线性系统的频率响应分析实验报告_动态系统的建模与分析

参考:DR_CAN

1.介绍

解决一个控制系统的问题:

  • 对研究对象进行分析
  • 控制器设计
  • 测试

分析被控对象的物理特性及动态表现,在这个基础上建立数学模型,数学模型可以是动力学模型、热力学模型、流体力学模型和经济学模型等,然后在数学模型的基础上进行控制器的设计,为满足不同的要求就要应用不同的控制方法(传统控制控制、PID控制、非线性控制、自适应控制和优化控制等),紧接着选择测试平台,可以是仿真平台、实验室模型样机和真实设备等。最后不断将实验结果与模型比较,对数学模型不断的验证和更新。

涉及的内容: 动态系统建模:

  • 电力,KCL,KVL
  • 流体
  • 热力学
  • 机械系统

拉普拉斯+微分方程 时域分析 频域分析

2.电路系统建模

基础元件:

equation?tex=%5Cbegin%7Barray%7D%5Bb%5D%7B%7Cc%7Cc%7C%7D+%5Chline%E5%9F%BA%E7%A1%80%E5%85%83%E4%BB%B6+%26+%E5%8D%95%E4%BD%8D+%26%E7%AC%A6%E5%8F%B7%5C%5C+%5Chline%E7%94%B5%E9%87%8F%26%E5%BA%93%E4%BB%91%EF%BC%88c%EF%BC%89%26+q%5C%5C+%5Chline%E7%94%B5%E6%B5%81%26%E5%AE%89%E5%9F%B9%EF%BC%88A%EF%BC%89%26+i%5C%5C+%5Chline%E7%94%B5%E5%8E%8B%26%E4%BC%8F%E7%89%B9%EF%BC%88V%EF%BC%89%26+e%5C%5C+%5Chline%E7%94%B5%E9%98%BB%26%E6%AC%A7%E5%A7%86%EF%BC%88%CE%A9%EF%BC%89%26+R%5C%5C+%5Chline%E7%94%B5%E5%AE%B9%26%E6%B3%95%E6%8B%89%EF%BC%88F%EF%BC%89%26+C%5C%5C+%5Chline%E7%94%B5%E6%84%9F%26%E4%BA%A8%E5%88%A9%EF%BC%88H%EF%BC%89%26+L%5C%5C+%5Cend%7Barray%7D%5C%5C

流速:

equation?tex=i%3D%5Cfrac%7Bdq%7D%7Bdt%7D%5C%5C

电阻电压:

equation?tex=e_R%3DiR%5C%5C

c15a61bbd31d40aaee00551dbf0bd7b6.png

电量:

equation?tex=q%3DCe_c%5C%5C

equation?tex=e_c%3D%5Cfrac%7B1%7D%7BC%7Dq%3D%5Cfrac%7B1%7D%7BC%7D%5Cint_0%5Etidt%5C%5C

c6c21d3090023587f6e460aa3c0fde71.png

电感:

equation?tex=e_L%3DL%5Cfrac%7Bdi%7D%7Bdt%7D%3DLi%5E%7B%5Cprime%7D%5C%5C

8a9eb82a4c254764639778f27bc4e052.png

基尔霍夫定律 KCL:所有进入某节点的电流的总和等于所有离开这个节点的电流的总和

equation?tex=i_1%2Bi_2-i_3-i_4%3D0%5C%5C

6db926dc6e8d2db2b2f719d3e47340f9.png

KVL:沿着闭合回路所有元件两端的电压的代数和为零

equation?tex=e_R-e%3D0%5C%5C

39e6f4b485c072e013b56a20974f31e1.png

a92f40b5a108d4be4ac0d0a650f1234a.png

KVL

equation?tex=e_L%2Be_C%2Be_R-e%3D0%5C%5C

equation?tex=Li%5E%7B%5Cprime%7D%2B%5Cfrac%7B1%7D%7BC%7D%5Cint_0%5Etidt%2BiR%3De%5C%5C

两边求导

equation?tex=Li%5E%7B%5Cprime%5Cprime%7D%2Bi%5E%7B%5Cprime%7DR%2B%5Cfrac%7B1%7D%7BC%7Di%3De%5E%7B%5Cprime%7D%5C%5C

368121eccaf93283b3bb7614c78c78aa.png

equation?tex=L%3D2H+

equation?tex=C%3D%5Cfrac%7B1%7D%7B4%7DF

equation?tex=R_1%3D1%5COmega

equation?tex=R_2%3D3%5COmega

loop 1:

equation?tex=e_L%2Be_C-e_i%3D0%5C%5C

loop 2:

equation?tex=e_%7BR1%7D%2Be_%7BR2%7D-e_C%3D0%5C%5C

合并:

equation?tex=e_L%2Be_%7BR1%7D%2Be_%7BR2%7D-e_i%3D0%5C%5C

这是一个大圈,因此在用KVL时,不一定都用小圈,也可用大圈。

equation?tex=e_L%3DLi_1%5E%7B%5Cprime%7D%3D2i_1%5E%7B%5Cprime%7D

equation?tex=e_C%3D%5Cfrac%7B1%7D%7BC%7D%5Cint_0%5Et+%28i_1-i_2%29+dt%3D4%5Cint_0%5Et+%28i_1-i_2%29+dt

equation?tex=e_%7BR1%7D%3Di_2R_1%3Di_2

equation?tex=e_%7BR1%7D%3Di_2R_2%3D3i_2

loop 1:

equation?tex=2Li_1%5E%7B%5Cprime%7D%2B4%5Cint_0%5Et+%28i_1-i_2%29+dt-e_i%3D0%5Ctag%7B1%7D%5C%5C

loop 2:

equation?tex=4i_2-4%5Cint_0%5Et+%28i_1-i_2%29+dt%3D0%5Ctag%7B2%7D%5C%5C

由(1)(2)式得

equation?tex=2i_1%5E%7B%5Cprime%7D%2B4i_2-e_i%3D0%5Ctag%7B3%7D%5C%5C

由(2)得

equation?tex=i_2%5E%7B%5Cprime%7D%3Di_1-i_2%5C%5C+i_2%5E%7B%5Cprime%5Cprime%7D%3Di_1%5E%7B%5Cprime%7D-i_2%5E%7B%5Cprime%7D+%5Ctag%7B4%7D%5C%5C

由(3)(4)式得

equation?tex=2%28i_2%5E%7B%5Cprime%5Cprime%7D%2Bi_2%5E%7B%5Cprime%7D%29%2B4i_2%3De_i%5Ctag%7B5%7D%5C%5C

equation?tex=e_o
equation?tex=e_i 的关系

equation?tex=e_o%3De_R%3D3i_2%5Ctag%7B6%7D%5C%5C

由(5)(6)式得

equation?tex=2%28e_o%5E%7B%5Cprime%5Cprime%7D%2Be_o%5E%7B%5Cprime%7D%29%2B4e_o%3D3e_i%5C%5C

小结: KVL列方程,然后消掉自己定义的电流


e0b9557d68064994666694263bc862ae.png

loop 1:

equation?tex=i_1R1%2B%28i_1-i_2%29R2-e_i%3D0%5C%5C+%5Cfrac%7B16%7D%7B3%7Di_1-4i_2-e_i%3D0%5Ctag%7B1%7D%5C%5C

loop 2:

equation?tex=%28i_2-i_3%29R3%2Bi_2R4-%28i_1-i_2%29R2%3D0%5C%5C+-4i_1%2B9i_2-3i_3%3D0%5Ctag%7B2%7D%5C%5C

loop 3:

equation?tex=%5Cfrac%7B1%7D%7BC%7D%5Cint_0%5Et+i_3+dt-%28i_2-i_3%29R3%3D0%5C%5C+i_3%3D3C%28i_2%5E%7B%5Cprime%7D-i_3%5E%7B%5Cprime%7D%29%5Ctag%7B3%7D%5C%5C

