LaserMapping
这一模块的功能:优化Lidar的位姿,在此基础上完成低频的环境建图
依旧从主函数开始
int main(int argc, char** argv)
{ros::init(argc, argv, "laserMapping");ros::NodeHandle nh;************订阅5个节点************ros::Subscriber subLaserCloudCornerLast = nh.subscribe<sensor_msgs::PointCloud2>("/laser_cloud_corner_last", 2, laserCloudCornerLastHandler);ros::Subscriber subLaserCloudSurfLast = nh.subscribe<sensor_msgs::PointCloud2>("/laser_cloud_surf_last", 2, laserCloudSurfLastHandler);ros::Subscriber subLaserOdometry = nh.subscribe<nav_msgs::Odometry> ("/laser_odom_to_init", 5, laserOdometryHandler);ros::Subscriber subLaserCloudFullRes = nh.subscribe<sensor_msgs::PointCloud2> ("/velodyne_cloud_3", 2, laserCloudFullResHandler);ros::Subscriber subImu = nh.subscribe<sensor_msgs::Imu> ("/imu/data", 50, imuHandler);*************发布3个节点*************ros::Publisher pubLaserCloudSurround = nh.advertise<sensor_msgs::PointCloud2> ("/laser_cloud_surround", 1);ros::Publisher pubLaserCloudFullRes = nh.advertise<sensor_msgs::PointCloud2> ("/velodyne_cloud_registered", 2);ros::Publisher pubOdomAftMapped = nh.advertise<nav_msgs::Odometry> ("/aft_mapped_to_init", 5);nav_msgs::Odometry odomAftMapped;odomAftMapped.header.frame_id = "/camera_init";odomAftMapped.child_frame_id = "/aft_mapped";tf::TransformBroadcaster tfBroadcaster;tf::StampedTransform aftMappedTrans;aftMappedTrans.frame_id_ = "/camera_init";aftMappedTrans.child_frame_id_ = "/aft_mapped";
在订阅器订阅到了laserOdometry发布的消息后即可开始进行处理。
while (status) {ros::spinOnce();if (newLaserCloudCornerLast && newLaserCloudSurfLast && newLaserCloudFullRes && newLaserOdometry &&fabs(timeLaserCloudCornerLast - timeLaserOdometry) < 0.005 &&fabs(timeLaserCloudSurfLast - timeLaserOdometry) < 0.005 &&fabs(timeLaserCloudFullRes - timeLaserOdometry) < 0.005) {newLaserCloudCornerLast = false;newLaserCloudSurfLast = false;newLaserCloudFullRes = false;newLaserOdometry = false;//frameCount让优化处理的部分与laserodometry的发布速度一致?frameCount++;if (frameCount >= stackFrameNum) {// 将坐标转移到世界坐标系下->得到可用于建图的Lidar坐标,即修改了transformTobeMapped的值transformAssociateToMap();// 将上一时刻所有角特征转到世界坐标系下int laserCloudCornerLastNum = laserCloudCornerLast->points.size();for (int i = 0; i < laserCloudCornerLastNum; i++) {pointAssociateToMap(&laserCloudCornerLast->points[i], &pointSel);laserCloudCornerStack2->push_back(pointSel);}// 将上一时刻所有边特征转到世界坐标系下int laserCloudSurfLastNum = laserCloudSurfLast->points.size();for (int i = 0; i < laserCloudSurfLastNum; i++) {pointAssociateToMap(&laserCloudSurfLast->points[i], &pointSel);laserCloudSurfStack2->push_back(pointSel);}}
接下来就是较为复杂的优化处理部分,我们先看看论文怎么说的
To find correspondences for the feature points, we store the point cloud on the map, , in 10m cubic areas. The points in the cubes that intersect with are extracted and stored in a 3D KD-tree in {W}. We find the points in within a certain region (10cm × 10cm × 10cm) around the feature points.
