附源码)

前言 本次编写所用的库为于仕祺老师免费提供的人脸检测库。真心好用&#xff0c;识别率和识别速度完全不是Opencv自带的程序能够比拟的。将其配合Opencv的EigenFace算法&#xff0c;基本上可以形成一个小型的毕业设计。&#xff08;我是学机械的啊喂&#xff01;&#xff01;&a…

Maven理解

2019独角兽企业重金招聘Python工程师标准>>> Maven概念 参考maven入门 冰河winner Maven作为一个构建工具&#xff0c;不仅能帮我们自动化构建&#xff0c;还能够抽象构建过程&#xff0c;提供构建任务实现;它跨平台&#xff0c;对外提供了一致的操作接口&#xff0…

C# FileSystemWatcher 在监控文件夹和文件时的用法

********************************************************************************** 第一个文章: ********************************************************************************** 概述 最近学习FileSystemWatcher的用法,它主要是监控一个文件夹,当文件夹内的文件要…

比微软kinect更强的视频跟踪算法--TLD跟踪算法介绍

TLD (Tracking-Learning-Detection)是英国萨里大学的一个捷克籍博士生在其攻读博士学位期间提出的一种新的单目标长时间&#xff08; long term tracking &#xff09;跟踪算法。该算法与传统跟踪算法的显著区别在于将传统的跟踪算法和传统的检测算法相结合来解决被跟踪目标在被…

一张图看懂混合云数据同步一站式解决方案

摘要&#xff1a; 针对不同数据库间数据实时同步难的问题&#xff0c;日前&#xff0c;阿里云宣布推出混合云数据同步一站式解决方案&#xff0c;便于广大云产品用户实现实时数据同步的混合云支持&#xff0c;更为方便的是&#xff0c;该功能让本地Oracle也能实现与云上数据库的…

分布式性能测试

Jmeter分布式测试 在使用Jmeter进行性能测试时&#xff0c;如果并发数比较大(比如最近项目需要支持1000并发)&#xff0c;单台电脑的配置(CPU和内存)可能无法支持&#xff0c;这时可以使用Jmeter提供的分布式测试的功能。 一、Jmeter分布式执行原理&#xff1a; 1、Jmeter分布式…

socket,TCP/IP的理解(转)

TCP/IP 要想理解socket首先得熟悉一下TCP/IP协议族&#xff0c; TCP/IP&#xff08;Transmission Control Protocol/Internet Protocol&#xff09;即传输控制协议/网间协议&#xff0c;定义了主机如何连入因特网及数据如何再它们之间传输的标准&#xff0c; 从字面意思来看TCP…

最小中间和

题目描述 给定一个正整数序列a1,a2,...,an&#xff0c;不改变序列中的每个元素在序列中的位置&#xff0c;把它们相加&#xff0c;并用括号记每次加法所得的和&#xff0c;称为中间和。编程&#xff1a;找到一种方法&#xff0c;添上n-1对括号&#xff0c;加法运算依括号顺序进…

双目匹配与视差计算

立体匹配主要是通过找出每对图像间的对应关系&#xff0c;根据三角测量原理&#xff0c;得到视差图&#xff1b;在获得了视差信息后&#xff0c;根据投影模型很容易地可以得到原始图像的深度信息和三维信息。立体匹配技术被普遍认为是立体视觉中最困难也是最关键的问题&#xf…

概率论与数理统计-ch8-假设检验

1、假设检验 在总体的分布函数未知或只知其形式、不知其参数的情况下&#xff0c;为了推断总体的某些未知特性&#xff0c;提出关于总体的假设&#xff0c;然后根据样本数据对提出的假设做出接受或拒绝的决策。 步骤&#xff1a; 提出原假设--确定建立在样本基础上的检验统计量…

