Redis学习笔记--Redis数据过期策略详解==转

本文对Redis的过期机制简单的讲解一下
  讲解之前我们先抛出一个问题,我们知道很多时候服务器经常会用到redis作为缓存,有很多数据都是临时缓存一下,可能用过之后很久都不会再用到了(比如暂存session,又或者只存放日行情股票数据)那么就会出现一下几个问题了

  1. Redis会自己回收清理不用的数据吗?
  2. 如果能,那如何配置?
  3. 如果不能,如何防止数据累加后大量占用存储空间的问题?

  之前一直接触Redis不是很深入,最近项目当中遇到一个需求场景,需要清空一些存放在Redis的数据,主要是通过一些时间进行过滤,删除那些不满足的数据,但是这样的工作每天都需要进行,那工作量就比较大了,而且每天都需要按时去手动清理,这样做也不切实际,后面发现Redis中有个设置时间过期的功能,即对存储在Redis数据库中的值可以设置一个过期时间。作为一个缓存数据库,这是非常实用的。这就是我们本文要讲到的Redis过期机制。其实这个机制运用的场景十分广泛,比如我们一般项目中的token或者一些登录信息,尤其是短信验证码都是有时间限制的,或者是限制请求次数,如果按照传统的数据库处理方式,一般都是自己判断过期,这样无疑会严重影响项目性能。

一、设置过期时间

  Redis对存储值的过期处理实际上是针对该值的键(key)处理的,即时间的设置也是设置key的有效时间。Expires字典保存了所有键的过期时间,Expires也被称为过期字段。

  • expire key time(以秒为单位)--这是最常用的方式
  • setex(String key, int seconds, String value)--字符串独有的方式

注:
  1、除了字符串自己独有设置过期时间的方法外,其他方法都需要依靠expire方法来设置时间
  2、如果没有设置时间,那缓存就是永不过期
  3、如果设置了过期时间,之后又想让缓存永不过期,使用persist key

1、常用方式

一般主要包括4种处理过期方,其中expire都是以秒为单位,pexpire都是以毫秒为单位的。

 
1 EXPIRE key seconds  //将key的生存时间设置为ttl秒
2 PEXPIRE key milliseconds  //将key的生成时间设置为ttl毫秒 3 EXPIREAT key timestamp  //将key的过期时间设置为timestamp所代表的的秒数的时间戳 4 PEXPIREAT key milliseconds-timestamp  //将key的过期时间设置为timestamp所代表的的毫秒数的时间戳

备注:timestamp为unix时间戳(例如:timestamp=1499788800 表示将在2017.07.12过期)
1、2两种方式是设置一个过期的时间段,就是咱们处理验证码最常用的策略,设置三分钟或五分钟后失效,把分钟数转换成秒或毫秒存储到Redis中。
3、4两种方式是指定一个过期的时间 ,比如优惠券的过期时间是某年某月某日,只是单位不一样。

下面我们就以EXPIREAT为例子简单讲解下用法。

返回值

一个整数值1或EXPIREAT命令的基本语法。

1 redis 127.0.0.1:6379> Expireat KEY_NAME TIME_IN_UNIX_TIMESTAMP

示例

首先,在Redis中创建一个键:akey,并在akey中设置一些值。

1 redis 127.0.0.1:6379> SET akey redis 
2 OK

现在,为设置创建的键设置超时时间为60 秒。

复制代码
 1 127.0.0.1:6379> SET akey redis
 2 OK  3 127.0.0.1:6379> EXPIREAT akey 1393840000  4 (integer) 1  5 127.0.0.1:6379> EXISTS akey  6 (integer) 0  7 127.0.0.1:6379> SET akey redis  8 OK  9 127.0.0.1:6379> EXPIREAT akey 1493840000 10 (integer) 1 11 127.0.0.1:6379> EXISTS akey 12 (integer) 1
复制代码

其他三个用法类似,这里不逐一阐述

2、字符串独有方式

对字符串特殊处理的方式为SETEX命令,SETEX命令为指定的 key 设置值及其过期时间。如果 key 已经存在, SETEX 命令将会替换旧的值。

返回值

设置成功时返回 OK 。

语法

Redis Setex 命令基本语法如下:

redis 127.0.0.1:6379> SETEX KEY_NAME TIMEOUT VALUE

示例

1 redis 127.0.0.1:6379> SETEX mykey 60 redis 2 OK 3 redis 127.0.0.1:6379> TTL mykey 4 60 5 redis 127.0.0.1:6379> GET mykey 6 "redis

