LA@行列式性质

文章目录

    • 行列式性质🎈
      • 转置不变性质
      • 交换性质
        • 多重交换@移动(抽出插入)👺
      • 因子提取性质
      • 拆和性质
      • 倍加性质
    • 手算行列式的主要方法
      • 原理:任何行列式都可以化为三角行列式

行列式性质🎈

  • 设行列式 ∣ A ∣ = d e t ( a i j ) |A|=\mathrm{det}(a_{ij}) A=det(aij),行列式性质主要有5条

转置不变性质

  • 行列式与它的转置行列式相等

  • 或说经过转置,行列式的值不变(方阵 A A A转置前后取行列式的值相等)

    • ∣ A T ∣ = ∣ A ∣ |A^T|=|A| AT=A

    • n n n阶方阵 B = A T B=A^T B=AT的内容构成: b i j = a j i b_{ij}=a_{ji} bij=aji, i , j = 1 , 2 , ⋯ , n i,j=1,2,\cdots,n i,j=1,2,,n

  • 行列式的行性质和列性质是等同的

    • 假设方阵 A , B A,B A,B满足: A A A= B T B^T BT,由于转置不改变行列式的值可知,可以通过研究转置矩阵来代替被转置矩阵,从而行性质和列性质就相互等同.

交换性质

  • 两行交换位置,行列式值取反 exchange ( ∣ A ∣ , i , j ) = − ∣ A ∣ , i ≠ j \text{exchange}(|A|,i,j)=-|A|,i\neq{j} exchange(A,i,j)=A,i=j
    • 如果某个行列式存在有两行相同,那么|A|=0
      • 设A存在2行相同的行(分别记为行i,j),这种情况下,将行i,j对调后行列式记为|B|
      • 方阵A,B满足关系:B=A,即 ∣ B ∣ = ∣ A ∣ |B|=|A| B=A
      • 而上一条性质告诉我们,交换了行列式中的任意2行,结果都要取反; ∣ B ∣ = − ∣ A ∣ |B|=-|A| B=A
      • 综上, ∣ B ∣ = ∣ A ∣ = − ∣ A ∣ |B|=|A|=-|A| B=A=A,从而 ∣ A ∣ = 0 |A|=0 A=0

多重交换@移动(抽出插入)👺

  • 假设某个操作将行列式的第i行抽出,并插入到第j行的位置( j ≠ i j\neq{i} j=i)

  • 这个操作可以通过执行若干次相邻行之间的位置交换实现

  • 例如,可以把副对角三角行列式执行若干次行交换得到主对角三角行列式

    • ∣ λ n ⋮ λ 2 λ 1 ∣ → ∣ λ 1 λ 2 ⋮ λ n ∣ \begin{vmatrix} {} & {} & {} & {{\lambda _n}} \cr {} & {} & {{\vdots}} & {} \cr {} & {{\lambda _2}} & {} & {} \cr {{\lambda _1}} & {} & {} & {} \cr \end{vmatrix} \to \begin{vmatrix} {{\lambda _1}} & {} & {} & {} \cr {} & {{\lambda _2}} & {} & {} \cr {} & {} & {{\vdots}} & {} \cr {} & {} & {} & {{\lambda_n}} \cr \end{vmatrix} λ1λ2λn λ1λ2λn

    • 将第 n n n行和前 n − 1 n-1 n1行依次交换位置(第n行逐次上升,执行 n − 1 n-1 n1次交换后变成第一行,原先其他所有行的行号减1),此时的行列式记为 ∣ A 1 ∣ |A_1| A1

      • ∣ λ 1 λ n ⋮ λ 2 ∣ \begin{vmatrix} {{\lambda _1}} & {} & {} & {} \cr {} & {} & {} & {{\lambda _n}} \cr {} & {} & {{\vdots}} & {} \cr {} & {{\lambda _2}} & {} & {} \cr \end{vmatrix} λ1λ2λn
    • 操作对象变为 A 1 A_1 A1,将 A 1 A_1 A1的最后一行( λ 2 \lambda_2 λ2)通过逐行交换,使其行号变为2,得到 ∣ A 2 ∣ |A_2| A2行行列式

    • 反复操作( n − 1 n-1 n1)次,最后得到的主对角线三角行列式为 ∣ A n − 1 ∣ |A_{n-1}| An1,简记为 ∣ A ′ ∣ |A'| A

