USB通信接口介绍

1. 概述

Usb = Universal Serial Bus全称通用串行总线,是一种支持热插拔的高速串行传输总线,使用差分信号来传输数据。

USB设备可以直接和host通信,或者通过hub和host通信。一个USB系统中仅有一个USB主机,设备包括功能设备和hub,最多支持127个设备。

由于USB是主从模式的结构,设备与设备之间、主机与主机之间不能互连,为解决这个问题,扩大USB的应用范围,出现了USB OTG,全拼 ON The Go。USB OTG 同一个设备,在不同的场合下可行在主机和从机之间切换。

USB协议版本有USB1.0、USB1.1、USB2.0、USB3.1等。

速度模式:

USB1.0低速模式:1 .5Mb/s

USB1.1全速模式:12Mb/s

USB2.0 高速模式:480Mb/s      500mA

USB3.0 超高速模式: 5.0Gb/s 实际3.2Gb/s    900mA

USB3.1 超超高速模式:10Gb/s实际7.2Gb/s 20V/2A-仅限于Type-A/B  12V/3A-Type-C

USB1.1 OTG  USB2.0 OTG:作为相应的补充,支持点对点通信。 

 

供电模式:

自供电:设备从外部电源获取工作电压。

总线供电:设备从VBUS(5V) 取电,最多500mA电流,本身容值不超过10uF;

                    低功耗USB设备:最大功耗不超过100mA;

                                     高功耗USB设备:枚举时最大功耗不超过100mA,枚举完成配置结束后功耗不超过500mA。

                                                                      (枚举过程中,通过设备的配置描述向主机报告它的供电模式和功耗要求)

优点:传输速度快,支持热插拔,系统总线供电,支持设备种类多,扩展容易;

缺点:传输距离短,供电能力有限。

 

2. 硬件结构

USB使用的是差分传输模式,两个数据线D+和D-;他们使用的是3.3V电压(与CMOS的5V电压不同)而电源线和地线可以向设备提供最大电流500mA(可以编程设置)

差分信号1:D+ > VOH(min) (2.8V) 且D- < VOL(max)(0.3V)

差分信号0:D- > VOH and D+ < VOL

 

USB2.0与USB3.0差别:

USB2.0速度没USB3.0快;

USB2.0通常是白色或黑色,USB3.0为蓝色;

USB2.0是500mA,USB3.0为900mA;USB3.1为20V/5A;

J状态(高电平):D+ 高,D- 低

K状态(低电平):D+低,D- 高

SEO状态:D+ 低,D- 高

Reset信号:D+ and D- < VOL for >= 10ms

主机在要和设备通信之前会发送Reset信号来把设备设置到默认的未配置状态。即主机拉低两根信号线(SE0状态)并保持10ms

Idle状态:J状态数据发、送前后总线的状态

Suspend状态:3ms以上的J状态

 

3. 传输结构

集合关系:传输类型 -> 事务 -> 包 -> 域

传输类型: 控制、中断、同步、批量

事务: IN、OUT、SETUP

包: 令牌包、数据包、握手包

域: 同步序列域、包标识域、地址域、端点域、帧号域、数据域、CRC校验域

 

注意:

USB的基本数据结构是包;

USB总线发送是LSB在前,MSB在后。

 

4. 拓扑结构

Usb主控制器:对丛机设备的控制和数据处理

Usb根集线器:是特殊的usb集线器,集成在主机控制器中,不占用地址;

Usb集线器:可以扩展出更多的USB口。

一个主控制器对应一个根集线器,而一个根集线器通常对应一个或者几个USB口,比如电脑主机上有7个主控制器和7个根集线器,

 

5. 速度检测

  • 全速和低速的识别

主机的hub端的D+和D-上分别接了15k的下拉电阻到地,当主机hub悬空时,主机hub端均为低电平;

usb设备端的D+或者D-上接有1.5k上拉电阻,低速设备的上拉电阻接到D-上,高速和全速设备的上拉电阻接到D+上,当设备插入主机时,根据数据线的电平高低识别速度。

 

 

  • 高速设备识别

usb高速设备的D+上接有1.5k的上拉电阻,当设备插入主机时,首先被识别为全速设备。之后,hub和设备需要通过“Chirp序列”的总线握手机制来识别高速和全速设备。整个过程中,高速的hub需要检测插入的设备是高速、全速还是低速,高速的设备需要检测所连接上的hub是都支持高速模式,如果双方都确认成功,就进行以系列的动作,设备从全速切换到高速模式,高速模式下,采用电流传输模式,设备需要将上拉电阻断开。否则,设备以全速模式工作;

 

6. HSIC

HSIC—USB High Speed Inter-Chip

是一个两线源同步的串行接口,使用240MHz双倍数据速率产生480MHz的高速速率,和传统的USB电缆连接拓扑结构的主机完全兼容。不支持中速和低速USB转换。

 