二、3种过期策略

  • 定时删除
    • 含义:在设置key的过期时间的同时,为该key创建一个定时器,让定时器在key的过期时间来临时,对key进行删除
    • 优点:保证内存被尽快释放
    • 缺点:
      • 若过期key很多,删除这些key会占用很多的CPU时间,在CPU时间紧张的情况下,CPU不能把所有的时间用来做要紧的事儿,还需要去花时间删除这些key
      • 定时器的创建耗时,若为每一个设置过期时间的key创建一个定时器(将会有大量的定时器产生),性能影响严重
      • 没人用
  • 惰性删除
    • 含义:key过期的时候不删除,每次从数据库获取key的时候去检查是否过期,若过期,则删除,返回null。
    • 优点:删除操作只发生在从数据库取出key的时候发生,而且只删除当前key,所以对CPU时间的占用是比较少的,而且此时的删除是已经到了非做不可的地步(如果此时还不删除的话,我们就会获取到了已经过期的key了)
    • 缺点:若大量的key在超出超时时间后,很久一段时间内,都没有被获取过,那么可能发生内存泄露(无用的垃圾占用了大量的内存)
  • 定期删除
    • 含义:每隔一段时间执行一次删除(在redis.conf配置文件设置hz,1s刷新的频率)过期key操作
    • 优点:
      • 通过限制删除操作的时长和频率,来减少删除操作对CPU时间的占用--处理"定时删除"的缺点
      • 定期删除过期key--处理"惰性删除"的缺点
    • 缺点
      • 在内存友好方面,不如"定时删除"
      • 在CPU时间友好方面,不如"惰性删除"
    • 难点
      • 合理设置删除操作的执行时长(每次删除执行多长时间)和执行频率(每隔多长时间做一次删除)(这个要根据服务器运行情况来定了)

定时删除和定期删除为主动删除:Redis会定期主动淘汰一批已过去的key

惰性删除为被动删除:用到的时候才会去检验key是不是已过期,过期就删除

惰性删除为redis服务器内置策略

定期删除可以通过:

  • 第一、配置redis.conf 的hz选项,默认为10 (即1秒执行10次,100ms一次,值越大说明刷新频率越快,最Redis性能损耗也越大) 
  • 第二、配置redis.conf的maxmemory最大值,当已用内存超过maxmemory限定时,就会触发主动清理策略

 注意:

  • 上边所说的数据库指的是内存数据库,默认情况下每一台redis服务器有16个数据库(关于数据库的设置,看下边代码),默认使用0号数据库,所有的操作都是对0号数据库的操作,关于redis数据库的存储结构,查看 第八章 Redis数据库结构与读写原理
# 设置数据库数量。默认为16个库,默认使用DB 0,可以使用"select 1"来选择一号数据库
# 注意:由于默认使用0号数据库,那么我们所做的所有的缓存操作都存在0号数据库上,
# 当你在1号数据库上去查找的时候,就查不到之前set过得缓存
# 若想将0号数据库上的缓存移动到1号数据库,可以使用"move key 1" databases 16
  • memcached只是用了惰性删除,而Redis同时使用了惰性删除与定期删除,这也是二者的一个不同点(可以看做是redis优于memcached的一点)
  • 对于惰性删除而言,并不是只有获取key的时候才会检查key是否过期,在某些设置key的方法上也会检查(eg.setnx key2 value2:该方法类似于memcached的add方法,如果设置的key2已经存在,那么该方法返回false,什么都不做;如果设置的key2不存在,那么该方法设置缓存key2-value2。假设调用此方法的时候,发现redis中已经存在了key2,但是该key2已经过期了,如果此时不执行删除操作的话,setnx方法将会直接返回false,也就是说此时并没有重新设置key2-value2成功,所以对于一定要在setnx执行之前,对key2进行过期检查)