我们的目的是找到

equation?tex=e_i
equation?tex=e_o 的关系,而
equation?tex=e_o%3D2i_2 ,因此想先消去
equation?tex=i_1
equation?tex=i_3 ,再消去
equation?tex=i_2

由(1)(2)式得

equation?tex=-4%28%5Cfrac%7B3%7D%7B4%7Di_2%2B%5Cfrac%7B3%7D%7B16%7De_i%29%2B9i_2-3i_3%3D0%5C%5C+2i_2-i_3-%5Cfrac%7B1%7D%7B4%7De_i%3D0%5Ctag%7B4%7D%5C%5C

由(3)(4)式得

equation?tex=2i_2-3C%28i_2%5E%7B%5Cprime%7D-i_3%5E%7B%5Cprime%7D%29-%5Cfrac%7B1%7D%7B4%7De_i%3D0%5Ctag%7B5%7D%5C%5C

(5)式还有

equation?tex=i_3%5E%7B%5Cprime%7D 没消去,为了不引入新的变量,对(4)式求导

equation?tex=2i_2%5E%7B%5Cprime%7D-i_3%5E%7B%5Cprime%7D-%5Cfrac%7B1%7D%7B4%7De_i%5E%7B%5Cprime%7D%3D0%5Ctag%7B6%7D%5C%5C

由(5)(6)式得

equation?tex=2i_2-3C%28i_2%5E%7B%5Cprime%7D-%282i_2%5E%7B%5Cprime%7D-%5Cfrac%7B1%7D%7B4%7De_i%5E%7B%5Cprime%7D%29%29-%5Cfrac%7B1%7D%7B4%7De_i%3D0%5C%5C+2i_2%2B3Ci_2%5E%7B%5Cprime%7D-%5Cfrac%7B3%7D%7B4%7DCe_i%5E%7B%5Cprime%7D-%5Cfrac%7B1%7D%7B4%7De_i%3D0%5Ctag%7B7%7D%5C%5C

只有电流

equation?tex=i_2 ,这样就可以引入
equation?tex=e_o

equation?tex=e_o%2B%5Cfrac%7B3%7D%7B2%7DCe_o%5E%7B%5Cprime%7D%3D%5Cfrac%7B1%7D%7B4%7De_i%2B%5Cfrac%7B3%7D%7B4%7DCe_i%5E%7B%5Cprime%7D%5Ctag%7B8%7D%5C%5C

3.流体系统建模

流体系统的几个基本元素: 此处默认为不可压缩的均质流体

equation?tex=%5Cbegin%7Barray%7D%5Bb%5D%7B%7Cc%7Cc%7C%7D+%5Chline++%E5%AF%86%E5%BA%A6+%26+%5Crho+%26+kg%2Fm%5E3+%5C%5C+%5Chline+%E6%B5%81%E9%87%8Fflow+rate%26++q++%26+m%5E3%2Fs%5C%5C+%5Chline%E4%BD%93%E7%A7%AF%26v%26+m%5E3%5C%5C+%5Chline%E9%AB%98%E5%BA%A6hight%26h%26m+%5C%5C+%5Chline%E5%8E%8B%E5%BC%BApressure%26P%26+N%2Fm%5E2%5C%5C+%5Cend%7Barray%7D%5C%5C

压强有三个概念,比如说对于容器的液体来说,它的高度是

equation?tex=h ,横截面积是
equation?tex=A ,由流体重力产生的压强称之为静压(Hydrostatic Pressure)

equation?tex=%5Cbegin%7Baligned%7D+P_%7BHydro%7D+%26+%3D+%5Cfrac%7BF_%7BHydro%7D%7D%7BA%7D++%3D+%5Cfrac%7Bmg%7D%7BA%7D++%3D+%5Cfrac%7B%5Crho+V+g%7D%7BA%7D%5C%5C++%26+%3D+%5Cfrac%7B%5Crho+Ah+g%7D%7BA%7D++%3D+%5Cfrac%7B%5Crho++g+h%7D%7BA%7D+%3D+%5Crho++g+h+%5Cend%7Baligned%7D%5C%5C

除了液体的压强以外还有大气压强,绝对压强(Absolute Pressure)

equation?tex=P_%7Babs%7D%3DP_a%2BP_%7BHydro%7D%3DP_a%2B+%5Crho++g+h%5C%5C

测量出来的压力称为表压(Gauge Pressure)

equation?tex=P_%7Bgauge%7D%3DP_%7Babs%7D-P_a%3D+%5Crho++g+h%5C%5C

82e3b3a05713388398dff8b7666a0038.png

流阻Fluid Resistance 产生流阻的原因是流体在流动的过程中,通过一些管道连接等,这些都会阻碍流体的流动,因此会产生压差,压差和流量相关

equation?tex=P_1-P_2%3D%5Crho+q+R%5C%5C

equation?tex=%5Crho+q%3Dkg%2Fm%5E3%5Ccdot+m%5E3%2Fs%3Dkg%2Fs :每秒钟通过横截面的流体的质量,两边的压力差越大,每秒钟流过的流体的越多。

流阻和电阻的概念非常相似

equation?tex=e_1-e_2%3Di+R%5C%5C

5cf9d1738619bc0ea419e758444a7c05.png

理想压源

equation?tex=P_2%3DP_1%2BP_s%5C%5C

09625c2e3b988263f37d3caf1f53d9b7.png

基本法则-质量守恒定律Conseration of Mass 有了基本元素,还需要基本法则把它们联系在一起,就像电路当中有基尔霍夫定律,在力学当中有牛顿定律一样,这里面我们用到的是质量守恒定律,容器内流体质量的变化

equation?tex=%5Cfrac%7B%5Cmathrm%7Bd%7D+m%7D%7B%5Cmathrm%7Bd%7D+t%7D+%3D%5Cdot%7Bm%7D_%7Bin%7D-%5Cdot%7Bm%7D_%7Bout%7D%5C%5C

式子两边除以

equation?tex=%5Crho

equation?tex=%5Cfrac%7B%5Cmathrm%7Bd%7D+V%7D%7B%5Cmathrm%7Bd%7D+t%7D+%3D%5Cdot%7Bq%7D_%7Bin%7D-%5Cdot%7Bq%7D_%7Bout%7D%5C%5C

equation?tex=%5CRightarrow+A%5Cfrac%7B%5Cmathrm%7Bd%7D+h%7D%7B%5Cmathrm%7Bd%7D+t%7D+%3D%5Cdot%7Bq%7D_%7Bin%7D-%5Cdot%7Bq%7D_%7Bout%7D%5C%5C

equation?tex=%5CRightarrow+%5Cfrac%7B%5Cmathrm%7Bd%7D+h%7D%7B%5Cmathrm%7Bd%7D+t%7D+%3D%5Cfrac%7B1%7D%7BA%7D%28%5Cdot%7Bq%7D_%7Bin%7D-%5Cdot%7Bq%7D_%7Bout%7D%29%5C%5C

742bd5346746932ca0bce520f7c511cb.png

容器底部受到的压力

equation?tex=P%3DP_a%2B%5Crho+gh%5C%5C

其动态方程为

equation?tex=%5Cbegin%7Baligned%7D++%5Cfrac%7B%5Cmathrm%7Bd%7D+P%7D%7B%5Cmathrm%7Bd%7D+t%7D+++%26%3D+%5Cfrac%7B%5Cmathrm%7Bd%7D+%7D%7B%5Cmathrm%7Bd%7D+t%7D%28P_a%2B%5Crho+gh%29%5C%5C++%26+%3D+%5Crho+g%5Cfrac%7B%5Cmathrm%7Bd%7D+h%7D%7B%5Cmathrm%7Bd%7D+t%7D++%5C%5C%26+%3D+%5Cfrac%7B+%5Crho+g%7D%7BA%7D%28%5Cdot%7Bq%7D_%7Bin%7D-%5Cdot%7Bq%7D_%7Bout%7D%29+%5Cend%7Baligned%7D%5C%5C

4edad047a01f2bc244fb1b956b3add7d.png

进口处为

equation?tex=q_%7Bin%7D ,出口处
equation?tex=q_%7Bout%7D ,容器得横截面积为
equation?tex=A ,出口流阻为u
equation?tex=R ,求液面高度的动态方程
equation?tex=%5Cfrac%7Bdh%7D%7Bdt%7D .

