光学镜头行业发展现状及趋势,智能手机应用领域占比最高

一、光学镜头分类

光学镜头也叫摄像镜头或摄影镜头,简称镜头,其功能就是光学成像。光学镜头是光学成像系统中的必备组件,直接影响到成像质量的好坏,影响算法的实现和效果。从结构来看,光学镜头一般由精密五金、塑胶零件、镜片、光圈、驱动马达、传感器等光机电器件和镜筒组成。

根据光学镜片特性原理,光学镜头可分为塑胶镜头、玻璃镜头和玻塑混合镜头三大类,其结构都是由多片镜片构成,一般而言,镜片越多,镜头的成像质量越高。

        光学镜头的分类及应用

在三类光学镜头中,玻璃镜头采用玻璃透镜组立而成,塑胶镜头采用塑胶镜片组立而成,二者在材料属性、加工工艺、透光率等方面都存在着很大的差异,因此最终的适用范围也大有不同。

一般而言,塑胶镜头具备可塑性强、容易制成非球面形状,方便小型化等特点,广泛应用于手机、数码相机等设备上;与塑胶镜头相比,玻璃镜头对模造技术、镀膜工艺、精密加工等方面有着较高的要求,且具有其透光率高的特点,更多应用于高端影像领域,如单反相机、高端扫描仪等设备;玻塑混合镜头由部分玻璃镜片和部分塑胶镜片共同组成,结合了二者的特点,具有高折射率的光学性能和稳定性,广泛应用于监控摄像头、数码相机和车载摄像头等镜头模组中。

 

二、光学镜头发展历程和产业链

光学镜头发展至今,大致可分为初创、成长和快速发展三个阶段;其中初创阶段为十八世纪到二十世纪八十年代;成长阶段为二十世纪九十年代;快速发展阶段为二十一世纪至今。

光学镜头发展历程

 光学镜头研发与制造处于产业链中游,其上游为光学镜头生产所需的设备仪器及原材料,原材料主要包括玻璃镜片、塑胶镜片、电子零件、塑胶原料、金属部件等。下游为光学镜头的应用领域,主要包括安防监控设备、手机相机摄像头模组、车载摄像头模组、机器视觉系统、VR/AR设备等。

光学镜头行业产业链

 

三、光学镜头应用领域

按下游应用划分,光学镜头的应用领域可分为消费级市场应用和工业领域应用两大类,其中消费级市场应用包括专业相机镜头、手机相机模组镜头、安防监控镜头、车载镜头和AR/VR设备镜头等,工业领域应用则以机器视觉为主,主要应用在机械零件测量、塑胶零件测量、玻璃及药用容器测量和电子组件测量等。

 

相关报告:华经产业研究院发布的《2021-2026年中国光学镜头市场竞争策略及行业投资潜力预测报告》

从消费级应用领域来看,主要应用于相机、手机、安防监控、汽车和VR/AR设备,其中专业相机镜头一直是光学镜头领域最重要的应用领域,代表这光学镜头的发展工艺。

 

 

光学镜头在工业领域的应用中较为重要的是在机器视觉方面的应用,其具体应用主要体现在以下四方面:机械零件测量、塑胶零件测量、玻璃及药用容器测量、电子组件测量等。

 四、光学镜头行业发展现状

光学镜头是光学成像系统中的核心组件,20世纪以来光电子技术的快速发展带动光学镜头的应用范围从最初的显微镜、望远镜、胶片相机等领域向安防视频监控、数码相机/摄像机和智能手机等领域渗透。

近年来,全球AIoT技术快速发展使得光学镜头的应用领域进一步丰富,及其视觉、自动驾驶、智能家居、AR/VR设备、无人机、3Dsensing等热门应用领域为光学镜头产业的持续发展注入新的动力,不断拓宽光学镜头行业市场边界。根据数据显示,全球光学镜头行业市场规模由2015年的181.6亿元增长至2020年的495.9亿元,2015-2020年CAGR为22.25%,预计2023年将达到682.8亿元。

 

光学镜头的下游用户主要涵盖安防监控、手机相机摄像头模组、车载摄像头模组、机器视觉系统等方面,下游应用领域的增多将带动行业的稳步发展。一方面,智能移动终端的智能手机、平板电脑、功能手机、是光学镜头的需求主力。

根据数据显示,智能手机、平板电脑、功能手机分别占全球光学镜头各应用领域出货量的74.6%、8.6%、7.4%,其中智能手机应用领域占比最高,主要原因是智能手机厂商不断进行技术创新,使得双摄像头产品逐步在智能手机镜头行业渗透,多摄像头产品也逐渐进入市场,手机光学镜头产品创新能力得到增强。因此,光学镜头在手机应用领域的需求将不断释放。

 