三、Redis采用的过期策略

惰性删除+定期删除

  • 惰性删除流程
    • 在进行get或setnx等操作时,先检查key是否过期,
    • 若过期,删除key,然后执行相应操作;
    • 若没过期,直接执行相应操作
  • 定期删除流程(简单而言,对指定个数个库的每一个库随机删除小于等于指定个数个过期key)
    • 遍历每个数据库(就是redis.conf中配置的"database"数量,默认为16)
      • 检查当前库中的指定个数个key(默认是每个库检查20个key,注意相当于该循环执行20次,循环体时下边的描述)
        • 如果当前库中没有一个key设置了过期时间,直接执行下一个库的遍历
        • 随机获取一个设置了过期时间的key,检查该key是否过期,如果过期,删除key
        • 判断定期删除操作是否已经达到指定时长,若已经达到,直接退出定期删除。

四、RDB对过期key的处理

过期key对RDB没有任何影响

  • 从内存数据库持久化数据到RDB文件
    • 持久化key之前,会检查是否过期,过期的key不进入RDB文件
  • 从RDB文件恢复数据到内存数据库
    • 数据载入数据库之前,会对key先进行过期检查,如果过期,不导入数据库(主库情况)

五、AOF对过期key的处理

过期key对AOF没有任何影响

  • 从内存数据库持久化数据到AOF文件:
    • 当key过期后,还没有被删除,此时进行执行持久化操作(该key是不会进入aof文件的,因为没有发生修改命令)
    • 当key过期后,在发生删除操作时,程序会向aof文件追加一条del命令(在将来的以aof文件恢复数据的时候该过期的键就会被删掉)
  • AOF重写
    • 重写时,会先判断key是否过期,已过期的key不会重写到aof文件 

转载于:https://www.cnblogs.com/diaozhaojian/p/8716238.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/252021.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

会员连锁配置以及金额走向

PS:所有电子支付方式的资金走向都是同样的,配置的是什么支付方式就走什么支付方式;下面以支付宝为例说明 一、连锁非总机模式 资金走向: 支付宝:收到的钱在主账号配置的支付宝,会员卡的金额在主账号 微信:收…

C# 多线程及同步简介示例

60年代,在OS中能拥有资源和独立运行的基本单位是进程,然而随着计算机技术的发展,进程出现了很多弊端,一是由于进程是资源拥有者,创建、撤消与切换存在较大的时空开销,因此需要引入轻型进程;二是…

Spring Framework 5.1.6、5.0.13 与 4.3.23 发布

开发四年只会写业务代码,分布式高并发都不会还做程序员? Spring Framework 5.1.6、5.0.13 与 4.3.23 发布了。 v5.1.6 包含 49 个 bug 修复和功能改进;v5.0.13 是 5.0.x 系列的最后一个版本,包含了 25 个 bug 修复和功能改进&am…

单目视觉标定:世界坐标系、相机坐标系、图像坐标系、像素坐标系——简单粗暴,粗暴

转:https://blog.csdn.net/chentravelling/article/details/53558096 1.正文 图像处理、立体视觉等等方向常常涉及到四个坐标系:世界坐标系、相机坐标系、图像坐标系、像素坐标系。例如下图: 构建世界坐标系只是为了更好的描述相机的位置在哪…

VSFTP的使用

一、基本安装 1.安装服务 yum -y install vsftpd //centos Redhat apt-get install vsftpd //debian ubuntu 2.开启服务 service vsftpd status //查看状态,默认是关闭的 service vsftpd start 3.开机随操作系统启动 chkconfig vsftpd on4.添加账号 useradd -d /…

OC Swift混编-Swift.h File not found

https://www.jianshu.com/p/f860fe1718ca 2016.09.13 11:53* 字数 266 阅读 1935评论 1喜欢 1今天碰到个神坑,本人项目是OC项目,最近开始使用Swift开始替代.但是,在替代的已开始就出现问题了:新建swift文件,然后提示创建bridging-Hearder文件,然后swift可以使用OC代码了.这些都…

视觉标定,再来一波!!更简单粗暴!!!!!!