由质量守恒定律

equation?tex=%5Cfrac%7B%5Cmathrm%7Bd%7D+V%7D%7B%5Cmathrm%7Bd%7D+t%7D+%3D%5Cdot%7Bq%7D_%7Bin%7D-%5Cdot%7Bq%7D_%7Bout%7D%5C%5C

equation?tex=%5CRightarrow+%5Cfrac%7B%5Cmathrm%7Bd%7D+h%7D%7B%5Cmathrm%7Bd%7D+t%7D+%3D%5Cfrac%7B1%7D%7BA%7D%28%5Cdot%7Bq%7D_%7Bin%7D-%5Cdot%7Bq%7D_%7Bout%7D%29%5C%5C

流阻压差

equation?tex=P_1-P_a%3D%5Crho+q_%7Bout%7DR%5C%5C

equation?tex=+%5Cbegin%7Baligned%7D+q_%7Bout%7D+%26%3D%5Cfrac%7BP_1-P_a%7D%7B%5Crho+R%7D%5C%5C+%26%3D%5Cfrac%7BP_a-%5Crho+gh-P_a%7D%7B%5Crho+R%7D%5C%5C+%26%3D%5Cfrac%7Bgh%7D%7B+R%7D+%5Cend%7Baligned%7D%5C%5C

equation?tex=%5CRightarrow+%5Cfrac%7B%5Cmathrm%7Bd%7D+h%7D%7B%5Cmathrm%7Bd%7D+t%7D+%3D%5Cfrac%7B%5Cdot%7Bq%7D_%7Bin%7D%7D%7BA%7D-%5Cfrac%7Bgh%7D%7B+AR%7D%5C%5C

4.拉普拉斯变换

拉普拉斯变换是控制理论的基础,它广泛的应用于工程分析当中,它可以把时域(

equation?tex=t )上的函数变换到复数域(
equation?tex=s%3D%5Csigma%2Bjw )上,从而大大简化系统分析的难度和复杂程度。

equation?tex=f%28t%29+%5Cto+F%28s%29%5C%5C

先从一个简单的电路系统开始,它的动态方程

equation?tex=e%5E%7B%27%7D%3DLi%5E%7B%27%27%7D%2BRi%5E%7B%27%7D%2B%5Cfrac%7B1%7D%7BC%7Di%5C%5C

db60247f15f87fa005ef1dab20d5efd7.png

定义系统的输入为

equation?tex=e ,输出为
equation?tex=i ,分析电流的变化。本质上就是求解微分方程的过程,假设
equation?tex=g%28t%29 就是变化过程,
equation?tex=g%28t%29 隐含了系统的特征,就是微分方程表现出来的内容,三者的关系其实是一个卷积的过程。因此分析这样一个系统,它涉及到了卷积和微分方程,分析和计算起来都非常麻烦,而且不是很直观。拉普拉斯变换可以帮助我们解决这些问题,通过拉普拉斯变换,微分方程变成了代数方程,卷积运算变成了乘法运算。

c50170c2c923431df528965d0d53d767.png

对时域函数

equation?tex=f%28t%29 作拉普拉斯变换:

equation?tex=%5Cmathcal%7BL%5Bf%28t%29%5D%7D%3DF%28s%29%3D%5Cint_0%5E%5Cinfty+f%28t%29e%5E%7B-st%7Ddt%5C%5C

equation?tex=f%28t%29 是一个平面图形,经过拉普拉斯变换后三维的复数域。当
equation?tex=%5Csigma%3D0 时,从箭头的方向看过去,就是傅里叶变换,可以看到拉普拉斯变换和傅里叶变换的关系。

equation?tex=F%28s%29%3DF%28w%29%3D%5Cint_0%5E%5Cinfty+f%28t%29e%5E%7B-jwt%7Ddt%5C%5C

2b6aeedb8bd73747896cd8f258e38325.png

从上向下看就是复平面,做工程的往往会关注系统的极点和零点在复平面上的位置.


指数函数

equation?tex=f%28t%29%3De%5E%7B-at%7D
的拉普拉斯变换

equation?tex=%5Cbegin%7Baligned%7D+%5Cmathcal%7BL%7D%5Bf%28t%29%5D++%26+%3D+%5Cint_0%5E%5Cinfty+e%5E%7B-at%7D+e%5E%7B-st%7Ddt%5C%5C++%26+%3D+%5Cint_0%5E%5Cinfty+e%5E%7B-%28a%2Bs%29t%7Ddt%5C%5C++%26+%3D+-%5Cfrac%7B1%7D%7Ba%2Bs%7D+%5Cleft.+e%5E%7B-%28a%2Bs%29t%7D%5Cright%7C_0%5E%5Cinfty%5C%5C++%26+%3D+%5Clim_%7Bt+%5Cto+0%7D-%5Cfrac%7B1%7D%7Ba%2Bs%7De%5E%7B-%28a%2Bs%29t%7D-%28-%5Cfrac%7B1%7D%7Ba%2Bs%7D%29%5C%5C++%26+%3D+%5Cfrac%7B1%7D%7Ba%2Bs%7D+%5Cend%7Baligned%7D%5C%5C

拉普拉斯变换的重要性质:符合线性变换,线性变换符合叠加原理

equation?tex=%5Cmathcal%7BL%7D%5Baf%28t%29%2Bbg%28t%29%5D%3DaF%28s%29%2BbG%28s%29+%5C%5C

正弦

equation?tex=%5Csin+at
的拉普拉斯变换:根据欧拉公式转化为复指数

equation?tex=e%5E%7Bi%5Ctheta%7D%3D%5Ccos+%5Ctheta%2Bi%5Csin+%5Ctheta%5C%5C

equation?tex=e%5E%7B-i%5Ctheta%7D%3D%5Ccos+%5Ctheta-i%5Csin+%5Ctheta%5C%5C

两式相减:

equation?tex=e%5E%7Bi%5Ctheta%7D-e%5E%7B-i%5Ctheta%7D%3D2i%5Csin+%5Ctheta%5C%5C+%5Csin%5Ctheta%3D%5Cfrac%7Be%5E%7Bi%5Ctheta%7D-e%5E%7B-i%5Ctheta%7D%7D%7B2i%7D%5C%5C

equation?tex=%5Csin+at%3D%5Cfrac%7Be%5E%7Biat%7D-e%5E%7B-iat%7D%7D%7B2i%7D%5C%5C

因为拉普拉斯变换是一个线性变换:

equation?tex=%5Cbegin%7Baligned%7D+%5Cmathcal%7BL%7D%5Cleft+%5B+%5Cfrac%7Be%5E%7Biat%7D%7D%7B2i%7D+%5Cright+%5D+-%5Cmathcal%7BL%7D%5Cleft+%5B+%5Cfrac%7Be%5E%7B-iat%7D%7D%7B2i%7D+%5Cright+%5D++%26+%3D++%5Cfrac%7B1%7D%7B2i%7D+%5Cleft+%28+%5Cmathcal%7BL%7D%5Cleft+%5B+e%5E%7Biat%7D+%5Cright+%5D+-%5Cmathcal%7BL%7D%5Cleft+%5B+e%5E%7B-iat%7D+%5Cright+%5D++%5Cright+%29+%5C%5C%3Cbr+%2F%3E%26+%3D++%5Cfrac%7B1%7D%7B2i%7D+%5Cleft+%28+%5Cfrac%7B1%7D%7Bs-ai%7D-%5Cfrac%7B1%7D%7Bs%2Bai%7D+%5Cright+%29+%5C%5C++%26+%3D+%5Cfrac%7B1%7D%7B2i%7D+%5Cleft+%28+%5Cfrac%7B2ai%7D%7B%28s-ai%29%28s%2Bai%29%7D+%5Cright+%29%5C%5C%3Cbr+%2F%3E%26+%3D++%5Cfrac%7Ba%7D%7Bs%5E2%2Ba%5E2%7D++%5Cend%7Baligned%7D%5C%5C