五、光学镜头行业相关政策

光学镜头作为一种基础性光电元器件,是消费电子、汽车电子、穿戴设备等电子产业终端领域发展的基础。同时,由于光学镜头与光学设计、高端精密制造紧密相关、迎合了中国政府近年来提倡的工业4.0、中国制造2025、“互联网+”等方向,因此光学镜头产业的发展受到中国政府高度关注。

六、光学镜头行业发展趋势

1、光学元件加工将融入跨学科的先进技术

在光学元器件生产方面,现阶段的生产正逐步取代古典法抛光等传统加工工艺,取而代之的是数控加工技术、计算机辅助设计及精密切割技术等高精尖技术。将先进的光学元件加工工艺技术融入组件生产中,不仅提高了生产效率,同时为光学组件未来规模化生产提供了发展的基础,也减轻了光学加工技术对人为操作的依赖。如在视频监控镜头加工的生产工序中,运用数控加工技术、计算机辅助设计等跨学科先进技术,能够提升视频监控生产效率和保障产品质量,为安防监控镜头加工提供了可靠保障。

伴随着光学元器件应用场景的不断增多,市场对光学镜头的设计、制造及加工提出了更高的要求,跨学科先进技术的融合提升了光学元件的加工工艺,促进了光学元件规模化的生产,同时也为产业创新发展提供技术支撑,这一趋势在技术创新的大背景下将愈加凸显。

2、下游光学镜头应用领域增加

在互联网+与中国制造2025战略推动下,中国光学镜头通过互联网、物联网等新一代信息技术应用与制造工业的融合,中国光学镜头的终端应用产品呈现出数学化、智能化的发展趋势,使得下游光学镜头应用领域增加。

具体表现如下:①机器视觉作为人工智能发展的一个分支,可提高制造业生产效率和智能自动化水平。而光学镜头作为机器视觉系统中的重要组成部分,对成像质量起到关键作用。②光学镜头是VR/AR硬件构成之一,部分VR/ARHMD设备通过前置摄像头进行拍照、位置追踪和环境映射;一部分VR/ARHMD则采用内部摄像头来感知环境和周围目标。因此,光学镜头是VR/AR必要组件。

随着光学镜头产品在大倍率变焦、光学防抖、高可靠性等领域技术水平的提高,光学镜头终端应用领域产品将呈现出智能化领域趋势,其中机器视觉和AR/VR将会是未来几年来光学镜头主要应用市场。

3、变焦镜头市场的渗透率将提高

光学镜头可分为定焦和变焦镜头,目前主流是定焦镜头。但随着光学镜头下游应用场景的增加,尤其是视频监控领域,变焦倍数越大,对远距离监控将越清晰,因此变焦镜头在市场运用的渗透率将进一步提高。

  在技术和产品革新趋势的带动下,变焦镜头将广泛应用到各类视频监控领域,从而形成高分辨率的图像效果和高品质的光学特性。这一趋势会随着中国本土光学镜头厂商在变焦镜头工艺与加工精度的提高而愈加明显。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/252646.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

关于_vmvare workstation装32ubuntu的问题

刚开始启动的时候是黑屏,没有任何反应 1.bios也设置BIOS intel virtual technology 设置了enabled(开启硬件虚拟化:要运行一些操作系统,虚拟化软件和虚拟机,硬件虚拟化就需要启用。大多数情况下,不需要虚拟化技术的操作系统可以正…

360°环视(全景影像)系统发展趋势

360环视系统,系统同时采集车辆四周的影像,经过图像处理单元一系列的智能算法处理,最终形成一幅车辆四周的全景俯视图显示在屏幕上,直观地呈现出车辆所处的位置和周边情况。系统大大地拓展了驾驶员对周围和环境的感知能力&#xff…

数学之路(3)-机器学习(3)-机器学习算法-SVM[7]

SVM是新近出现的强大的数据挖掘工具,它在文本分类、手写文字识别、图像分类、生物序列分析等实际应用中表现出非常好的性能。SVM属于监督学习算法,样本以属性向量的形式提供,所以输入空间是Rn的子集。 图1 如图1所示,SVM的目标是找…

CPU、GPU、FPGA、ASIC等AI芯片特性及对比

1、前言 目前,智能驾驶领域在处理深度学习AI算法方面,主要采用GPU、FPGA 等适合并行计算的通用芯片来实现加速。同时有部分芯片企业开始设计专门用于AI算法的ASIC专用芯片,比如谷歌TPU、地平线BPU等。在智能驾驶产业应用没有大规模兴起和批量…

人工智能Ai芯片层出不穷,GPU、FPGA、ASIC用于人工智能的优势和劣势对比

人工智能(AI)主要包括三大要素,分别是数据、算法和算力。其中数据是基础,正是因为在实际应用当中的数据量越来越大,使得传统计算方式和硬件难以满足要求,才催生了AI应用的落地。而算法是连接软件、数据、应…

全景视频拼接关键技术

一、原理介绍 图像拼接(Image Stitching)是一种利用实景图像组成全景空间的技术,它将多幅图像拼接成一幅大尺度图像或360度全景图,图像拼接技术涉及到计算机视觉、计算机图形学、数字图像处理以及一些数学工具等技术。图像拼接其基本步骤主要包括以下几…