      • n − 1 n-1 n1次:对于 n , n − 1 , ⋯ , 2 , 1 n,n-1,\cdots,2,1 n,n1,,2,1n个逆序的数,需要排序n-1次才能从逆序变为正序
      • 注意n个数中的n-1个数如果都处在正序结果的正确位置上,那么剩下一个必然也处在正确位置上,所以排序n-1次而不是n次(冒泡排序)
    • ∣ A ′ ∣ = ( − 1 ) ∑ i = 1 n − 1 i ∣ A ∣ = ( − 1 ) 1 2 n ( n − 1 ) ∣ A ∣ |A'|=(-1)^{\sum_{i=1}^{n-1}i}|A|=(-1)^{\frac{1}{2}n(n-1)}|A| A=(1)i=1n1iA=(1)21n(n1)A

因子提取性质

  • 行列式的某行(记为第i行)中的每个元素具有公因子k,则k可以提取到行列式之外作为行列式因子

    • ∣ ⋮ ⋮ ⋯ ⋮ k a i 1 k a i 2 ⋯ k a i n ⋮ ⋮ ⋯ ⋮ ∣ = k ∣ ⋮ ⋮ ⋯ ⋮ a i 1 a i 2 ⋯ a i n ⋮ ⋮ ⋯ ⋮ ∣ \begin{vmatrix} \vdots & \vdots & \cdots & \vdots\\ ka_{i1}& ka_{i2}& \cdots & ka_{in} \\ \vdots & \vdots & \cdots & \vdots \\ \end{vmatrix} =k\begin{vmatrix} \vdots & \vdots & \cdots & \vdots\\ a_{i1}& a_{i2}& \cdots & a_{in} \\ \vdots & \vdots & \cdots & \vdots \\ \end{vmatrix} kai1kai2kain =k ai1ai2ain

    • 某行的元素全为0,则行列式 ∣ A ∣ = 0 |A|=0 A=0

    • 某两行成比例关系,那么 ∣ A ∣ = 0 |A|=0 A=0

      • 因为根据公因子提取性质,假设成比例的两行的比例系数为k,那么提取k后,行列式内出现相同的2行,由上述性质可知,行列式的值为0

拆和性质

  • 如果行列式的第i行每个元素拆分为两个元素之和

    • a i , j = b i , j + c i , j a_{i,j}=b_{i,j}+c_{i,j} ai,j=bi,j+ci,j

    • 则行列式|A|可以拆成两个行列式之和

      • ∣ A ∣ = ∣ A b ∣ + ∣ A c ∣ |A|=|A_{b}|+|A_{c}| A=Ab+Ac
      • ∣ A b ∣ 和 ∣ A c ∣ |A_b|和|A_c| AbAc分别表示|A|的第i行被替换为行b和行c后的行列式
    • ∣ a 11 + b 11 a 12 + b 12 ⋯ a 1 n + b 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ∣ = ∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ∣ + ∣ b 11 b 12 ⋯ b 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ∣ \begin{vmatrix} a_{11}+b_{11}& a_{12}+b_{12}& \cdots & a_{1n}+b_{1n} \\ a_{21}& a_{22}& \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}& a_{n2}& \cdots & a_{nn} \end{vmatrix} =\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21}& a_{22}& \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}& a_{n2}& \cdots & a_{nn} \end{vmatrix} +\begin{vmatrix} b_{11}& b_{12}& \cdots & b_{1n} \\ a_{21}& a_{22}& \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}& a_{n2}& \cdots & a_{nn} \end{vmatrix} a11+b11a21an1a12+b12a22an2a1n+b1na2nann = a11a21an1a12a22an2a1na2nann + b11a21an1b12a22an2b1na2nann

倍加性质

  • 把第i行的k倍加到第j行列式,行列式的值不变

    • i ≠ j i\neq{j} i=j

    • k ∈ R k\in{R} kR

    • ∣ ⋮ ⋮ ⋯ ⋮ a j 1 + k a i 1 a j 2 + k a i 2 a j n + k a i n ⋮ ⋮ ⋯ ⋮ ∣ = ∣ ⋮ ⋮ ⋯ ⋮ a j 1 a j 2 a j n ⋮ ⋮ ⋯ ⋮ ∣ , ( i ≠ j ) \begin{vmatrix} \vdots & \vdots & \cdots & \vdots\\ a_{j1}+ka_{i1}& a_{j2}+ka_{i2}& & a_{jn}+ka_{in} \\ \vdots & \vdots & \cdots & \vdots \\ \end{vmatrix} =\begin{vmatrix} \vdots & \vdots & \cdots & \vdots\\ a_{j1} & a_{j2} & & a_{jn} \\ \vdots & \vdots & \cdots & \vdots \\ \end{vmatrix},(i\neq{j}) aj1+kai1aj2+kai2ajn+kain = aj1aj2ajn ,(i=j)