导数的拉普拉斯变换:

equation?tex=%5Cmathcal%7BL%7D%5Cleft+%5B+f%5E%7B%27%7D%28t%29+%5Cright+%5D+%3D%5Cint_0%5E%7B%2B%5Cinfty%7Df%5E%7B%27%7D%28t%29e%5E%7B-st%7Ddt%5C%5C

复合函数求积分,用到分部积分:

equation?tex=%5Cint_0%5E%7B%2B%5Cinfty%7Df%5E%7B%27%7D%28t%29g%28t%29dt%3Df%28t%29g%28t%29-%5Cint_0%5E%7B%2B%5Cinfty%7Df%28t%29g%5E%7B%27%7D%28t%29dt%5C%5C

equation?tex=g%28t%29%3De%5E%7B-st%7D%2Cg%5E%7B%27%7D%28t%29%3D-se%5E%7B-st%7D

equation?tex=%5Cbegin%7Baligned%7D+%5Cmathcal%7BL%7D%5Cleft+%5B+f%5E%7B%27%7D%28t%29+%5Cright+%5D%3Cbr+%2F%3E%26+%3D+%5Cleft+.+f%28t%29e%5E%7B-st%7D+%5Cright+%7C_0%5E%7B%5Cinfty%7D-%5Cint_0%5E%7B%2B%5Cinfty%7Df%28t%29%28-se%5E%7B-st%7D%29dt%5C%5C++%26+%3D+%5Clim_%7Bt+%5Cto+%5Cinfty%7Df%28t%29e%5E%7B-st%7D-f%280%29-s%5Cint_0%5E%7B%2B%5Cinfty%7Df%28t%29%28-e%5E%7B-st%7D%29dt%5C%5C++%26+%3D+sF%28s%29-f%280%29%5C%5C+%26+%3D+sF%28s%29+%5Cend%7Baligned%7D%5C%5C

equation?tex=F%28s%29 为拉普拉斯变换,很多时候都把初始条件设置为
equation?tex=f%280%29%3D0

同理可得

equation?tex=%5Cmathcal%7BL%7D%5Cleft+%5B+f%5E%7B%27%27%7D%28t%29+%5Cright+%5D+%3D++s%5E2F%28s%29-sf%280%29-f%5E%7B%27%7D%280%29%5C%5C

equation?tex=%5Cmathcal%7BL%7D%5Cleft+%5B+%5Cint_0%5E%5Cinfty+f%28t%29dt+%5Cright+%5D+%3D++%5Cfrac%7B1%7D%7Bs%7D+F%28s%29%5C%5C

卷积的拉普拉斯变换 能够将卷积运算变成乘积运算,大大简化运算和分析的复杂程度。

equation?tex=%5Cmathcal%7BL%7D%5Cleft+%5B+f%28t%29%2Ag%28t%29+%5Cright+%5D%3DF%28s%29G%28s%29+%5C%5C

回到最初的电路的动态方程:

equation?tex=e%5E%7B%27%7D%3DLi%5E%7B%27%27%7D%2BRi%5E%7B%27%7D%2B%5Cfrac%7B1%7D%7BC%7Di%5C%5C

两端作拉普拉斯变换:

equation?tex=sE%28s%29%3DLs%5E2I%28s%29%2BsRI%28s%29%2B%5Cfrac%7B1%7D%7BC%7DI%28s%29%5C%5C

equation?tex=I%28s%29%3D%5Cfrac%7Bs%7D%7BLs%5E2%2BsR%2B%5Cfrac%7B1%7D%7BC%7D%7DE%28s%29+%5C%5C

可以看到,经过拉普拉斯变换把微分方程变换为代数方程,它只有加减乘除,非常的简单。下图方框称之为传递函数。

a4a4dca07b9ec5bc0e8f40edecf77982.png

5.拉普拉斯变换的收敛域(ROC)与逆变换(ILT)

指数函数的拉普拉斯变换

equation?tex=%5Cbegin%7Baligned%7D+%5Cmathcal%7BL%7D%5Bf%28t%29%5D++%26+%3D+%5Cint_0%5E%5Cinfty+e%5E%7B-at%7D+e%5E%7B-st%7Ddt%5C%5C++%26+%3D+%5Cint_0%5E%5Cinfty+e%5E%7B-%28a%2Bs%29t%7Ddt%5C%5C++%26+%3D+-%5Cfrac%7B1%7D%7Ba%2Bs%7D+%5Cleft.+e%5E%7B-%28a%2Bs%29t%7D%5Cright%7C_0%5E%5Cinfty%5C%5C++%5Cend%7Baligned%7D%5C%5C

如果

equation?tex=s%3D-2a%EF%BC%8C%5Cmathcal%7BL%7D%5Bf%28t%29%5D 是发散的

equation?tex=+%5Cint_0%5E%5Cinfty+e%5E%7B-%28a%2Bs%29t%7Ddt%3D+%5Cint_0%5E%5Cinfty+e%5E%7Bat%7Ddt%5C%5C

加上限制条件,收敛域ROC(Region of lonvergence),把

equation?tex=s%3D%5Csigma%2Bjw%E4%BB%A3%E5%85%A5

equation?tex=%5Cint_0%5E%5Cinfty+e%5E%7B-at%7D+e%5E%7B-%EF%BC%88%5Csigma%2Bjw%EF%BC%89t%7Ddt%3D%5Cint_0%5E%5Cinfty+e%5E%7B-%28a%2B%5Csigma%29t%7De%5E%7B-jwt%7Ddt%5C%5C

根据欧拉公式:

equation?tex=e%5E%7B-jwt%7D%3D%5Ccos+wt-i%5Csin+wt%5C%5C

equation?tex=%5Cleft+%7C+e%5E%7B-jwt%7D+%5Cright+%7C+%3D%5Ccos%5E2+wt%2B%5Csin%5E2+wt%3D1%5C%5C

equation?tex=e%5E%7B-jwt%7D 这一项仅仅带来的是振动,并不会对系统的收敛产生影响。因此收敛域为

equation?tex=-%28a%2B%5Csigma%29%3C0%5C+%5CRightarrow+%5Csigma+%3E-a%5C+%5CRightarrow+Re%28s%29+%3E-a%5C

前面我们已经知道,拉普拉斯能简化运算和分析,为什么还需要微分方程?因为微分方程能够描述动态世界的数学手段。

在经典控制理论和现代控制理论当中,研究对象一般是常系数微分方程,对应的系统就是线性时不变系统,如果是非线性系统的话,一般会在平衡点附近作线性化处理,或者直接采用非线性分析手段。

用拉普拉斯变换求解微分方程的三个步骤:

  • 时域转化到复频域
    equation?tex=t+%5Cto+s ,这里用到拉普拉斯变换
  • 求解代数方程
  • 把结果从复频域转回时域,用到拉普拉斯逆变换