相关类以及常用方法

1、system:(系统相关类) 常用方法: a) : system.arraycopy(制定数组,开始复制的位置,目标数组,开始粘贴的位置,需要复制的长度) 。 将指定源数组中的数组从指定位置复制到目标数组的指定位…

2021-11-15

本文将重点围绕国产CPU的发展历程与当前产业链各领军企业的布局情况作详尽解读(并包含特大号独家整理的最新进展),具体如下: 1、国产CPU发展历程回溯 2、飞腾:PK生态的主导者 3、鲲鹏:快速崛起的领导者 …

关于在ubuntu下配置AMD显卡驱动的总结

同样先卸载先前版本 代码:sudo sh /usr/share/ati/fglrx-uninstall.sh代码:sudo apt-get remove --purge fglrx fglrx_* fglrx-amdcccle* fglrx-dev*重启 代码:sudo reboot下载驱动,右边直接有ubuntu32位和64位驱动链接:http://support.amd.com/en-us/do…

计算机结构简图

北桥,南桥是主板上芯片组中最重要的两块了.它们都是总线控制器.他们是总线控制芯片.相对的来讲,北桥要比南桥更加重要.北桥连接系统总线,担负着cpu访问内存的重任.同时连接这AGP插口,控制PCI总线,割断了系统总线和局部总线,在这一段上速度是最快的.南桥不和CPU连接通常用来作I/…

Servlet 与 Ajax 交互一直报status=parsererror

Servlet 与 Ajax 交互一直报statusparsererror 原因:servlet 返回的数据不是 Json 格式 1、JS代码为: 1 var jsonStr {clusterNum:2,iterationNum:3,runTimes:4};2 $.ajax({3 type: "post",4 //http://172.2…

25LINQ拾遗及实例

投影 □ 遍历数组索引,Select获取 int[] indexes {0, 2}; string[] strs {"a", "b", "c", "d"}; var result from i in indexes select strs[i]; foreach (string str in result) { Console.Write(str " &quo…

国产CPU的6大品牌,3大路线对比

这些年来,中国最想发展的科技产品是什么?那必须是芯片,特别是2018年中兴事件、2019年华为事件之后,国内的芯片产业就彻底地火爆了起来。 按照数据显示,截止至2020年10月份,国内已经有27万家芯片企业&#…

龙芯与飞腾roadmap

飞腾roadmap 龙芯roadmap 龙芯系列处理器芯片是龙芯中科技术有限公司研发的具有自主知识产权的处理器芯片,产品以32位和64位单核及多核CPU/SOC为主,主要面向国家安全、高端嵌入式、个人电脑、服务器和高性能机等应用。产品线包括龙芯1号小CPU、龙芯2号中…

BZOJ 2440 完全平方数(莫比乌斯-容斥原理)

题目链接:http://61.187.179.132/JudgeOnline/problem.php?id2440 题意:给定K。求不是完全平方数(这里1不算完全平方数)的倍数的数字组成的数字集合S中第K小的数字是多少? 思路:首先,答案不超过…

在Eclipse中添加JDK源码包

一直有这想要在Eclipse直接阅读JDK的需求,之前用的都是反编译的,由于我用的反编译的插件去掉了源码内容的注释,所以想直接导入JDK源码包: 详细步骤: 打开Eclipse, 菜单栏 选择 Window 下拉种选取 Preferences 窗口. 以…

南桥芯片与北桥芯片

什么是芯片组 芯片组(英语:Chipset)是一组共同工作的集成电路“芯片”,并作为一个产品销售。它负责将计算机的微处理器和计算机的其他部分相连接,是决定主板级别的重要部件。以往,芯片组由多颗芯片组成&am…

spark 应用场景2-身高统计

原文引自:http://blog.csdn.net/fengzhimohan/article/details/78564610 a. 案例描述 本案例假设我们需要对某个省的人口 (10万) 性别还有身高进行统计,需要计算出男女人数,男性中的最高和最低身高,以及女性中的最高和最低身高。本…

React学习小结(二)

一、组件的嵌套 1 <!DOCTYPE html>2 <html>3 <head>4 <meta charset"UTF-8">5 <title></title>6 <script src"react.min.js" type"text/javascript" charset"utf-8"></script>7 <…

PCIE2.0/PCIE3.0/PCIE4.0/PCIE5.0接口的带宽、速率计算

一、PCIE接口速率&#xff1a; 二、PCIE相关概念&#xff1a; 传输速率为每秒传输量GT/s&#xff0c;而不是每秒位数Gbps&#xff0c;因为传输量包括不提供额外吞吐量的开销位&#xff1b; 比如 PCIe 1.x和PCIe 2.x使用8b / 10b编码方案&#xff0c;导致占用了20% &#xff08…