  • 因为,根据上一条性质:

  • ∣ ⋮ ⋮ ⋯ ⋮ a i 1 a i 2 a i n ⋮ ⋮ ⋯ ⋮ a j 1 + k a i 1 a j 2 + k a i 2 a j n + k a i n ⋮ ⋮ ⋯ ⋮ ∣ = ∣ ⋮ ⋮ ⋯ ⋮ a i 1 a i 2 a i n ⋮ ⋮ ⋯ ⋮ a j 1 a j 2 a j n ⋮ ⋮ ⋯ ⋮ ∣ + ∣ ⋮ ⋮ ⋯ ⋮ a i 1 a i 2 a i n ⋮ ⋮ ⋯ ⋮ k a i 1 k a i 2 k a i n ⋮ ⋮ ⋯ ⋮ ∣ = ∣ A ∣ + 0 = ∣ A ∣ \\ \begin{vmatrix} \vdots & \vdots & \cdots & \vdots\\ a_{i1}& a_{i2}& & a_{in} \\ \vdots & \vdots & \cdots & \vdots\\ a_{j1}+ka_{i1}& a_{j2}+ka_{i2}& & a_{jn}+ka_{in} \\ \vdots & \vdots & \cdots & \vdots \\ \end{vmatrix}\\ =\begin{vmatrix} \vdots & \vdots & \cdots & \vdots\\ a_{i1}& a_{i2}& & a_{in} \\ \vdots & \vdots & \cdots & \vdots\\ a_{j1}& a_{j2}& & a_{jn} \\ \vdots & \vdots & \cdots & \vdots \\ \end{vmatrix} +\begin{vmatrix} \vdots & \vdots & \cdots & \vdots\\ a_{i1}& a_{i2}& & a_{in} \\ \vdots & \vdots & \cdots & \vdots\\ ka_{i1}& ka_{i2}& & ka_{in} \\ \vdots & \vdots & \cdots & \vdots \\ \end{vmatrix} \\ =|A|+0=|A| ai1aj1+kai1ai2aj2+kai2ainajn+kain = ai1aj1ai2aj2ainajn + ai1kai1ai2kai2ainkain =A+0=A

  • 上述性质对于列同样成立🎈

  • 用上述性质化简计算行列式时,可以行列混用

  • 但是在矩阵(方阵)初等变换中有类似的操作中,是模拟线性方程组高斯消元法的操作

    • 如果方程组E1: A x = b A\boldsymbol{x}=b Ax=b的某两个变量 x i , x j x_i,x_j xi,xj位置做交换(连同他们的系数一起),得到的方程组记为E2: A ′ x ′ = b ′ A'\boldsymbol{x'}=b' Ax=b,与变换前的方程组是同解的(但是 x i , x j x_i,x_j xi,xj相应的对调)

      • A x = b { ⋯ + a 1 i x i + ⋯ + a 1 j x j + ⋯ = b 1 , ⋯ + a 2 i x i + ⋯ + a 2 j x j + ⋯ = b 2 , ⋮ ⋯ + a n i x i + ⋯ + a n j x j + ⋯ = b n A\boldsymbol{x}=b \\ \left \{ \begin{aligned}{} \cdots+a_{1i} x_{i}+\cdots+a_{1j} x_{j}+\cdots&=b_{1}, \\ \cdots+a_{2i}x_{i}+\cdots+a_{2j} x_{j}+\cdots&=b_{2}, \\ &\vdots\\ \cdots+a_{ni} x_{i}+\cdots+a_{nj} x_{j}+\cdots&=b_{n} \end{aligned} \right. Ax=b +a1ixi++a1jxj++a2ixi++a2jxj++anixi++anjxj+=b1,=b2,=bn