简单实现仿某宝地址选择三级联动样式

内容简单介绍实现步骤第一步 找准方向第二步 开干总结还是题外话内容简单介绍 简单看一下须要实现的效果&#xff0c;如图&#xff1a; 实现步骤 第一步 找准方向 事实上就是想好要用recyclerview而不是listview。假设要问我recyclerview是什么的话。。 第二步 开干 首先须要先…

opencv双目测距实现

虽然最近注意力已经不可遏制地被神经科学、大脑记忆机制和各种毕业活动吸引过去了&#xff0c;但是还是觉得有必要把这段时间双目视觉方面的进展总结一下。毕竟从上一篇博文发表之后&#xff0c;很多同仁发E-mail来与我讨论&#xff0c;很多原来的疑团&#xff0c;也在讨论和一…

Block的循环引用详解

1.首先我们创建了一个网络请求工具类 然后storyboard里面去创建了一个导航控制器 并且把它设置为初始控制器 然后拖入一个bar button &#xff0d;&#xff0d;show&#xff0d;&#xff0d;到自带的控制器 这个时候运行代码的结果是 x 显然这个时候没有造成循环引用 为什…

计算机视觉和图形学中的摄像机内参数矩阵详解

在计算机视觉和图形学中都有“摄像机内参数矩阵”这个概念&#xff0c;其含义大致相同&#xff0c;但在实际使用过程中&#xff0c;这两个矩阵却相差甚远。在增强现实中&#xff0c;为了使计算机绘制的虚拟物体和真实环境图像对其&#xff0c;需要令虚拟摄像机的内参数和真实摄…

数据库基础杂记

sql,Structured Query Language结构化查询语言。SQL 是一门 ANSI(美国国家标准局) 的标准计算机语言&#xff0c;用来访问和操作数据库系统。SQL 语句用于取回和更新数据库中的数据。SQL 可与数据库程序协同工作&#xff0c;比如 MS Access、DB2、Informix、MS SQL Server、Ora…

基于RBGD的mapping

最近学习RGBD的SLAM&#xff0c;收集了两个RGBD的mapping的开源工具包 1.RGBDSlam2 a.安装方法&#xff1a; #准备工作空间 source /opt/ros/indigo/setup.bash mkdir -p ~/rgbdslam_catkin_ws/src cd ~/rgbdslam_catkin_ws/src catkin_init_workspace cd ~/rgbdslam_catkin_ws…

【瓜分5000元奖金】Wannafly挑战赛13

链接&#xff1a;https://www.nowcoder.com/acm/contest/80/A来源&#xff1a;牛客网 zzy的小号 时间限制&#xff1a;C/C 1秒&#xff0c;其他语言2秒空间限制&#xff1a;C/C 262144K&#xff0c;其他语言524288K64bit IO Format: %lld题目描述 学家zzy根据字体的特点&#…

20145217《网络对抗》 恶意代码分析

20145217《网络对抗》 免杀原理与实践 知识点学习总结 进行恶意代码分析之前必须具备以下知识&#xff1a;编程、汇编/反汇编、网络基本知识、PE文件结构以及一些常用行为分析软件。 一、在一个已经感染了恶意代码的机器上如何找到病毒文件&#xff1f; 找到恶意代码才能对其分…

cvRemap 对图像进行普通几何变换

cvRemap 对图像进行普通几何变换 函数 cvRemap 利用下面指定的矩阵变换输入图像:   dst(x,y)<-src(mapx(x,y),mapy(x,y))   与其它几何变换类似&#xff0c;可以使用一些插值方法&#xff08;由用户指定&#xff0c;同cvResize&#xff09;来计算非整数坐标的像素值 vo…

一篇需要膜拜的文篇--Javascript异步编程模型进化(转)

要我能用得这么熟&#xff0c; 那前端出师了哈。 http://foio.github.io/javascript-asyn-pattern/ 改天一个一个亲测一下。 Javascript语言是单线程的&#xff0c;没有复杂的同步互斥&#xff1b;但是&#xff0c;这并没有限制它的使用范围&#xff1b;相反&#xff0c;借助于…