Linux进程间通信——使用信号量

//转自http://blog.csdn.net/ljianhui/article/details/10243617

这篇文章将讲述别一种进程间通信的机制——信号量。注意请不要把它与之前所说的信号混淆起来,信号与信号量是不同的两种事物。有关信号的更多内容,可以阅读我的另一篇文章:Linux进程间通信——使用信号。下面就进入信号量的讲解。


一、什么是信号量
为了防止出现因多个程序同时访问一个共享资源而引发的一系列问题,我们需要一种方法,它可以通过生成并使用令牌来授权,在任一时刻只能有一个执行线程访问代码的临界区域。临界区域是指执行数据更新的代码需要独占式地执行。而信号量就可以提供这样的一种访问机制,让一个临界区同一时间只有一个线程在访问它,也就是说信号量是用来调协进程对共享资源的访问的。

信号量是一个特殊的变量,程序对其访问都是原子操作,且只允许对它进行等待(即P(信号变量))和发送(即V(信号变量))信息操作。最简单的信号量是只能取0和1的变量,这也是信号量最常见的一种形式,叫做二进制信号量。而可以取多个正整数的信号量被称为通用信号量。这里主要讨论二进制信号量。

二、信号量的工作原理
由于信号量只能进行两种操作等待和发送信号,即P(sv)和V(sv),他们的行为是这样的:
P(sv):如果sv的值大于零,就给它减1;如果它的值为零,就挂起该进程的执行
V(sv):如果有其他进程因等待sv而被挂起,就让它恢复运行,如果没有进程因等待sv而挂起,就给它加1.

举个例子,就是两个进程共享信号量sv,一旦其中一个进程执行了P(sv)操作,它将得到信号量,并可以进入临界区,使sv减1。而第二个进程将被阻止进入临界区,因为当它试图执行P(sv)时,sv为0,它会被挂起以等待第一个进程离开临界区域并执行V(sv)释放信号量,这时第二个进程就可以恢复执行。

三、Linux的信号量机制
Linux提供了一组精心设计的信号量接口来对信号进行操作,它们不只是针对二进制信号量,下面将会对这些函数进行介绍,但请注意,这些函数都是用来对成组的信号量值进行操作的。它们声明在头文件sys/sem.h中。

1、semget函数
它的作用是创建一个新信号量或取得一个已有信号量,原型为:
[cpp] view plaincopyprint?
  1. int semget(key_t key, int num_sems, int sem_flags);  
第一个参数key是整数值(唯一非零),不相关的进程可以通过它访问一个信号量,它代表程序可能要使用的某个资源,程序对所有信号量的访问都是间接的,程序先通过调用semget函数并提供一个键,再由系统生成一个相应的信号标识符(semget函数的返回值),只有semget函数才直接使用信号量键,所有其他的信号量函数使用由semget函数返回的信号量标识符。如果多个程序使用相同的key值,key将负责协调工作。

第二个参数num_sems指定需要的信号量数目,它的值几乎总是1。

第三个参数sem_flags是一组标志,当想要当信号量不存在时创建一个新的信号量,可以和值IPC_CREAT做按位或操作。设置了IPC_CREAT标志后,即使给出的键是一个已有信号量的键,也不会产生错误。而IPC_CREAT | IPC_EXCL则可以创建一个新的,唯一的信号量,如果信号量已存在,返回一个错误。

semget函数成功返回一个相应信号标识符(非零),失败返回-1.

2、semop函数
它的作用是改变信号量的值,原型为:
[cpp] view plaincopyprint?
  1. int semop(int sem_id, struct sembuf *sem_opa, size_t num_sem_ops);  
sem_id是由semget返回的信号量标识符,sembuf结构的定义如下:
[cpp] view plaincopyprint?
  1. struct sembuf{  
  2.     short sem_num;//除非使用一组信号量,否则它为0  
  3.     short sem_op;//信号量在一次操作中需要改变的数据,通常是两个数,一个是-1,即P(等待)操作,  
  4.                     //一个是+1,即V(发送信号)操作。  
  5.     short sem_flg;//通常为SEM_UNDO,使操作系统跟踪信号,  
  6.                     //并在进程没有释放该信号量而终止时,操作系统释放信号量  
  7. };  
3、semctl函数
该函数用来直接控制信号量信息,它的原型为:
[cpp] view plaincopyprint?
  1. int semctl(int sem_id, int sem_num, int command, ...);  
如果有第四个参数,它通常是一个union semum结构,定义如下:
[cpp] view plaincopyprint?
  1. union semun{  
  2.     int val;  
  3.     struct semid_ds *buf;  
  4.     unsigned short *arry;  
  5. };  
前两个参数与前面一个函数中的一样,command通常是下面两个值中的其中一个
SETVAL:用来把信号量初始化为一个已知的值。p 这个值通过union semun中的val成员设置,其作用是在信号量第一次使用前对它进行设置。
IPC_RMID:用于删除一个已经无需继续使用的信号量标识符。