      • { ⋯ + a 1 j x j + ⋯ + a 1 i x i + ⋯ = b 1 , ⋯ + a 2 j x j + ⋯ + a 2 i x i + ⋯ = b 2 , ⋮ ⋯ + a n j x j + ⋯ + a n i x i + ⋯ = b n A ′ x ′ = b \\ \left \{ \begin{aligned}{} \cdots+a_{1j} x_{j}+\cdots+a_{1 i} x_{i}+\cdots&=b_{1}, \\ \cdots+a_{2j}x_{j}+\cdots+a_{2 i} x_{i}+\cdots&=b_{2}, \\ &\vdots\\ \cdots+a_{nj} x_{j}+\cdots+a_{n i} x_{i}+\cdots&=b_{n} \end{aligned} \right. \\ A'\boldsymbol{x'}=b +a1jxj++a1ixi++a2jxj++a2ixi++anjxj++anixi+=b1,=b2,=bnAx=b

      • 上述两个方程组的等价性基于加法交换律

      • 从集合的角度来讲 x , x ′ \boldsymbol{x},\boldsymbol{x'} x,x中的元素构成的集合是等价的( s e t ( x ) = s e t ( x ′ ) set(\boldsymbol{x})=set(\boldsymbol{x'}) set(x)=set(x),只是顺序上有所不同 x ≠ x ′ \boldsymbol{x}\neq{\boldsymbol{x'}} x=x

    • 但是执行倍乘和倍加操作通常会导致方程组的解发生变化,

    • 如果系数矩阵的某两列发生交换

  • 例如,可以先将某两列交换,这可能使得行列式很容易化为上三角行列式

    • 将普通行列式等值变形为上三角行列式,往往使得首行的元素尽可能小,再逐列进行化0
      • 当第一列符合上三角行列式后,开始处理第二列,此时可以看做n-1阶的,右下角的行列式
      • 情况转化为了上一种情况,类似的手法
    • 也可通过按行/列展开降维

手算行列式的主要方法

原理:任何行列式都可以化为三角行列式

  • ∣ A ∣ n = ∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ∣ |A|_{n}= \begin{vmatrix} a_{11}& a_{12}& \cdots & a_{1n} \\ a_{21}& a_{22}& \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}& a_{n2}& \cdots & a_{nn} \end{vmatrix} An= a11a21an1a12a22an2a1na2nann

  • 以下三角为例

    • ∣ A ∣ → ∣ a 11 ′ a 21 ′ a 22 ′ ⋮ ⋮ ⋱ a n 1 ′ a n 2 ′ ⋯ a n n ′ ∣ |A|\to \begin{vmatrix} a_{11}'& & & \\ a_{21}'& a_{22}'& & \\ \vdots & \vdots & \ddots & \\ a_{n1}'& a_{n2}'& \cdots & a_{nn}' \end{vmatrix} A a11a21an1a22an2ann

    • ∣ A ∣ = ∏ i = 1 n a i i ′ |A|=\prod_{i=1}^{n}a_{ii}' A=i=1naii

  • 这个方法是计算行列式的重要方法,通常手算行列式就是采用这个方法👺

  • 假设n阶行列式 ∣ A ∣ |A| A的最后一行的最后一个元素( a n n a_{nn} ann)是非0元素

    • 如果不是,那么可以通过行调整把 a i n , i = 1 , 2 , ⋯ , n a_{in},i=1,2,\cdots,n ain,i=1,2,,n中满足 a i n ≠ 0 a_{in}\neq0 ain=0的任意一行调整到最后一行,使得 a n n ≠ 0 a_{nn}\neq{0} ann=0
      • 执行 r i − a i n a n n r n \huge{r_{i}-\frac{a_{in}}{a_{nn}}r_n} riannainrn,将各行的结果记为 r i ′ r_i' ri,此时 r i ′ r_i' ri的最后一个元素 a i n ′ a_{in}' ain= a i n − a i n a n n a n n = 0 a_{in}-\frac{a_{in}}{a_{nn}}a_{nn}=0 ainannainann=0, i = 1 , 2 , ⋯ , n − 1 i=1,2,\cdots,n-1 i=1,2,,n1
      • a 1 , n , ⋯ , a n − 1 , n a_{1,n},\cdots,a_{n-1,n} a1,n,,an1,n全为0( a n n a_{nn} ann正上方的元素全为0)
    • 如果 a 1 , n , ⋯ , a n − 1 , n a_{1,n},\cdots,a_{n-1,n} a1,n,,an1,n本身就全为0,那么更简单,直接处理前一列(并且这种情况下, ∣ A ∣ = 0 |A|=0 A=0)
  • 类似的,对于行列式的 1 , ⋯ , n − 1 1,\cdots,n-1 1,,n1行和列构成的 n − 1 n-1 n1阶行列式( ∣ A ∣ |A| A的余子式 A n n A_{nn} Ann)可以执行类似的行变换,使得