拉普拉斯逆变换

例子

equation?tex=%5Cbegin%7Baligned%7D+F%28s%29++%26+%3D+%5Cfrac%7B-s%2B5%7D%7Bs%5E2%2B5s%2B4%7D%5C%5C++%26+%3D+%5Cfrac%7B-s%2B5%7D%7B%28s%2B4%29%28s%2B1%29%7D%5C%5C++%26+%3D+%5Cfrac%7BA%7D%7Bs%2B4%7D%2B%5Cfrac%7BB%7D%7Bs%2B1%7D%5C%5C++%26+%3D+%5Cfrac%7BA%28s%2B1%29%2BB%28s%2B4%29%7D%7B%28s%2B4%29%28s%2B1%29%7D%5C%5C+%5Cend%7Baligned%7D%5C%5C

equation?tex=%5CRightarrow+A%28s%2B1%29%2BB%28s%2B4%29%3D-s%2B5%5C%5C

equation?tex=s%3D-1%3A%5Cquad+B%28-1%2B4%29%3D1%2B5+%5CRightarrow+B%3D2

equation?tex=s%3D-4%3A%5Cquad+-3A%3D9+%5CRightarrow+A%3D-3

equation?tex=F%28s%29++%3D++%5Cfrac%7B-3%7D%7Bs%2B4%7D%2B%5Cfrac%7B2%7D%7Bs%2B1%7D%5C%5C

两端拉普拉斯逆变换:

equation?tex=%5Cmathcal%7BL%7D%5E%7B-1%7D%5Cleft+%5B+F%28s%29+%5Cright+%5D+++%3D+%5Cmathcal%7BL%7D%5E%7B-1%7D%5Cleft+%5B+%5Cfrac%7B-3%7D%7Bs%2B4%7D%2B%5Cfrac%7B2%7D%7Bs%2B1%7D+%5Cright+%5D+%5C%5C+%3D-3e%5E%7B-4t%7D%2B2e%5E%7B-t%7D%5C%5C

equation?tex=s%3D-1%2Cs%3D-4 称为极点Pole

equation?tex=%5Cbegin%7Baligned%7D+F%28s%29++%26+%3D+%5Cfrac%7B4s%2B8%7D%7Bs%5E2%2B2s%2B5%7D%5C%5C++%26+%3D+%5Cfrac%7B4s%2B8%7D%7B%28s%2B1%2B2i%29%28s%2B1-2i%29%7D%5C%5C++%26+%3D+%5Cfrac%7BA%7D%7Bs%2B1%2B2i%7D%2B%5Cfrac%7BB%7D%7Bs%2B1-2i%7D%5C%5C++%5Cend%7Baligned%7D%5C%5C

equation?tex=%5CRightarrow+A%3Di%2B2%2CB%3D-i%2B2

equation?tex=F%28s%29++%3D+%5Cfrac%7Bi%2B2%7D%7Bs%2B1%2B2i%7D%2B%5Cfrac%7B-i%2B2%7D%7Bs%2B1-2i%7D%5C%5C

equation?tex=%5Cbegin%7Baligned%7D+f%28t%29+%26%3D%5Cmathcal%7BL%7D%5E%7B-1%7D%5BF%28s%29%5D%3D%28i%2B2%29e%5E%7B-%281%2B2i%29t%7D%2B%28-i%2B2%29e%5E%7B-%281-2i%29t%7D%5C%5C+%26%3De%5E%7B-t%7D%5Cleft+%28+ie%5E%7B-2it%7D%2B2e%5E%7B-2it%7D-ie%5E%7B2it%7D%2B2e%5E%7B2it%7D+%5Cright+%29%5C%5C+%26%3De%5E%7B-t%7D%5Cleft+%28+i%5Cleft+%28+e%5E%7B-2it%7D-e%5E%7B2it%7D+%5Cright+%29+%2B2%5Cleft+%28+e%5E%7B-2it%7D%2Be%5E%7B2it%7D+%5Cright+%29++%5Cright+%29%5C%5C+%26%3De%5E%7B-t%7D%282%5Csin+%2B4%5Ccos+2t+%29+%5Cend%7Baligned%7D+%5C%5C

其中,根据欧拉公式有

equation?tex=e%5E%7Bi%5Ctheta%7D%3D%5Ccos+%5Ctheta%2Bi%5Csin+%5Ctheta%5Ctag%7B1%7D%5C%5C

equation?tex=e%5E%7B-i%5Ctheta%7D%3D%5Ccos+%5Ctheta-i%5Csin+%5Ctheta%5Ctag%7B2%7D%5C%5C

(2)-(1)

equation?tex=%5Csin+2t%3D-%5Cfrac%7Be%5E%7B-2it%7D-e%5E%7B2it%7D%7D%7B2i%7D%5C%5C

equation?tex=%5Ccos+2t%3D%5Cfrac%7Be%5E%7B-2it%7D%2Be%5E%7B2it%7D%7D%7B2%7D%5C%5C

6.拉&传&微的关系

重点讲解传递函数

这部分内容非常重要,对经典控制理论、根轨迹、伯德图、信号处理等学习都有很大的帮助,因为都是从这里伸展出去的。

流体系统

742bd5346746932ca0bce520f7c511cb.png

equation?tex=%5Cfrac%7B%5Cmathrm%7Bd%7D+h%7D%7B%5Cmathrm%7Bd%7D+t%7D%2B+%5Cfrac%7Bg%7D%7B+AR%7Dh%3D%5Cfrac%7B%5Cdot%7Bq%7D_%7Bin%7D%7D%7BA%7D%5C%5C

令A=1

equation?tex=x%3Dh 输出

equation?tex=u%3Dq_%7Bin%7D 输入

equation?tex=%5Cdot+x%28t%29%2B+%5Cfrac%7Bg%7D%7B+R%7Dx%28t%29%3Du%28t%29%5C%5C

两端作拉普拉斯变换:

equation?tex=sX%28s%29%2B%5Cfrac%7Bg%7D%7B+R%7DX%28s%29%3DU%28s%29%2C%5Cquad+x%280%29%3D0%5C%5C

equation?tex=s%2B%5Cfrac%7Bg%7D%7B+R%7D%5Cfrac%7BX%28s%29%7D%7BU%28s%29%7D%3D%5Cfrac%7B1%7D%7Bs%2B%5Cfrac%7Bg%7D%7B+R%7D%7D%3DG%28s%29%5C%5C

equation?tex=G%28s%29 称为传递函数

4a896ccfed80c1fd08116fc303f9ec38.png

假设系统的输入为常数,对常数作拉普拉斯变换

equation?tex=u%28t%29%3DC%3DCe%5E0

equation?tex=%5Cmathcal%7BL%7D%5Bu%28t%29%5D%3DC%5Cfrac%7B1%7D%7Bs%2B0%7D+%3DC%5Cfrac%7B1%7D%7Bs%7D+%5C%5C

equation?tex=%5Cbegin%7Baligned%7D+X%28s%29++%26+%3D+U%28s%29G%28s%29++%3D+C%5Cfrac%7B1%7D%7Bs%7D+%5Ccdot+%5Cfrac%7B1%7D%7Bs%2B%5Cfrac%7Bg%7D%7B+R%7D%7D%5C%5C+%26+%3D+C%5Cleft+%28+%5Cfrac%7BA%7D%7Bs%7D%2B+%5Cfrac%7BB%7D%7Bs%2B%5Cfrac%7Bg%7D%7B+R%7D%7D+%5Cright+%29+%5C%5C+%26+%3D+C%5Cfrac%7BA%28s%2B%5Cfrac%7Bg%7D%7B+R%7D%29%2BBs%7D%7Bs%28s%2B%5Cfrac%7Bg%7D%7B+R%7D%29%7D++%5Cend%7Baligned%7D%5C%5C