继续!!!!!! 一、四个坐标系简介和转换 相机模型为以后一切标定算法的关键,只有这边有相当透彻的理解,对以后的标定算法才能有更好的理解。本人研究了好长时间,几乎每天…

深入浅出NIO之Selector实现原理

2019独角兽企业重金招聘Python工程师标准>>> 前言 Java NIO 由以下几个核心部分组成: 1、Buffer 2、Channel 3、Selector Buffer和Channel在深入浅出NIO之Channel、Buffer一文中已经介绍过,本文主要讲解NIO的Selector实现原理。 之前进行sock…

介绍一下画图小能手matplotlib。

我们在做完数据分析的时候需要把分析出来的结果,做一个图形化的形象表达,这里我们就需要用到画图小能手matplotlib,下面就演示一下常用的条形图和折线图 散点图 散点图的做大的作用是研究两个变量的相关性(正相关,负相…

立体视觉标定源代码C++,简单粗暴!粗暴·······

疑点解答: 摄像机矩阵由内参矩阵和外参矩阵组成,对摄像机矩阵进行QR分解可以得到内参矩阵和外参矩阵。 内参包括焦距、主点、倾斜系数、畸变系数 (1) 其中,fx,fy为焦距,一般情况下&#xff…

MongoDB负载信息一目了然 阿里云HDM重磅发布MongoDB监控和诊断功

2019独角兽企业重金招聘Python工程师标准>>> 混合云数据库管理(HDM)的统一监控、告警、诊断功能新增了对MongoDB的支持。 通过直观的方式将MongoDB多个维度的负载信息统一整合,不仅可以清晰的查看实时负载信息,也可以方…

在iview的Table中添加Select(render)

首先对Render进行分析,在iview官方的文档中,找到了table插入Button的例子: [javascript] view plaincopy { title: Action, key: action, width: 150, align: center, render: (h, params) > { return h(div, [ h(Butt…

工业机械人运动学正逆解,简单粗暴!!!!!!

ur机械臂是六自由度机械臂,由D-H参数法确定它的运动学模型,连杆坐标系的建立如上图所示。 转动关节θi是关节变量,连杆偏移di是常数。 关节编号 α(绕x轴) a(沿x轴) θ(绕z轴&am…

python opencv立体测距 立体匹配BM算法

立体标定应用标定数据转换成深度图标定 在开始之前,需要准备的当然是两个摄相头,根据你的需求将两个摄像头进行相对位置的固定,我是按平行来进行固定的(如果为了追求两个双目图像更高的生命度,也可以将其按一定钝角固…

Vue基础学习(一)------内部指令

一.v-if v-else v-show 指令 1.v-if v-if:是vue 的一个内部指令,指令用在我们的html中,用来判断是否加载html的DOM 现在举个栗子,判断用户的登录操作,用isLogin作为一个判断字段,登录成功,就显示用户的名称 代码&…

StereoRectify()函数定义及用法畸变矫正与立体校正

畸变矫正是上一篇博文的遗留问题,当畸变系数和内外参数矩阵标定完成后,就应该进行畸变的矫正,以达到消除畸变的目的,此其一。 在该系列第一部分的博文中介绍的立体成像原理中提到,要通过两幅图像估计物点的深度信息&a…

死磕 java集合之TreeMap源码分析(三)- 内含红黑树分析全过程

2019独角兽企业重金招聘Python工程师标准>>> 欢迎关注我的公众号“彤哥读源码”,查看更多源码系列文章, 与彤哥一起畅游源码的海洋。 删除元素 删除元素本身比较简单,就是采用二叉树的删除规则。 (1)如果删除的位置有两…

四元素理解

旋转变换_四元数 2017年03月29日 11:59:38 csxiaoshui 阅读数:5686 1.简介 四元数是另一种描述三维旋转的方式,四元数使用4个分量来描述旋转,四元数的描述方式如下: qsxiyjzk,(s,x,y,z∈ℝ)i2j2k2ijk−1 四元数的由…

31、SAM文件中flag含义解释工具--转载

转载:http://www.cnblogs.com/nkwy2012/p/6362996.html SAM是Sequence Alignment/Map 的缩写。像bwa等软件序列比对结果都会输出这样的文件。samtools网站上有专门的文档介绍SAM文件。具体地址:http://samtools.sourceforge.net/SAM1.pdf很多人困惑SAM文…

《Head First设计模式》批注系列(一)——观察者设计模式

最近在读《Head First设计模式》一书,此系列会引用源书内容,但文章内容会更加直接,以及加入一些自己的理解。 观察者模式(有时又被称为模型-视图(View)模式、源-收听者(Listener)模式或从属者模式&#xff…