四、进程使用信号量通信
下面使用一个例子来说明进程间如何使用信号量来进行通信,这个例子是两个相同的程序同时向屏幕输出数据,我们可以看到如何使用信号量来使两个进程协调工作,使同一时间只有一个进程可以向屏幕输出数据。注意,如果程序是第一次被调用(为了区分,第一次调用程序时带一个要输出到屏幕中的字符作为一个参数),则需要调用set_semvalue函数初始化信号并将message字符设置为传递给程序的参数的第一个字符,同时第一个启动的进程还负责信号量的删除工作。如果不删除信号量,它将继续在系统中存在,即使程序已经退出,它可能在你下次运行此程序时引发问题,而且信号量是一种有限的资源。

在main函数中调用semget来创建一个信号量,该函数将返回一个信号量标识符,保存于全局变量sem_id中,然后以后的函数就使用这个标识符来访问信号量。

源文件为seml.c,代码如下:
[cpp] view plaincopyprint?
  1. #include <unistd.h>  
  2. #include <sys/types.h>  
  3. #include <sys/stat.h>  
  4. #include <fcntl.h>  
  5. #include <stdlib.h>  
  6. #include <stdio.h>  
  7. #include <string.h>  
  8. #include <sys/sem.h>  
  9.   
  10. union semun  
  11. {  
  12.     int val;  
  13.     struct semid_ds *buf;  
  14.     unsigned short *arry;  
  15. };  
  16.   
  17. static int sem_id = 0;  
  18.   
  19. static int set_semvalue();  
  20. static void del_semvalue();  
  21. static int semaphore_p();  
  22. static int semaphore_v();  
  23.   
  24. int main(int argc, char *argv[])  
  25. {  
  26.     char message = 'X';  
  27.     int i = 0;  
  28.   
  29.     //创建信号量  
  30.     sem_id = semget((key_t)1234, 1, 0666 | IPC_CREAT);  
  31.   
  32.     if(argc > 1)  
  33.     {  
  34.         //程序第一次被调用,初始化信号量  
  35.         if(!set_semvalue())  
  36.         {  
  37.             fprintf(stderr, "Failed to initialize semaphore\n");  
  38.             exit(EXIT_FAILURE);  
  39.         }  
  40.         //设置要输出到屏幕中的信息,即其参数的第一个字符  
  41.         message = argv[1][0];  
  42.         sleep(2);  
  43.     }  
  44.     for(i = 0; i < 10; ++i)  
  45.     {  
  46.         //进入临界区  
  47.         if(!semaphore_p())  
  48.             exit(EXIT_FAILURE);  
  49.         //向屏幕中输出数据  
  50.         printf("%c", message);  
  51.         //清理缓冲区,然后休眠随机时间  
  52.         fflush(stdout);  
  53.         sleep(rand() % 3);  
  54.         //离开临界区前再一次向屏幕输出数据  
  55.         printf("%c", message);  
  56.         fflush(stdout);  
  57.         //离开临界区,休眠随机时间后继续循环  
  58.         if(!semaphore_v())  
  59.             exit(EXIT_FAILURE);  
  60.         sleep(rand() % 2);  
  61.     }  
  62.   
  63.     sleep(10);  
  64.     printf("\n%d - finished\n", getpid());  
  65.   
  66.     if(argc > 1)  
  67.     {  
  68.         //如果程序是第一次被调用,则在退出前删除信号量  
  69.         sleep(3);  
  70.         del_semvalue();  
  71.     }  
  72.     exit(EXIT_SUCCESS);  
  73. }  
  74.   
  75. static int set_semvalue()  
  76. {  
  77.     //用于初始化信号量,在使用信号量前必须这样做  
  78.     union semun sem_union;  
  79.   
  80.     sem_union.val = 1;  
  81.     if(semctl(sem_id, 0, SETVAL, sem_union) == -1)  
  82.         return 0;  
  83.     return 1;  
  84. }  
  85.   
  86. static void del_semvalue()  
  87. {  
  88.     //删除信号量  
  89.     union semun sem_union;  
  90.   
  91.     if(semctl(sem_id, 0, IPC_RMID, sem_union) == -1)  
  92.         fprintf(stderr, "Failed to delete semaphore\n");  
  93. }  
  94.   
  95. static int semaphore_p()  
  96. {  
  97.     //对信号量做减1操作,即等待P(sv)  
  98.     struct sembuf sem_b;  
  99.     sem_b.sem_num = 0;  
  100.     sem_b.sem_op = -1;//P()  
  101.     sem_b.sem_flg = SEM_UNDO;  
  102.     if(semop(sem_id, &sem_b, 1) == -1)  
  103.     {  
  104.         fprintf(stderr, "semaphore_p failed\n");  
  105.         return 0;  
  106.     }  
  107.     return 1;  
  108. }  
  109.   
  110. static int semaphore_v()  
  111. {  
  112.     //这是一个释放操作,它使信号量变为可用,即发送信号V(sv)  
  113.     struct sembuf sem_b;  
  114.     sem_b.sem_num = 0;  
  115.     sem_b.sem_op = 1;//V()  
  116.     sem_b.sem_flg = SEM_UNDO;  
  117.     if(semop(sem_id, &sem_b, 1) == -1)  
  118.     {  
  119.         fprintf(stderr, "semaphore_v failed\n");  
  120.         return 0;  
  121.     }  
  122.     return 1;  
  123. }  
运行结果如下:


注:这个程序的临界区为main函数for循环不的semaphore_p和semaphore_v函数中间的代码。

例子分析 :同时运行一个程序的两个实例,注意第一次运行时,要加上一个字符作为参数,例如本例中的字符‘O’,它用于区分是否为第一次调用,同时这个字符输出到屏幕中。因为每个程序都在其进入临界区后和离开临界区前打印一个字符,所以每个字符都应该成对出现,正如你看到的上图的输出那样。在main函数中循环中我们可以看到,每次进程要访问stdout(标准输出),即要输出字符时,每次都要检查信号量是否可用(即stdout有没有正在被其他进程使用)。所以,当一个进程A在调用函数semaphore_p进入了临界区,输出字符后,调用sleep时,另一个进程B可能想访问stdout,但是信号量的P请求操作失败,只能挂起自己的执行,当进程A调用函数semaphore_v离开了临界区,进程B马上被恢复执行。然后进程A和进程B就这样一直循环了10次。

五、对比例子——进程间的资源竞争
看了上面的例子,你可能还不是很明白,不过没关系,下面我就以另一个例子来说明一下,它实现的功能与前面的例子一样,运行方式也一样,都是两个相同的进程,同时向stdout中输出字符,只是没有使用信号量,两个进程在互相竞争stdout。它的代码非常简单,文件名为normalprint.c,代码如下:
[cpp] view plaincopyprint?
  1. #include <stdio.h>  
  2. #include <stdlib.h>  
  3.   
  4. int main(int argc, char *argv[])  
  5. {  
  6.     char message = 'X';  
  7.     int i = 0;    
  8.     if(argc > 1)  
  9.         message = argv[1][0];  
  10.     for(i = 0; i < 10; ++i)  
  11.     {  
  12.         printf("%c", message);  
  13.         fflush(stdout);  
  14.         sleep(rand() % 3);  
  15.         printf("%c", message);  
  16.         fflush(stdout);  
  17.         sleep(rand() % 2);  
  18.     }  
  19.     sleep(10);  
  20.     printf("\n%d - finished\n", getpid());  
  21.     exit(EXIT_SUCCESS);  
  22. }  
运行结果如下:


例子分析
从上面的输出结果,我们可以看到字符‘X’和‘O’并不像前面的例子那样,总是成对出现,因为当第一个进程A输出了字符后,调用sleep休眠时,另一个进程B立即输出并休眠,而进程A醒来时,再继续执行输出,同样的进程B也是如此。所以输出的字符就是不成对的出现。这两个进程在竞争stdout这一共同的资源。通过两个例子的对比,我想信号量的意义和使用应该比较清楚了。