就是说:将地图 保存在一个10m的立方体中,若cube中的点与当前帧中的点云 有重叠部分就把他们提取出来保存在KD树中。我们找地图 中的点时,要在特征点附近宽为10cm的立方体邻域内搜索
if (frameCount >= stackFrameNum) {frameCount = 0;//pointOnYAxis应该是lidar中心在当前坐标系下的位置PointType pointOnYAxis;pointOnYAxis.x = 0.0;pointOnYAxis.y = 10.0;pointOnYAxis.z = 0.0;//变换到世界坐标系下pointAssociateToMap(&pointOnYAxis, &pointOnYAxis);//transformTobeMapped记录的是lidar的位姿,在transformAssociateToMap()函数中进行了更新//下面计算的i,j,k是一种索引,指明当前收到的点云所在的cube的(中心?)位置int centerCubeI = int((transformTobeMapped[3] + 25.0) / 50.0) + laserCloudCenWidth;int centerCubeJ = int((transformTobeMapped[4] + 25.0) / 50.0) + laserCloudCenHeight;int centerCubeK = int((transformTobeMapped[5] + 25.0) / 50.0) + laserCloudCenDepth;if (transformTobeMapped[3] + 25.0 < 0) centerCubeI--;if (transformTobeMapped[4] + 25.0 < 0) centerCubeJ--;if (transformTobeMapped[5] + 25.0 < 0) centerCubeK--;
接下来对做一些调整,确保位姿在cube中的相对位置(centerCubeI,centerCubeJ,centerCubeK)能够有一个5*5*5的邻域。
while (centerCubeI < 3) {for (int j = 0; j < laserCloudHeight; j++) {for (int k = 0; k < laserCloudDepth; k++) {int i = laserCloudWidth - 1;pcl::PointCloud<PointType>::Ptr laserCloudCubeCornerPointer =laserCloudCornerArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k];pcl::PointCloud<PointType>::Ptr laserCloudCubeSurfPointer =laserCloudSurfArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k];for (; i >= 1; i--) {laserCloudCornerArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k] =laserCloudCornerArray[i - 1 + laserCloudWidth*j + laserCloudWidth * laserCloudHeight * k];laserCloudSurfArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k] =laserCloudSurfArray[i - 1 + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k];}laserCloudCornerArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k] = laserCloudCubeCornerPointer;laserCloudSurfArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k] = laserCloudCubeSurfPointer;laserCloudCubeCornerPointer->clear();laserCloudCubeSurfPointer->clear();}}centerCubeI++;laserCloudCenWidth++;}while (centerCubeI >= laserCloudWidth - 3) {for (int j = 0; j < laserCloudHeight; j++) {for (int k = 0; k < laserCloudDepth; k++) {int i = 0;pcl::PointCloud<PointType>::Ptr laserCloudCubeCornerPointer =laserCloudCornerArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k];pcl::PointCloud<PointType>::Ptr laserCloudCubeSurfPointer =laserCloudSurfArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k];for (; i < laserCloudWidth - 1; i++) {laserCloudCornerArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k] =laserCloudCornerArray[i + 1 + laserCloudWidth*j + laserCloudWidth * laserCloudHeight * k];laserCloudSurfArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k] =laserCloudSurfArray[i + 1 + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k];}laserCloudCornerArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k] = laserCloudCubeCornerPointer;laserCloudSurfArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k] = laserCloudCubeSurfPointer;laserCloudCubeCornerPointer->clear();laserCloudCubeSurfPointer->clear();}}centerCubeI--;laserCloudCenWidth--;}while (centerCubeJ < 3) {for (int i = 0; i < laserCloudWidth; i++) {for (int k = 0; k < laserCloudDepth; k++) {int j = laserCloudHeight - 1;pcl::PointCloud<PointType>::Ptr laserCloudCubeCornerPointer =laserCloudCornerArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k];pcl::PointCloud<PointType>::Ptr laserCloudCubeSurfPointer =laserCloudSurfArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k];for (; j >= 1; j--) {laserCloudCornerArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k] =laserCloudCornerArray[i + laserCloudWidth*(j - 1) + laserCloudWidth * laserCloudHeight*k];laserCloudSurfArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k] =laserCloudSurfArray[i + laserCloudWidth * (j - 1) + laserCloudWidth * laserCloudHeight*k];}laserCloudCornerArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k] = laserCloudCubeCornerPointer;laserCloudSurfArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k] = laserCloudCubeSurfPointer;laserCloudCubeCornerPointer->clear();laserCloudCubeSurfPointer->clear();}}centerCubeJ++;laserCloudCenHeight++;} while (centerCubeJ >= laserCloudHeight - 3) {for (int i = 0; i < laserCloudWidth; i++) {for (int k = 0; k < laserCloudDepth; k++) {int j = 0;pcl::PointCloud<PointType>::Ptr laserCloudCubeCornerPointer =laserCloudCornerArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k];pcl::PointCloud<PointType>::Ptr laserCloudCubeSurfPointer =laserCloudSurfArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k];for (; j < laserCloudHeight - 1; j++) {laserCloudCornerArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k] =laserCloudCornerArray[i + laserCloudWidth*(j + 1) + laserCloudWidth * laserCloudHeight*k];laserCloudSurfArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k] =laserCloudSurfArray[i + laserCloudWidth * (j + 1) + laserCloudWidth * laserCloudHeight*k];}laserCloudCornerArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k] = laserCloudCubeCornerPointer;laserCloudSurfArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k] = laserCloudCubeSurfPointer;laserCloudCubeCornerPointer->clear();laserCloudCubeSurfPointer->clear();}}centerCubeJ--;laserCloudCenHeight--;}while (centerCubeK < 3) {for (int i = 0; i < laserCloudWidth; i++) {for (int j = 0; j < laserCloudHeight; j++) {int k = laserCloudDepth - 1;pcl::PointCloud<PointType>::Ptr laserCloudCubeCornerPointer =laserCloudCornerArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k];pcl::PointCloud<PointType>::Ptr laserCloudCubeSurfPointer =laserCloudSurfArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k];for (; k >= 1; k--) {laserCloudCornerArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k] =laserCloudCornerArray[i + laserCloudWidth*j + laserCloudWidth * laserCloudHeight*(k - 1)];laserCloudSurfArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k] =laserCloudSurfArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight*(k - 1)];}laserCloudCornerArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k] = laserCloudCubeCornerPointer;laserCloudSurfArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k] = laserCloudCubeSurfPointer;laserCloudCubeCornerPointer->clear();laserCloudCubeSurfPointer->clear();}}centerCubeK++;laserCloudCenDepth++;}while (centerCubeK >= laserCloudDepth - 3) {for (int i = 0; i < laserCloudWidth; i++) {for (int j = 0; j < laserCloudHeight; j++) {int k = 0;pcl::PointCloud<PointType>::Ptr laserCloudCubeCornerPointer =laserCloudCornerArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k];pcl::PointCloud<PointType>::Ptr laserCloudCubeSurfPointer =laserCloudSurfArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k];for (; k < laserCloudDepth - 1; k++) {laserCloudCornerArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k] =laserCloudCornerArray[i + laserCloudWidth*j + laserCloudWidth * laserCloudHeight*(k + 1)];laserCloudSurfArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k] =laserCloudSurfArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight*(k + 1)];}laserCloudCornerArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k] = laserCloudCubeCornerPointer;laserCloudSurfArray[i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k] = laserCloudCubeSurfPointer;laserCloudCubeCornerPointer->clear();laserCloudCubeSurfPointer->clear();}}centerCubeK--;laserCloudCenDepth--;}
处理完毕边沿点,接下来就是在取到的子cube的5*5*5的邻域内找对应的配准点了。
int laserCloudValidNum = 0;int laserCloudSurroundNum = 0;//5*5*5的邻域里进行循环寻找for (int i = centerCubeI - 2; i <= centerCubeI + 2; i++) {for (int j = centerCubeJ - 2; j <= centerCubeJ + 2; j++) {for (int k = centerCubeK - 2; k <= centerCubeK + 2; k++) {if (i >= 0 && i < laserCloudWidth && j >= 0 && j < laserCloudHeight && k >= 0 && k < laserCloudDepth) {//int centerCubeI = int((transformTobeMapped[3] + 25.0) / 50.0) + laserCloudCenWidth;//int centerCubeJ = int((transformTobeMapped[4] + 25.0) / 50.0) + laserCloudCenHeight;//int centerCubeK = int((transformTobeMapped[5] + 25.0) / 50.0) + laserCloudCenDepth;//centerX,Y,Z = transformTobeMapped[3,4,5]+25float centerX = 50.0 * (i - laserCloudCenWidth);float centerY = 50.0 * (j - laserCloudCenHeight);float centerZ = 50.0 * (k - laserCloudCenDepth);bool isInLaserFOV = false;//确定邻域的点是否可用(是否在lidar的视角内)for (int ii = -1; ii <= 1; ii += 2) {for (int jj = -1; jj <= 1; jj += 2) {for (int kk = -1; kk <= 1; kk += 2) {float cornerX = centerX + 25.0 * ii;float cornerY = centerY + 25.0 * jj;float cornerZ = centerZ + 25.0 * kk;float squaredSide1 = (transformTobeMapped[3] - cornerX) * (transformTobeMapped[3] - cornerX) + (transformTobeMapped[4] - cornerY) * (transformTobeMapped[4] - cornerY)+ (transformTobeMapped[5] - cornerZ) * (transformTobeMapped[5] - cornerZ);float squaredSide2 = (pointOnYAxis.x - cornerX) * (pointOnYAxis.x - cornerX) + (pointOnYAxis.y - cornerY) * (pointOnYAxis.y - cornerY)+ (pointOnYAxis.z - cornerZ) * (pointOnYAxis.z - cornerZ);// 根据余弦定理进行判断float check1 = 100.0 + squaredSide1 - squaredSide2- 10.0 * sqrt(3.0) * sqrt(squaredSide1);float check2 = 100.0 + squaredSide1 - squaredSide2+ 10.0 * sqrt(3.0) * sqrt(squaredSide1);//视角在60°范围内if (check1 < 0 && check2 > 0) {isInLaserFOV = true;}}}}//将选择好的点存入数组中if (isInLaserFOV) {laserCloudValidInd[laserCloudValidNum] = i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k;laserCloudValidNum++;}laserCloudSurroundInd[laserCloudSurroundNum] = i + laserCloudWidth * j + laserCloudWidth * laserCloudHeight * k;laserCloudSurroundNum++;}}}}
接下来就准备精度更加高的配准了,首先是准备工作,我们需要两堆进行配准的点云