    • a 1 , n − 1 , ⋯ , a n − 2 , n − 1 a_{1,n-1},\cdots,a_{n-2,n-1} a1,n1,,an2,n1全为0( a n − 1 , n − 1 a_{n-1,n-1} an1,n1正上方的元素全为0)
  • 不断执行 r i + a i p a p p r j r_i+\frac{a_{ip}}{a_{pp}}r_j ri+appaiprj,( i = 1 , 2 , ⋯ , p − 1 i=1,2,\cdots,p-1 i=1,2,,p1; p = n , n − 1 , ⋯ , 2 p=n,n-1,\cdots,2 p=n,n1,,2),就能够使得 ∣ A ∣ |A| A转换为下三角行列式

  • Note:上述操作只涉及到行倍增就可以达到化一般行列式为三角行列式的目的,类似的仅执行列倍增也可以化为三角行列式

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/25496.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vue 关于axios的使用方法

axios定义: axios 前端 ajax请求工具 1. 在浏览器与nodejs可以使用 2. 可以拦截请求与相应 3. 扩展与封装自定义方法 4. 不依赖dom节点 安装 npm i axios -S 先在vue全局中挂载 import axios from ‘axios’ Vue.prototype.$h…

Docker 安装 Tomcat

目录 一、查看 tomcat 版本 二、拉取 Tomcat Docker 镜像 三、创建 Tomcat 容器 四、访问 Tomcat 五、停止和启动容器 一、查看 tomcat 版本 访问 tomcat 镜像库地址:https://hub.docker.com/_/tomcat,可以通过 Tags 查看其他版本的 tomcat; 二、拉…

Elasticsearch8.8.0 SpringBoot实战操作各种案例(索引操作、聚合、复杂查询、嵌套等)

Elasticsearch8.8.0 全网最新版教程 从入门到精通 通俗易懂 配置项目 引入依赖 <dependency><groupId>cn.hutool</groupId><artifactId>hutool-all</artifactId><version>5.8.16</version></dependency><dependency>&l…

Android Studio 的Gradle版本修改

使用Android Studio构建项目时&#xff0c;需要配置Gradle&#xff0c;与Gradle插件。 Gradle是一个构建工具&#xff0c;用于管理和自动化Android项目的构建过程。它使用Groovy或Kotlin作为脚本语言&#xff0c;并提供了强大的配置能力来定义项目的依赖关系、编译选项、打包方…

Jtti:linux如何配置dns域名解析服务器

要配置Linux上的DNS域名解析服务器&#xff0c;您可以按照以下步骤进行操作&#xff1a; 1. 安装BIND软件包&#xff1a;BIND是Linux上最常用的DNS服务器软件&#xff0c;您可以使用以下命令安装它&#xff1a; sudo apt-get install bind9 2. 配置BIND&#xff1a;BIND的配置…

Spring Cloud常见问题处理和代码分析

目录 1. 问题&#xff1a;如何在 Spring Cloud 中实现服务注册和发现&#xff1f;2. 问题&#xff1a;如何在 Spring Cloud 中实现分布式配置&#xff1f;3. 问题&#xff1a;如何在 Spring Cloud 中实现服务间的调用&#xff1f;4. 问题&#xff1a;如何在 Spring Cloud 中实现…

HCIA---OSI/RM--开放式系统互联参考模型

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、pandas是什么&#xff1f;二、使用步骤 1.引入库2.读入数据总结 一.OSI--开放式系统互联参考模型简介 OSI开放式系统互联参考模型是一种用于计算机网络通信…

解密Redis:应对面试中的缓存相关问题2

面试官&#xff1a;Redis集群有哪些方案&#xff0c;知道嘛&#xff1f; 候选人&#xff1a;嗯~~&#xff0c;在Redis中提供的集群方案总共有三种&#xff1a;主从复制、哨兵模式、Redis分片集群。 面试官&#xff1a;那你来介绍一下主从同步。 候选人&#xff1a;嗯&#xff…

基于WebRTC升级的低延时直播

快直播-基于WebRTC升级的低延时直播-腾讯云开发者社区-腾讯云 标准WebRTC支持的音视频编码格式已经无法满足国内直播行业需求。标准WebRTC支持的视频编码格式是VP8/VP9和H.264&#xff0c;音频编码格式是Opus&#xff0c;而国内推流的音视频格式基本上是H.264/H.265AAC的形式。…