六、信号量的总结
信号量是一个特殊的变量,程序对其访问都是原子操作,且只允许对它进行等待(即P(信号变量))和发送(即V(信号变量))信息操作。我们通常通过信号来解决多个进程对同一资源的访问竞争的问题,使在任一时刻只能有一个执行线程访问代码的临界区域,也可以说它是协调进程间的对同一资源的访问权,也就是用于同步进程的

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/253118.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

麦克风阵列音频检查方法和标准

为确保产品能够符合算法要求&#xff0c;务必提前做好相关设计&#xff0c;尽量确保各项指标满足如下标准。 音频评测工作&#xff0c;主要集中在研发设计阶段&#xff1b;针对产品形态的不同&#xff0c;测试可分为裸板测试和整机测 试&#xff0c;下表为不同阶段需要测试的…

SVG格式图片转成HTML中SVG的Path路径

AI图标制作完成之后&#xff0c;保存的svg文件包含许多AI的信息&#xff0c;如果要在HTML中使用&#xff0c;我们需要在svg文件中提取/修改信息&#xff0c;重新保存。 1、在AI中已经完成图标&#xff0c;要保存SVG文件&#xff0c;点击“文件(File)”-“另存为(Save As)”&…

Linux内核Socket参数调优

可调优的内核变量存在两种主要接口&#xff1a;sysctl命令和/proc文件系统&#xff0c;proc中与进程无关的所有信息都被移植到sysfs中。IPV4协议栈的sysctl参数主要是sysctl.net.core、sysctl.net.ipv4&#xff0c;对应的/proc文件系统是/proc/sys/net/ipv4和/proc/sys/net/cor…

vue.js单页面应用实例

一&#xff1a;npm的安装由于新版的node.js已经集成了npm的环境&#xff0c;所以只需去官网下载node.js并安装&#xff0c;安装完成后使用cmd检测是否成功。测试node的版本号&#xff1a;node -v测试npm的版本号&#xff1a;npm -v以上提示代表安装成功二&#xff1a;vue.js环境…

AA级与AAA级台灯 重要指标对比

读写作业台灯&#xff0c;按照国家标准&#xff08;GB/T 9473-2017 读写作业台灯性能要求 &#xff09;台灯只有两个等级 即为A级和AA级&#xff1a; 但是大家在各个购物网站挑选台灯尤其是挑选孩子学习用的读写台灯时&#xff0c;会发现很多厂家宣称台 灯为AAA级&#xff0c…

零基础学python,看完这篇文章,你的python基础就差不多了!干货【1】

2019独角兽企业重金招聘Python工程师标准>>> Python基础语法和面向对象&#xff08;下一篇分享面向对象&#xff09; Python基础语法 1. 认识Python 1.1 Python 简介 Python 的创始人为吉多范罗苏姆&#xff08;Guido van Rossum&#xff09;。 Python 的设计目标&a…

消费类电子认证测试资料清单

消费类电子上市前必须取得相关认证&#xff0c;其中最常见的有3C、SRRC和CTA等强制性认证&#xff0c;还有类似TUV和Rohs等自愿性认证&#xff0c;现将常见认证测试资料清单小结如下&#xff1a; CCC测试认证&#xff1a; 测试项&#xff1a;EMC、安规和随机等。 SRRC核准&am…

SVG 相关整理

1. 中文参考手册&#xff1a; http://www.runoob.com/svg/svg-reference.html SVG HTML5 资源教程 http://www.html5tricks.com/tag/svg/ 2.SVG 入门到精通 http://www.w3cplus.com/blog/tags/411.html 3.SVG开发包整理 http://www.oschina.net/project/tag/420/svg http://www…

液晶拼接控制器

液晶拼接墙系统是由液晶拼接显示单元、液晶拼接支架、液晶拼接控制器器和信号源组合而成的。液晶拼接控制器则是液晶拼接系统的重要组成部分。 液晶拼接控制器一般分为两种&#xff1a;内置嵌入式液晶拼接器、外置液晶拼接控制器。 内置嵌入式液晶拼接器 内置嵌入式液晶拼接器只…