laserCloudCornerFromMap->clear();laserCloudSurfFromMap->clear();//已选择好的上一时刻的用来进行配准的点for (int i = 0; i < laserCloudValidNum; i++) {*laserCloudCornerFromMap += *laserCloudCornerArray[laserCloudValidInd[i]];*laserCloudSurfFromMap += *laserCloudSurfArray[laserCloudValidInd[i]];}int laserCloudCornerFromMapNum = laserCloudCornerFromMap->points.size();int laserCloudSurfFromMapNum = laserCloudSurfFromMap->points.size();//当前时刻的点,转到世界坐标系下int laserCloudCornerStackNum2 = laserCloudCornerStack2->points.size();for (int i = 0; i < laserCloudCornerStackNum2; i++) {pointAssociateTobeMapped(&laserCloudCornerStack2->points[i], &laserCloudCornerStack2->points[i]);}int laserCloudSurfStackNum2 = laserCloudSurfStack2->points.size();for (int i = 0; i < laserCloudSurfStackNum2; i++) {pointAssociateTobeMapped(&laserCloudSurfStack2->points[i], &laserCloudSurfStack2->points[i]);}//降采样laserCloudCornerStack->clear();downSizeFilterCorner.setInputCloud(laserCloudCornerStack2);downSizeFilterCorner.filter(*laserCloudCornerStack);int laserCloudCornerStackNum = laserCloudCornerStack->points.size();laserCloudSurfStack->clear();downSizeFilterSurf.setInputCloud(laserCloudSurfStack2);downSizeFilterSurf.filter(*laserCloudSurfStack);int laserCloudSurfStackNum = laserCloudSurfStack->points.size();laserCloudCornerStack2->clear();laserCloudSurfStack2->clear();
这样,我们就得到了用来配准的点云,接下来步入正题。我们再次拿出KD树,来寻找最邻近的5个点。对点云协方差矩阵进行主成分分析:若这五个点分布在直线上,协方差矩阵的特征值包含一个元素显著大于其余两个,与该特征值相关的特征向量表示所处直线的方向;若这五个点分布在平面上,协方差矩阵的特征值存在一个显著小的元素,与该特征值相关的特征向量表示所处平面的法线方向。
if (laserCloudCornerFromMapNum > 10 && laserCloudSurfFromMapNum > 100) {//数量足够多才进行处理//kd树寻找最近点kdtreeCornerFromMap->setInputCloud(laserCloudCornerFromMap);kdtreeSurfFromMap->setInputCloud(laserCloudSurfFromMap);for (int iterCount = 0; iterCount < 10; iterCount++) {laserCloudOri->clear();coeffSel->clear();for (int i = 0; i < laserCloudCornerStackNum; i++) {pointOri = laserCloudCornerStack->points[i];pointAssociateToMap(&pointOri, &pointSel);kdtreeCornerFromMap->nearestKSearch(pointSel, 5, pointSearchInd, pointSearchSqDis);if (pointSearchSqDis[4] < 1.0) {float cx = 0;float cy = 0; float cz = 0;for (int j = 0; j < 5; j++) {cx += laserCloudCornerFromMap->points[pointSearchInd[j]].x;cy += laserCloudCornerFromMap->points[pointSearchInd[j]].y;cz += laserCloudCornerFromMap->points[pointSearchInd[j]].z;}//五个点坐标的算术平均值cx /= 5;cy /= 5; cz /= 5;float a11 = 0;float a12 = 0; float a13 = 0;float a22 = 0;float a23 = 0; float a33 = 0;for (int j = 0; j < 5; j++) {float ax = laserCloudCornerFromMap->points[pointSearchInd[j]].x - cx;float ay = laserCloudCornerFromMap->points[pointSearchInd[j]].y - cy;float az = laserCloudCornerFromMap->points[pointSearchInd[j]].z - cz;a11 += ax * ax;a12 += ax * ay;a13 += ax * az;a22 += ay * ay;a23 += ay * az;a33 += az * az;}a11 /= 5;a12 /= 5; a13 /= 5;a22 /= 5;a23 /= 5; a33 /= 5;//协方差矩阵matA1.at<float>(0, 0) = a11;matA1.at<float>(0, 1) = a12;matA1.at<float>(0, 2) = a13;matA1.at<float>(1, 0) = a12;matA1.at<float>(1, 1) = a22;matA1.at<float>(1, 2) = a23;matA1.at<float>(2, 0) = a13;matA1.at<float>(2, 1) = a23;matA1.at<float>(2, 2) = a33;//求特征值及特征向量cv::eigen(matA1, matD1, matV1);
之后则是和LaserOdometry中一样的优化步骤,这里就不再贴出代码了。
在更新了位姿之后,将当前时刻的点云存入cube中,为下一次的配准做准备
for (int i = 0; i < laserCloudCornerStackNum; i++) {pointAssociateToMap(&laserCloudCornerStack->points[i], &pointSel);int cubeI = int((pointSel.x + 25.0) / 50.0) + laserCloudCenWidth;int cubeJ = int((pointSel.y + 25.0) / 50.0) + laserCloudCenHeight;int cubeK = int((pointSel.z + 25.0) / 50.0) + laserCloudCenDepth;if (pointSel.x + 25.0 < 0) cubeI--;if (pointSel.y + 25.0 < 0) cubeJ--;if (pointSel.z + 25.0 < 0) cubeK--;if (cubeI >= 0 && cubeI < laserCloudWidth && cubeJ >= 0 && cubeJ < laserCloudHeight && cubeK >= 0 && cubeK < laserCloudDepth) {int cubeInd = cubeI + laserCloudWidth * cubeJ + laserCloudWidth * laserCloudHeight * cubeK;laserCloudCornerArray[cubeInd]->push_back(pointSel);}}for (int i = 0; i < laserCloudSurfStackNum; i++) {pointAssociateToMap(&laserCloudSurfStack->points[i], &pointSel);int cubeI = int((pointSel.x + 25.0) / 50.0) + laserCloudCenWidth;int cubeJ = int((pointSel.y + 25.0) / 50.0) + laserCloudCenHeight;int cubeK = int((pointSel.z + 25.0) / 50.0) + laserCloudCenDepth;if (pointSel.x + 25.0 < 0) cubeI--;if (pointSel.y + 25.0 < 0) cubeJ--;if (pointSel.z + 25.0 < 0) cubeK--;if (cubeI >= 0 && cubeI < laserCloudWidth && cubeJ >= 0 && cubeJ < laserCloudHeight && cubeK >= 0 && cubeK < laserCloudDepth) {int cubeInd = cubeI + laserCloudWidth * cubeJ + laserCloudWidth * laserCloudHeight * cubeK;laserCloudSurfArray[cubeInd]->push_back(pointSel);}}
最后,将点云数据发布出去
mapFrameCount++;if (mapFrameCount >= mapFrameNum) {mapFrameCount = 0;laserCloudSurround2->clear();for (int i = 0; i < laserCloudSurroundNum; i++) {int ind = laserCloudSurroundInd[i];*laserCloudSurround2 += *laserCloudCornerArray[ind];*laserCloudSurround2 += *laserCloudSurfArray[ind];}laserCloudSurround->clear();downSizeFilterCorner.setInputCloud(laserCloudSurround2);downSizeFilterCorner.filter(*laserCloudSurround);sensor_msgs::PointCloud2 laserCloudSurround3;pcl::toROSMsg(*laserCloudSurround, laserCloudSurround3);laserCloudSurround3.header.stamp = ros::Time().fromSec(timeLaserOdometry);laserCloudSurround3.header.frame_id = "/camera_init";pubLaserCloudSurround.publish(laserCloudSurround3);}int laserCloudFullResNum = laserCloudFullRes->points.size();for (int i = 0; i < laserCloudFullResNum; i++) {pointAssociateToMap(&laserCloudFullRes->points[i], &laserCloudFullRes->points[i]);}sensor_msgs::PointCloud2 laserCloudFullRes3;pcl::toROSMsg(*laserCloudFullRes, laserCloudFullRes3);laserCloudFullRes3.header.stamp = ros::Time().fromSec(timeLaserOdometry);laserCloudFullRes3.header.frame_id = "/camera_init";pubLaserCloudFullRes.publish(laserCloudFullRes3);geometry_msgs::Quaternion geoQuat = tf::createQuaternionMsgFromRollPitchYaw(transformAftMapped[2], -transformAftMapped[0], -transformAftMapped[1]);odomAftMapped.header.stamp = ros::Time().fromSec(timeLaserOdometry);odomAftMapped.pose.pose.orientation.x = -geoQuat.y;odomAftMapped.pose.pose.orientation.y = -geoQuat.z;odomAftMapped.pose.pose.orientation.z = geoQuat.x;odomAftMapped.pose.pose.orientation.w = geoQuat.w;odomAftMapped.pose.pose.position.x = transformAftMapped[3];odomAftMapped.pose.pose.position.y = transformAftMapped[4];odomAftMapped.pose.pose.position.z = transformAftMapped[5];odomAftMapped.twist.twist.angular.x = transformBefMapped[0];odomAftMapped.twist.twist.angular.y = transformBefMapped[1];odomAftMapped.twist.twist.angular.z = transformBefMapped[2];odomAftMapped.twist.twist.linear.x = transformBefMapped[3];odomAftMapped.twist.twist.linear.y = transformBefMapped[4];odomAftMapped.twist.twist.linear.z = transformBefMapped[5];pubOdomAftMapped.publish(odomAftMapped);aftMappedTrans.stamp_ = ros::Time().fromSec(timeLaserOdometry);aftMappedTrans.setRotation(tf::Quaternion(-geoQuat.y, -geoQuat.z, geoQuat.x, geoQuat.w));aftMappedTrans.setOrigin(tf::Vector3(transformAftMapped[3], transformAftMapped[4], transformAftMapped[5]));tfBroadcaster.sendTransform(aftMappedTrans);}}status = ros::ok();rate.sleep();}