观察下面的数字金字塔。写一个程序查找从最高点到底部任意处结束的路径,使路径经过数字的和最大。每一步可以从当前点走到左下方的点也可以到达右下方的点。
在上面的样例中,从13到8到26到15到24的路径产生了最大的和86。
【输入】
第一个行包含R(1≤ R≤1000),表示行的数目。
后面每行为这个数字金字塔特定行包含的整数。
所有的被供应的整数是非负的且不大于100。
【输出】
单独的一行,包含那个可能得到的最大的和。
【输入样例】
5 13 11 8 12 7 26 6 14 15 8 12 7 13 24 11
【输出样例】
86
dp:
从下往上找F[1][1]=min{F[2][1]+A[1][1],F[2][2]+A[1][1]}
从F[N-1][1]到F[n-1][n-1]
一行行找到F[1][1];
#include<iostream> using namespace std; int a[1003][1002]; int main(){int n;cin>>n;for(int i=1;i<=n;i++){for(int j=1;j<=i;j++)cin>>a[i][j];}for(int i=n-1;i>=1;i--){for(int j=1;j<=i;j++)a[i][j]+=max(a[i+1][j],a[i+1][j+1]);}cout<<a[1][1]<<endl;return 0; }
1259:【例9.3】求最长不下降序列
时间限制: 1000 ms 内存限制: 65536 KB
提交数: 6847 通过数: 2146
【题目描述】
设有由n(1≤n≤200)n(1≤n≤200)个不相同的整数组成的数列,记为:b(1)、b(2)、……、b(n)b(1)、b(2)、……、b(n)且b(i)≠b(j)(i≠j)b(i)≠b(j)(i≠j),若存在i1<i2<i3<…<iei1<i2<i3<…<ie 且有b(i1)<b(i2)<…<b(ie)b(i1)<b(i2)<…<b(ie)则称为长度为e的不下降序列。程序要求,当原数列出之后,求出最长的不下降序列。
例如13,7,9,16,38,24,37,18,44,19,21,22,63,15。例中13,16,18,19,21,22,63就是一个长度为7的不下降序列,同时也有7 ,9,16,18,19,21,22,63组成的长度为8的不下降序列。
【输入】
第一行为n,第二行为用空格隔开的n个整数。
【输出】
第一行为输出最大个数max(形式见样例);
第二行为max个整数形成的不下降序列,答案可能不唯一,输出一种就可以了,本题进行特殊评测。
【输入样例】
14 13 7 9 16 38 24 37 18 44 19 21 22 63 15
【输出样例】
max=8 7 9 16 18 19 21 22 63
dp:
F[n]为以a[n]为结尾的最长递增序列长度
F[n]=max{F[i]+1&&a[i]<a[n]}
答案是F[i]的最大值(1<=i<=n)
#include<iostream> using namespace std; int a[205]; int F[205]; int main(){int n,maxx,maxxx=0;;cin>>n;for(int i=1;i<=n;i++){cin>>a[i];maxx=0;for(int j=1;j<i;j++){if(a[j]<a[i]){if(F[j]>maxx)maxx=F[j];}}F[i]=maxx+1;if(F[i]>maxxx)maxxx=F[i];}cout<<maxxx<<endl;return 0; }
但是题目要求输出序列,就要保存序列,就多开一维F,存以F[i]结尾的序列
#include<iostream> using namespace std; int a[205]; int F[205][205]; int main(){int n,maxx,maxxx=0,maxn;cin>>n;for(int i=1;i<=n;i++){cin>>a[i];maxx=0;for(int j=1;j<i;j++){if(a[j]<=a[i]){if(F[j][0]>maxx){maxx=F[j][0];for(int w=1;w<=F[j][0];w++)F[i][w]=F[j][w];}}}F[i][0]=maxx+1;F[i][F[i][0]]=a[i];if(F[i][0]>maxxx){maxxx=F[i][0];maxn=i;}}cout<<"max="<<maxxx<<endl;for(int i=1;i<=maxxx;i++){if(i!=1) cout<<" ";cout<<F[maxn][i];}cout<<endl;return 0; }
1261:【例9.5】城市交通路网
时间限制: 1000 ms 内存限制: 65536 KB
提交数: 1680 通过数: 1240
【题目描述】
下图表示城市之间的交通路网,线段上的数字表示费用,单向通行由A->E。试用动态规划的最优化原理求出A->E的最省费用。
如图:求v1到v10的最短路径长度及最短路径。
【输入】
第一行为城市的数量N;
后面是N*N的表示两个城市间费用组成的矩阵。
【输出】
A->E的最省费用。
【输入样例】
10 0 2 5 1 0 0 0 0 0 0 0 0 0 0 12 14 0 0 0 0 0 0 0 0 6 10 4 0 0 0 0 0 0 0 13 12 11 0 0 0 0 0 0 0 0 0 0 3 9 0 0 0 0 0 0 0 0 6 5 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0
【输出样例】
minlong=19 1 3 5 8 10
dp:F[i]代表从起点到i号的最短距离
从前向后推:F[n]=min{f[i]+a[i][n]&&a[i][n]!=0}
然后b[n][]记录到n的路径
#include<iostream> using namespace std; int n; int a[105][105]; int F[100]; int b[105][105]; int main(){cin>>n;for(int i=1;i<=n;i++)b[i][1]=1;int tn=1;for(int i=1;i<=n;i++){F[i]=999999;for(int j=1;j<=n;j++){cin>>a[i][j];}}for(int i=1;i<=n;i++){if(a[1][i]!=0){F[i]=a[1][i];b[i][2]=i;}}for(int i=2;i<n;i++){for(int j=i+1;j<=n;j++){if(a[i][j]!=0){if(a[i][j]+F[i]<F[j]){for(int x=1;x<=n;x++){if(b[i][x]!=0)b[j][x]=b[i][x];else{b[j][x]=j;break;}}F[j]=a[i][j]+F[i];}}}}cout<<"minlong="<<F[n]<<endl;for(int i=1;i<=n;i++){if(b[n][i]==0) break;if(i!=1) cout<<" ";cout<<b[n][i]; } cout<<endl;return 0; }