03-类与对象——课后动手动脑

1.早期我们经常这样定义变量 int value100&#xff1b; 前面的示例中这样定义变量 MyClass obj new MyClass(); 这两种方式定义的变量是一样的吗&#xff1f; 这两种方式定义的变量是一样的&#xff0c;因为它们都是类的实例化&#xff0c;只是第一种是一个简便的写法&#xf…

有道智能学习灯 初体验

有道词典笔在业内树立了一个标杆&#xff0c;自认为有道出品必须精品&#xff01; 但是今天刚初步体验了一下有道智能学习灯&#xff0c;硬件方面说实话有点意外&#xff0c;猜测这应该不是有道词典 笔团队打造的硬件产品吧。 现在将个人体验感受表格化陈述如下&#xff1a;…

centos忘记root用户的密码

方法&#xff1a; 1.在开机启动的时候快速按键盘上的“E”键 或者“ESC”键&#xff08;如果做不到精准快速可以在启动前一直按着或者不停的按&#xff09;&#xff0c;会进入如下界面。如果你的有多个操作系统就会出现多个内核&#xff0c;就会出现多个选项 2. 选择你忘记密码…

MySql(18)——Linux MySQL主从配置

MySQL 主从配置 Author:xushuyi 参照技术&#xff1a;http://www.cnblogs.com/kevingrace/p/6256603.html 1. 主从数据库 1、主库&#xff1a;192.168.56.100 2、从库&#xff1a;192.168.56.102 3、创建主从数据库一定要保证主从数据库字符集编码的一致性&#xff0c;否则主从…

元器件 失效分析 过程介绍

硬件产品在使用过程中&#xff0c;常常会出现功能失效的情况。排除装配异常的话&#xff0c;功能失效一般是电路可能出现故障&#xff0c;具体可能是某个元器件损坏了。需要研发及时分析定位故障原因及时改善排除故障&#xff0c;尤其是在试产阶段&#xff0c;显得十分重要&…

OWI

2019独角兽企业重金招聘Python工程师标准>>> V$EVENT_NAME V$EVENT_NAME displays information about wait events. ColumnDatatypeDescriptionEVENT#NUMBERNumber of the wait eventEVENT_IDNUMBERIdentifier of the wait eventNAMEVARCHAR2(64)Name of the wait e…

201521123110《Java程序设计》第5周学习总结

1. 本周学习总结 1.1 尝试使用思维导图总结有关多态与接口的知识点。 2. 书面作业 1.代码阅读&#xff1a;Child压缩包内源代码 1.1 com.parent包中Child.java文件能否编译通过?哪句会出现错误&#xff1f;试改正该错误。并分析输出结果。不能编译通过,因为System.out.println…

电源适配器上各符号的意义都清楚吗?

现在家里的电子产品是越来越多了&#xff0c;比如&#xff1a;手机、平板、笔记本、智能电视、智能音箱、路由器、剃须刀等&#xff1b;机身或者充电器上都有很多符号标志。 有没有好奇过或者被小孩询问过&#xff0c;这些符号标志都是什么意思呢&#xff1f;只有读懂这些符号…

苏宁海量服务器自动化配置运维实践

运维的演进 人力运维阶段 在IT产业的早期&#xff0c;服务器运维是通过各种Ad Hoc命令或者Shell脚本来完成基础设施的自动化工作&#xff0c;这种方式对于简单&#xff0c;一次性的工作很方便&#xff0c;但是对于复杂和长期的项目&#xff0c;后期的脚本维护非常麻烦。自动化工…

腾讯面试经验2

时间&#xff1a;2017年10月16日11:30面试。 地点&#xff1a;重庆万达艾美酒店。 信息&#xff1a;女&#xff0c;本科应届生&#xff0c;面试后台开发岗位。 在深圳的面试已经全部结束了&#xff0c;偶然间听朋友说重庆、长沙等场地的面试还在进行中&#xff0c;只要修改面试…

简易有效Api接口防攻击策略

API&#xff08;Application Programming Interface&#xff0c;应用程序编程接口&#xff09;是一些预先定义的函数&#xff0c;目的是提供应用程序与开发人员基于某软件或硬件得以访问一组例程的能力&#xff0c;而又无需访问源码&#xff0c;或理解内部工作机制的细节。 简单…