equation?tex=s%3D0%3AA%3D%5Cfrac%7BR%7D%7Bg%7D

equation?tex=s%3D-%5Cfrac%7Bg%7D%7B+R%7D%3AB%3D-%5Cfrac%7BR%7D%7Bg%7D

equation?tex=%5Cbegin%7Baligned%7D+X%28s%29++%3D+C%5Cleft+%28+%5Cfrac%7BR%7D%7Bg%7D%5Cfrac%7B1%7D%7Bs%7D-%5Cfrac%7BR%7D%7Bg%7D+%5Cfrac%7B1%7D%7Bs%2B%5Cfrac%7Bg%7D%7B+R%7D%7D+%5Cright+%29++%5Cend%7Baligned%7D%3D%5Cfrac%7BCR%7D%7Bg%7D%5Cleft++%28+%5Cfrac%7B1%7D%7Bs%7D-%5Cfrac%7B1%7D%7Bs%2B%5Cfrac%7Bg%7D%7B+R%7D%7D+%5Cright+%29%5C%5C

equation?tex=%5Cbegin%7Baligned%7D+x%28t%29+%26+%3D+%5Cfrac%7BCR%7D%7Bg%7D%5Cleft++%28+e%5E%7B0t%7D-e%5E%7B-%5Cfrac%7Bg%7D%7B+R%7Dt%7D+%5Cright+%29%5C%5C++%26+%3D+%5Cfrac%7BCR%7D%7Bg%7D%5Cleft++%28+1-e%5E%7B-%5Cfrac%7Bg%7D%7B+R%7Dt%7D+%5Cright+%29+%5Cend%7Baligned%7D%5C%5C

当时间

equation?tex=t+%5Cto+%5Cinfty ,系统收敛到
equation?tex=%5Cfrac%7BCR%7D%7Bg%7D 。系统的关键点在指数部分,
equation?tex=0t 不变,
equation?tex=%5Cfrac%7BCR%7D%7Bg%7Dt 随着时间不断的衰减,所以系统是稳定的。

faecf4c79004020326a43e8ad88eabbd.png

7.一阶系统的单位阶跃响应

流体系统

4edad047a01f2bc244fb1b956b3add7d.png

动态方程:

equation?tex=%5Cdot+x%28t%29%2B+%5Cfrac%7Bg%7D%7B+R%7Dx%28t%29%3Du%28t%29%5C%5C

输出是一阶,输入是单位阶跃,称为一阶系统的单位阶跃响应 Unit Step Response.

一般形式:

bd4ccdc2722b5bef3293af29e0d2808c.png

equation?tex=u%28t%29%3D+%5Cbegin%7Bcases%7D+0%5Cquad+%2Ct%3D0+%5C%5C+1%5Cquad%2Ct%3E0+%5Cend%7Bcases%7D+

equation?tex=%5Cmathcal%7BL%7D%5Bu%28t%29%5D%3D%5Cfrac%7B1%7D%7Bs%2B0%7D+%3D%5Cfrac%7B1%7D%7Bs%7D+%5C%5C

equation?tex=X%28s%29%3D%5Cfrac%7B1%7D%7Bs%7D%5Ccdot%5Cfrac%7Ba%7D%7Bs%2Ba%7D%3D%5Cfrac%7BA%7D%7Bs%7D%2B%5Cfrac%7BB%7D%7Bs%2Ba%7D%3D%5Cfrac%7BA%28s%2Ba%29%2BBs%7D%7Bs%28s%2Ba%29%7D%5C%5C

equation?tex=A%28s%2Ba%29%2BBs%3Da

equation?tex=s%3D-a%3A B=-1

equation?tex=s%3D0%3A A=1

两边作拉普拉斯逆变换:

equation?tex=%5Cmathcal%7BL%7D%5E%7B-1%7D%5Cleft+%5B+X%28s%29+%5Cright+%5D+%3D%5Cmathcal%7BL%7D%5E%7B-1%7D+%5Cleft+%5B+%5Cfrac%7B1%7D%7Bs%7D-%5Cfrac%7B1%7D%7Bs%2Ba%7D++%5Cright+%5D%5C%5C

equation?tex=x%28t%29%3D1-e%5E%7B-at%7D%5C%5C

a越大收敛越快。

时间常数 time constant

equation?tex=t%3D%5Ctau+%3D%5Cfrac%7B1%7D%7Ba%7D%5C%5C

equation?tex=x%28%5Ctau%29%3D1-e%5E%7B-a%5Cfrac%7B1%7D%7Ba%7D%7D%3D1-e%5E%7B-1%7D%3D0.63%5C%5C

equation?tex=%5Ctau+%3D%5Cfrac%7B1%7D%7Ba%7D 的时候达到最终状态的63%。

bdf2623baef0520dcf2731e235591254.png

有时候还会引入另一个概念-稳定时间(Steady State)(整定时间)Setting time

equation?tex=T_%7Bss%7D%3D4%5Ctau%5C%5C

equation?tex=x%28T_%7Bss%7D%29%3Dx%28%5Cfrac%7B4%7D%7Ba%7D%29%3D1-e%5E%7B-a%5Cfrac%7B4%7D%7Ba%7D%7D%3D1-e%5E%7B-4%7D%3D0.98%5C%5C

对于一阶线性系统来说,时间常数是特有的,因此可以用时间常数作系统识别。

根据上一节有:

equation?tex=x%28t%29+++%3D+%5Cfrac%7BCR%7D%7Bg%7D%5Cleft++%28+1-e%5E%7B-%5Cfrac%7Bg%7D%7B+R%7Dt%7D+%5Cright+%29%5C%5C

08a2901c75f0d6a6f7cc638ae318d807.png

4秒钟达到稳定时间:

equation?tex=T_%7Bss%7D%3D4%5C%5C

equation?tex=%5CRightarrow+%5Ctau%3D1%5C%5C

系统的传递函数:

equation?tex=G%28s%29%3D%5Cfrac%7B1%7D%7Bs%2B%5Cfrac%7Bg%7D%7BR%7D+%7D+%5C%5C

equation?tex=%5CRightarrow+%5Ctau%3D%5Cfrac%7BR%7D%7Bg%7D%3D1%5C%5C

equation?tex=+%5Cfrac%7BCR%7D%7Bg%7D%3D5+%5CRightarrow+C%3D5%5C%5C

一阶系统与信号处理

一阶系统是一个低通滤波器,低通滤波器只反映了低频变化,高频变化则被过滤了。对于流体系统来说,容器内的液体就起到了抵抗高速变化的作用,是因为它有积累,所以说有积累的都是低通滤波器,它对高速变化不敏感。最典型的积累就是积分,如:

equation?tex=%5Cint+%5Ccos+x+%2B%5Ccos+100x+dx%3D%5Csin+x+%2B%5Cfrac%7B1%7D%7B100%7D+%5Csin+100x+%2BC%5C%5C

高频变化被缩放100倍,相当于被过滤掉了。所以说大家平时多做积累,有了容量以后面对高速变化的世界才可以做到处乱不惊。

379192221c5e45e92ca0576807317e78.png

另一个角度

一阶线性时不变系统1st order LTI:

equation?tex=%5Cdot+x%2Bax%3Dau%2C%5Cquad+t%5Cge+0%2Cu%3D1%5C%5C

equation?tex=%5Cdot+x%3Da%281-x%29%5C%5C

c4b0d3dfad5edbc222cdeda7c82ee38b.png

equation?tex=x%28t%29 单调增,
equation?tex=%5Cdot+x 逐渐减小,
equation?tex=x%28t%29 增加速度减缓,最后为零,可以得到一样的图。

07c96d8a09cdda54038e2ed2b930ad01.png

其他情况,

equation?tex=a%3C0%2Cx%280%29+%5Cne+0

794c0c3ca7b9457be2c3e35020768306.png

Phase-Portrait

8.频率响应与滤波器

信号通过线性时不变系统后频率不变

equation?tex=M_i+%5Csin%28wt%2B%5Cphi_i%29%5Cto+M_o+%5Csin%28wt%2B%5Cphi_o%29%5C%5C