Flutter iOS 集成使用 fluter boost

在 Flutter项目中集成完 flutter boost&#xff0c;并且已经使用了 flutter boost进行了路由管理&#xff0c;这时如果需要和iOS混合开发&#xff0c;这时就要到 原生端进行集成。 注意&#xff1a;之前建的项目必须是 Flutter module项目&#xff0c;并且原生项目和flutter m…

离线数仓中,为什么用两个flume,一个kafka

实时数仓中&#xff0c;为什么没有零点漂移问题&#xff1f; 因为flink直接取的事件时间用kafka是为了速度快&#xff0c;并且数据不丢&#xff0c;那为什么既用了kafkachannel&#xff0c;也用了kafka&#xff0c;而不只用kafkachannel呢&#xff1f; 因为需要削峰填谷离线数仓…

Baumer工业相机堡盟工业相机如何通过BGAPISDK获取相机接口数据吞吐量(C++)

Baumer工业相机堡盟工业相机如何通过BGAPISDK里函数来获取相机当前数据吞吐量&#xff08;C&#xff09; Baumer工业相机Baumer工业相机的数据吞吐量的技术背景CameraExplorer如何查看相机吞吐量信息在BGAPI SDK里通过函数获取相机接口吞吐量 Baumer工业相机通过BGAPI SDK获取数…

【微信小程序】van-uploader实现文件上传

使用van-uploader和wx.uploadFile实现文件上传&#xff0c;后端使用ThinkPHP。 1、前端代码 json&#xff1a;引入van-uploader {"usingComponents": {"van-uploader": "vant/weapp/uploader/index"} }wxml&#xff1a;deletedFile是删除文件函…

十、用 ChatGPT 辅助写文章

目录 一、实验介绍 二、背景 三、ChatGPT 写作方式 3.1 传统写作方式 3.2 ChatGPT 写作方式

Xilinx FPGA电源设计与注意事项

1 引言 随着半导体和芯片技术的飞速发展&#xff0c;现在的FPGA集成了越来越多的可配置逻辑资源、各种各样的外部总线接口以及丰富的内部RAM资源&#xff0c;使其在国防、医疗、消费电子等领域得到了越来越广泛的应用。当采用FPGA进行设计电路时&#xff0c;大多数FPGA对上电的…

【计算机网络】12、frp 内网穿透

文章目录 一、服务端设置二、客户端设置 frp &#xff1a;A fast reverse proxy to help you expose a local server behind a NAT or firewall to the internet。是一个专注于内网穿透的高性能的反向代理应用&#xff0c;支持 TCP、UDP、HTTP、HTTPS 等多种协议&#xff0c;且…

VUE框架:vue2转vue3全面细节总结(5)过渡动效

大家好&#xff0c;我是csdn的博主&#xff1a;lqj_本人 这是我的个人博客主页&#xff1a; lqj_本人_python人工智能视觉&#xff08;opencv&#xff09;从入门到实战,前端,微信小程序-CSDN博客 最新的uniapp毕业设计专栏也放在下方了&#xff1a; https://blog.csdn.net/lbcy…

ES6 数组的用法

1. forEach() 用来循环遍历的 for 数组名.forEach(function (item,index,arr) {})item:数组每一项 , index : 数组索引 , arr:原数组作用: 用来遍历数组 let arr [1, 2, 3, 4]; console.log(arr); let arr1 arr.forEach((item, index, arr) > {console.log(item, index…

HTTP——八、确认访问用户身份的认证

HTTP 一、何为认证二、BASIC认证BASIC认证的认证步骤 三、DIGEST认证DIGEST认证的认证步骤 四、SSL客户端认证1、SSL 客户端认证的认证步骤2、SSL 客户端认证采用双因素认证3、SSL 客户端认证必要的费用 五、基于表单认证1、认证多半为基于表单认证2、Session 管理及 Cookie 应…

Android network — iptables四表五链

Android network — iptables四表五链 1. iptables简介2. iptables的四表五链2.1 iptables流程图2.2 四表2.3 五链2.4 iptables的常见情况 3. NAT工作原理3.1 BNAT3.2 NAPT 4. iptables配置 本文主要介绍了iptables的基本工作原理和四表五链等基本概念以及NAT的工作原理。 1. i…