480MHz高速数据速率;

源同步串行接口,不传输时不耗电;

不支持热插拔,线路长度10cm;

信号驱动在1.2V标准LVCMOS水平;

不支持高速线性调频协议,HSIC只能工作在高速状态;

HSIC可以替换IIC;

常用于3G和4G模块中。

7. Type-C

  • 接口特点

支持正反插;

支持最高20V5A的电源能力,支持快充;

支持USB3.0  USB3.1协议,同时向下兼容USB2.0协议;

多功能:传输电源和数据外,还可以传输音视频;

  • 管脚定义

                                                  插座(front view)

                                                  插头(front view)

VBUS:电源

TXn+/TXn-/RXn+/RXn-:USB3.0/3.1高速数据线;

D+/D-:USB2.0数据线;

CC:逻辑功能识别及配置管脚,用来检测正反插以及充电功率控制。

         Type-C作为DFP模式时(类似HOST或适配器)VBUS输出默认是没有电压的,只通过CC线的上拉电流大小来通知外设默认支持电流大小(5V:900mA,1.5A,3A),当接上外设后(UFP)CC线会被外设的5.1K电阻接地,VBUS就会输出5V。此后双方可以通过CC线进行数据通信,并协商到更高的充电电压(PD功能)。

        

VCONN:如果使用Active Cable(譬如DP功能),VCONN用来给Cable的芯片供电(共用CC管脚);

SBU1/2:辅助信号,DP模式下的AUX协议信号;

备注:

DFP:Downstream Facing Port 下行端口可理解为Host,提供VBUS,也可提供数据。

UFP:Upstream Facing Port 上行端口可理解为Device,从VBUS中取电,并可提供数据。

DRP:Dual Role port双角色端口既可做DFP(Host),也可做UFP(Device),也可在DFP与UFP间动态切换。

 

8. USB芯片种类

接口芯片:通用USB接口芯片 Usb interface chip

USB 主控制器:USB HOST功能芯片 Usb host chip

USB微控制器:带USB接口MCU  usb with mcu

并口桥:USB转并口芯片   Usb to parallel bridge   8bit  16bit  32bit

串口桥:USB转串口芯片  Usb to serial bridge   IIC、SPI或者UART

音频控制器: Usb Audio Controller  IIS接口

HUB控制器:USB HUB  USB HUB Controller

USB-USB桥:通过USB实现PC互连USB to USB bridge

闪盘控制器:Usb flash controller

读卡器:智能卡设备类  Usb smart card

 

 

 

 

 

 

 

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/253316.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

HDCVI——一种创新性的高清视频传输方案

什么是HDCVI 2012年11月&#xff0c;大华技术股份有限公司发布了具有自主知识产权的同轴高清传输接口技术HDCVI。HDCVI技术是一种基于已有SYV75-3或SYV75-5同轴电缆的高清视频传输方法&#xff0c;能够在低成本和较低质量的同轴电缆上实现超长距离高清视频信号的可靠传输。相比…

智能机器人品牌简介

随着科技的发展&#xff0c;硬件的计算速度和大数据支撑&#xff0c;越来越多的智能化设备和产品出现在我们的面前&#xff0c;为我们的生活带来更多便利。其中包括智能机器人&#xff0c;这种产品是有自己的“大脑”&#xff0c;可以接收人为指令&#xff0c;为人服务&#xf…

诞生之日 随笔

今天我诞生了&#xff0c;祝自己诞生日happy&#xff0c;happy&#xff0c;happy&#xff01; 转载于:https://www.cnblogs.com/xiaohuihui-/p/7594406.html

智能音箱 之 麦克风参数介绍

1. 定义 麦克风&#xff0c;学名为传声器&#xff0c;是将声音信号转换为电信号的能量转换器件&#xff1b;声—电转换。 与扬声器正好相反&#xff08;电—声转换&#xff09;&#xff0c;构成电声设备的两个终端&#xff0c;俗称咪头&#xff0c;麦克等。 是电声系统的入口&a…

利用django框架,手把手教你搭建数据可视化系统(一)

如何使用django去构建数据可视化的 web,可视化的结果可以呈现在web上。 使用django的MTV模型搭建网站 基础铺垫—MTV模型 Created with Raphal 2.1.0Request服务器&#xff08;Djangoweb&#xff09;Response首先&#xff0c;要搞清楚我们去访问服务器&#xff0c;服务器返回信…

智能音箱 之 扬声器喇叭介绍

在全双工语音交互的系统中&#xff0c;功放的质量是非常重要的&#xff0c;因为AEC回声消除对信号失真 是非常敏感的。音频通路的整体谐波失真需要控制在5%以内。 对于整个系统的谐波失真来说&#xff0c;扬声器是最关键的因素&#xff0c;其次是功放&#xff0c;麦克风的很小…