振幅响应 Magnitude Response:

equation?tex=%5Cfrac%7BM_o%7D%7BM_i%7D%3DM+%5C%5C

辐角响应 Phase Response:

equation?tex=%5Cphi_o-%5Cphi_i%3D%5Cphi%5C%5C

c05e4ed0a302abfc81ea40af82d5b755.png

一般形式:

equation?tex=%5Cbegin%7Baligned%7D+u%28t%29++%26+%3D+A%5Csin+wt+%2BB%5Ccos+wt%5C%5C++%26+%3D+%5Csqrt%7BA%5E2%2BB%5E2%7D%5Cleft+%28+%5Cfrac%7BA%7D%7B%5Csqrt%7BA%5E2%2BB%5E2%7D%7D+%5Csin+wt+%2B%5Cfrac%7BB%7D%7B%5Csqrt%7BA%5E2%2BB%5E2%7D%7D+%5Ccos+wt+%5Cright+%29+%5C%5C+%26+%3D+%5Csqrt%7BA%5E2%2BB%5E2%7D%5Cleft+%28+%5Ccos+%5Cphi_i+%5Csin+wt+%2B+%5Csin+%5Cphi_i+%5Ccos+wt+%5Cright+%29+%5C%5C+%26+%3D+%5Csqrt%7BA%5E2%2BB%5E2%7D+%5Csin+%28wt+%2B%5Cphi_i+%29%5C%5C+%26%3DM_i+%5Csin%28wt%2B%5Cphi_i%29+%5Cend%7Baligned%7D%5C%5C

2e3100e1c219279dfde9f91e56501b96.png

两边作拉普拉斯变换:

equation?tex=%5Cbegin%7Baligned%7D+U%28s%29++%26+%3D+%5Cfrac%7BAw%7D%7Bs%5E2%2Bw%5E2%7D+%2B%5Cfrac%7BBs%7D%7Bs%5E2%2Bw%5E2%7D+%5C%5C++%26+%3D+%5Cfrac%7BAw%2BBs%7D%7Bs%5E2%2Bw%5E2%7D+%5C%5C++%26+%3D+%5Cfrac%7BAw%2BBs%7D%7B%28s%2Bjw%29%28s-jw%29%7D+%5Cend%7Baligned%7D+%5C%5C

其中,

equation?tex=j%3D%5Csqrt%7B-1%7D

equation?tex=G%28s%29%3D%5Cfrac%7BD%28s%29%7D%7BN%28s%29%7D+%3D%5Cfrac%7BD%28s%29%7D%7B%28s-p_1%29%28s-p_2%29%5Ccdots+%28s-p_n%29%7D+%5C%5C

equation?tex=p_1%2Cp_2%2C%5Ccdots+%2Cp_n :极点Poles

equation?tex=%5Cbegin%7Baligned%7D+X%28s%29++%26+%3D+U%28s%29G%28s%29%5C%5C++%26+%3D+%5Cfrac%7BAw%2BBs%7D%7B%28s%2Bjw%29%28s-jw%29%7D%5Ccdot++%5Cfrac%7BD%28s%29%7D%7B%28s-p_1%29%28s-p_2%29%5Ccdots+%28s-p_n%29%7D%5C%5C+%26+%3D+%5Cfrac%7BK_1%7D%7Bs%2Bjw%7D%2B++%5Cfrac%7BK_2%7D%7Bs-jw%7D%2B%5Cfrac%7BC_1%7D%7Bs-p_1%7D%2B%5Cfrac%7BC_2%7D%7Bs-p_2%7D%2B%5Ccdots%2B%5Cfrac%7BC_n%7D%7Bs-p_1%7D%5C%5C+%26+%3D+%5Cfrac%7BK_1%28s-jw%29N%28s%29%2BK_2%28s%2Bjw%29N%28s%29%2BC_1%28s%2Bjw%29%28s-jw%29%2BC_2%28s%2Bjw%29%28s-jw%29%28s-p_2%29%5Ccdots+%28s-p_n%29%2B%5Ccdots+%7D%7B%28s%2Bjw%29%28s-jw%29%28s-p_1%29%28s-p_2%29%5Ccdots+%28s-p_n%29%7D%5C%5C+%26+%3D+%5Cfrac%7BAw%2BBs%7D%7B%28s%2Bjw%29%28s-jw%29%28s-p_1%29%28s-p_2%29%5Ccdots+%28s-p_n%29%7D+%5Cend%7Baligned%7D+%5C%5C

拉普拉斯逆变换:

equation?tex=x%28t%29%3DK_1e%5E%7B-jwt%7D%2BK_2e%5E%7Bjwt%7D%2BC_1e%5E%7Bp_1t%7D%2BC_2e%5E%7Bp_2t%7D%2B%5Ccdots+%2BC_ne%5E%7Bp_nt%7D%5C%5C

对于稳定系统,

equation?tex=p_1%2Cp_2%2C%5Ccdots+%2Cp_n 的实部小于0,有

equation?tex=X_%7Bss%7D%28t%29%3DK_1e%5E%7B-jwt%7D%2BK_2e%5E%7Bjwt%7D%5C%5C

ss:Steady State 稳态,由上式可以看出频率响应就是稳态响应。求

equation?tex=K_1%2CK_2 :

equation?tex=K_1%28s-jw%29N%28s%29%2BK_2%28s%2Bjw%29N%28s%29%2BC_1%28s%2Bjw%29%28s-jw%29%5C%5C%2BC_2%28s%2Bjw%29%28s-jw%29%28s-p_2%29%5Ccdots+%28s-p_n%29%2B%5Ccdots%3D%28Aw%2BBs%29D%28s%29%5C%5C

equation?tex=s%3D-jw

equation?tex=K_1%28-jw-jw%29N%28-jw%29%2B0%3D%28Aw-Bjw%29D%28-jw%29%5C%5C

equation?tex=K_1%3D%5Cfrac%7BAw-Bjw%7D%7B-2jw%7D%5Ccdot+%5Cfrac%7BD%28-jw%29%7D%7BN%28-jw%29%7D%3D%5Cfrac%7BB%2BAj%7D%7B2%7DG%28-jw%29%5C%5C

equation?tex=s%3Djw

equation?tex=K_2%3D%5Cfrac%7BB-Aj%7D%7B2%7DG%28jw%29%5C%5C

复数表达:

equation?tex=G%28jw%29%3D%5Cleft+%7C+G%28jw%29+%5Cright+%7C+e%5E%7Bj+%5Cphi_%7BG%7D%7D%5C%5C

equation?tex=%5Cbegin%7Baligned%7D+X_%7Bss%7D%28t%29++%26+%3D+%5Cfrac%7BB%2BAj%7D%7B2%7D++%5Cleft+%7C+G%28jw%29+%5Cright+%7C+e%5E%7B-j+%5Cphi_%7BG%7D%7D+e%5E%7B-jwt%7D%5C%5C+%26+%2B+%5Cfrac%7BB-Aj%7D%7B2%7D++%5Cleft+%7C+G%28jw%29+%5Cright+%7C+e%5E%7Bj+%5Cphi_%7BG%7D%7D+e%5E%7Bjwt%7D%5C%5C+%26+%3D+%5Cfrac%7B1%7D%7B2%7D+%5Cleft+%7C+G%28jw%29+%5Cright+%7C%5Cleft+%28+%28B%2BAj%29e%5E%7B-%28%5Cphi_G+%2Bwt%29j%7D+%2B%28B-Aj%29e%5E%7B%28%5Cphi_G+%2Bwt%29j%7D%5Cright+%29+%5C%5C+%5Cend%7Baligned%7D%5C%5C