UML学习——类图(三)

1.类图 UML类图是用来描述类、接口、协作及它们之间的关系的图。用来显示系统中各个类的静态结构。 2.类图的组成元素 类图由以下六种元素组成&#xff1a;类&#xff0c;接口&#xff0c;泛化关系&#xff0c;关联关系&#xff0c;依赖关系&#xff0c;实现关系。 3.类图的绘制…

传锤子科技解散成都分公司 才搬迁一年罗永浩就顶不住了

雷帝网 乐天 10月16日报道今日有网友爆料&#xff0c;锤子科技解散成都分公司。有网友指出&#xff0c;爆料的人是锤子科技早期员工王前闯。网友爆料锤子成都研发中心解散网友爆料锤子成都研发中心解散2016年&#xff0c;锤子科技亏损4亿元&#xff0c;一直徘徊在破产的边缘&am…

Maven and Nexus2

2019独角兽企业重金招聘Python工程师标准>>> Maven and Nexus2 Maven是什么&#xff1f; 构建工具&#xff1a; 通过简单的命令&#xff0c;能够完成清理、编译、测试、打包、部署等一系列过程。同时&#xff0c;不得不提的是&#xff0c;Maven是跨平台的&#xff0…

Linux kernel的中断子系统之(九):tasklet

返回目录&#xff1a;《ARM-Linux中断系统》。 总结&#xff1a; 二介绍了tasklet存在的意义。 三介绍了通过tasklet_struct来抽想一个tasklet&#xff0c;每个CPU维护一个tasklet链表tasklet_vec/tasklet_hi_vec&#xff0c;然后介绍了如何定一个一个tasklet(静态/动态)&#…

智能音箱 之 功放介绍

基本分类 功率放大器分甲类功放&#xff08;A 类&#xff09;&#xff0c;乙类&#xff08;B 类&#xff09;&#xff0c;甲乙类&#xff08;AB 类&#xff09;和丁类&#xff08;D 类&#xff09;&#xff1b; A 类 指在信号的整个周期内&#xff0c;放大器的任何功率输出…

create_workqueue和create_singlethread_workqueue【转】

本文转载自&#xff1a;http://bgutech.blog.163.com/blog/static/18261124320116181119889/ 1. 什么是workqueueLinux中的Workqueue机制就是为了简化内核线程的创建。通过调用workqueue的接口就能创建内核线程。并且可以根据当前系统CPU的个数创建线程的数量&#xff0c;使得线…

vue学习之路.02

2019独角兽企业重金招聘Python工程师标准>>> 第一个vue项目 1.创建 vue init webpack app01 2.安装依赖 cd app01 npm install 3.构建 npm run dev 启动本机的8080端口 或 …

解析电子墨水屏技术(工作原理与LCD的区别)

阅读电子书早已成为大家生活中一部分&#xff0c;方便轻巧的电子版书籍更便于携带&#xff0c;而电子阅读器也不仅仅局限于电脑、手机等传统设备&#xff0c;新兴的电子书阅读器渐渐为我们所接受。E-ink电子墨水技术就是现在最著名的产品之一&#xff0c;他的出现让电子书阅读器…

入门视频采集与处理(BT656简介) 转

凡是做模拟信号采集的&#xff0c;很少不涉及BT.656标准的&#xff0c;因为常见的模拟视频信号采集芯片都支持输出BT.656的数字信号&#xff0c;那么&#xff0c;BT.656到底是何种格式呢&#xff1f;本文将主要介绍 标准的 8bit BT656&#xff08;4:2:2&#xff09;YCbCr SDTV&…

眼图(Eye Diagram)与数字信号测试

问题: 什么是眼图&#xff1f;它用在什么场合&#xff1f;反映了波形的什么信息&#xff1f;NI相应的解决方案是怎样的&#xff1f; 解答: 眼图&#xff08;Eye Diagram&#xff09;可以显示出数字信号的传输质量&#xff0c;经常用于需要对电子设备、芯片中串行数字信号或者…

2018年智能音箱对比

众所周知&#xff0c;2014年底&#xff0c;电商巨头亚马逊推出智能音箱产品Echo之后&#xff0c;引起市场的强烈反响。随后、谷歌、微软、苹果均开始布局智能音箱市场&#xff0c;国内公司以玲珑科技打头阵。2017年国内公司纷纷发布智能音箱&#xff0c;被称为智能音箱元年。经…

LVDS通信接口详细介绍

1. 概述 LVDS Low-Voltage Differential Signaling 低电压差分信号&#xff0c;属于平衡传输信号。 这种技术的核心是采用极低的电压摆幅高速差动传输数据&#xff0c;从而有以下特点&#xff1a; 低功耗---低误码率---低串扰---低抖动---低辐射 良好的信号完整性。 推…