欧拉公式:

equation?tex=%5Cbegin%7Baligned%7D+e%5E%7B-%28%5Cphi_G+%2Bwt%29j%7D++%26+%3D+%5Ccos+%28-%28%5Cphi_G+%2Bwt%29%29%2Bj+%5Csin+%28-%28%5Cphi_G+%2Bwt%29%29%5C%5C++%26+%3D+%5Ccos+%28%5Cphi_G+%2Bwt%29-j+%5Csin+%28%5Cphi_G+%2Bwt%29%5C%5C+e%5E%7B%28%5Cphi_G+%2Bwt%29j%7D++%26+%3D+%5Ccos+%28%5Cphi_G+%2Bwt%29%2Bj+%5Csin+%28%5Cphi_G+%2Bwt%29+%5Cend%7Baligned%7D%5C%5C

equation?tex=%5Cbegin%7Baligned%7D+X_%7Bss%7D%28t%29+%3D+%5Cfrac%7B1%7D%7B2%7D+%5Cleft+%7C+G%28jw%29+%5Cright+%7C+%28+%26+B%5Ccos+%28%5Cphi_G+%2Bwt%29-Bj+%5Csin+%28%5Cphi_G+%2Bwt%29+%5C%5C+%2B%26+Aj+%5Ccos+%28%5Cphi_G+%2Bwt%29%2BA+%5Csin+%28%5Cphi_G+%2Bwt%29%5C%5C+%2B%26B%5Ccos+%28%5Cphi_G+%2Bwt%29%2BBj+%5Csin+%28%5Cphi_G+%2Bwt%29+%5C%5C-++%26+Aj+%5Ccos+%28%5Cphi_G+%2Bwt%29%2BA+%5Csin+%28%5Cphi_G+%2Bwt%29%29%5C%5C+%5Cend%7Baligned%7D%5C%5C

equation?tex=%5Cbegin%7Baligned%7D+X_%7Bss%7D%28t%29++%26++%3D+%5Cfrac%7B1%7D%7B2%7D+%5Cleft+%7C+G%28jw%29+%5Cright+%7C+%282B%5Ccos+%28%5Cphi_G+%2Bwt%29%2B2A+%5Csin+%28%5Cphi_G+%2Bwt%29%29%5C%5C+%26%3D%5Cleft+%7C+G%28jw%29+%5Cright+%7C%5Csqrt%7BA%5E2%2BB%5E2%7D%5Cleft+%28+%5Cfrac%7BB%7D%7B%5Csqrt%7BA%5E2%2BB%5E2%7D%7D+%5Ccos+%28%5Cphi_G+%2B+wt%29%2B+%5Cfrac%7BA%7D%7B%5Csqrt%7BA%5E2%2BB%5E2%7D%7D+%5Csin+%28%5Cphi_G+%2B+wt%29++%5Cright+%29+%5C%5C+%26+%3D+%5Cleft+%7C+G%28jw%29+%5Cright+%7C+M_i+%5Csin%28wt%2B%5Cphi_i+%2B%5Cphi_G%29%5C%5C+%26+%3D+M_G+M_i+%5Csin%28wt%2B%5Cphi_i+%2B%5Cphi_G%29+%5Cend%7Baligned%7D%5C%5C

非常非常的重要:

equation?tex=M_G%3D+%5Cleft+%7C+G%28jw%29+%5Cright+%7C%5C%5C

equation?tex=%5Cphi_G%3D%5Cangle+G%28jw%29%5C%5C

积分

equation?tex=%5Cint+u%28t%29dt

equation?tex=G%28s%29%3D%5Cfrac%7B1%7D%7Bs%7D

equation?tex=G%28jw%29%3D%5Cfrac%7B1%7D%7Bjw%7D%3D-%5Cfrac%7B1%7D%7Bjw%7Dj%5E2%3D-%5Cfrac%7B1%7D%7Bw%7Dj%5C%5C

equation?tex=%5Cleft+%7C+G%28jw%29+%5Cright+%7C+%3D%5Cfrac%7B1%7D%7Bw%7D%5C%5C

equation?tex=w 越大,频率越高,频率响应越小,因此频率响应是一个低通滤波器

14cd84a278b0aa6eb8b23ec10ed77c05.png

例子

equation?tex=A+%5Csin+wt+%5Cto+%5Cfrac%7B1%7D%7Bs%7D+%5Cto+%5Cfrac%7B1%7D%7Bw%7DA+%5Csin+%28wt-%5Cfrac%7B%5Cpi%7D%7B2%7D%29%5C%5C

equation?tex=+%5Csin+2t+%5Cto+%5Cfrac%7B1%7D%7Bs%7D+%5Cto+%5Cfrac%7B1%7D%7B2%7D+%5Csin+%282t-%5Cfrac%7B%5Cpi%7D%7B2%7D%29%3D-%5Cfrac%7B1%7D%7B2%7D+%5Ccos+2t%5C%5C

9.一阶系统的频率响应

一阶系统:

equation?tex=G%28s%29%3D%5Cfrac%7Ba%7D%7Bs%2Ba%7D%5C%5C

equation?tex=s%3Djw

equation?tex=G%28jw%29%3D%5Cfrac%7Ba%7D%7Ba%2Bjw%7D%3D%5Cfrac%7Ba%28a-jw%29%7D%7Ba%5E2%2Bw%5E2%7D%5C%5C+%3D%5Cfrac%7Ba%5E2%7D%7Ba%5E2%2Bw%5E2%7D-%5Cfrac%7Baw%7D%7Ba%5E2%2Bw%5E2%7Dj%5C%5C

471015782321b8a242d8f0febc8069c2.png

equation?tex=%5Cbegin%7Baligned%7D+%5Cleft+%7C+G%28jw%29+%5Cright+%7C++%26+%3D+%5Csqrt%7B%5Cleft+%28+%5Cfrac%7Ba%5E2%7D%7Ba%5E2%2Bw%5E2%7D+%5Cright+%29%5E2+%2B%5Cleft+%28+%5Cfrac%7Baw%7D%7Ba%5E2%2Bw%5E2%7D+%5Cright+%29+%5E2%7D%5C%5C++%26+%3D+%5Csqrt%7B+%5Cfrac%7Ba%5E2%28a%5E2%2Bw%5E2%29%7D%7B%28a%5E2%2Bw%5E2%29%5E2%7D+%7D%5C%5C++%26+%3D+%5Csqrt%7B%5Cfrac%7B1%7D%7B1%2B%5Cleft+%28+%5Cfrac%7Bw%7D%7Ba%7D++%5Cright+%29+%5E2%7D%7D+%5Cend%7Baligned%7D%5C%5C

equation?tex=w+%5Cll+a%2C%5Cleft+%7C+G%28jw%29+%5Cright+%7C+%5Cto+1

equation?tex=w+%3D+a%2C%5Cleft+%7C+G%28jw%29+%5Cright+%7C+%3D%5Csqrt%7B%5Cfrac%7B1%7D%7B2%7D+%7D%3D0.707

equation?tex=w+%5Cgg+a%2C%5Cleft+%7C+G%28jw%29+%5Cright+%7C+%5Cto+0

adab5770c3a629f69ec245faef6352e0.png

所以一阶系统的频率响应是一个低通滤波

总结: 无论是室内空调系统、流体系统还是含电容器的电路系统,容器就是一个缓冲器,其本质是抑制高速变化。缓冲也会带来延迟。

8652e545db3dc85ca785ff2372c50861.png

Matlab 仿真

1b3eefa94cd8df44618f26ed2d8a71f0.png

积分前后的对比

84a602ca02a771ad3e025ad5ca483606.png

滤波信号后与原函数的对比 滤波信号延迟45°,振幅变为0.707左右

16ea873f8634ca65601e4350335cffd2.png

equation?tex=%5Cleft+%7C+G%28jw%29+%5Cright+%7C++%3D+%5Csqrt%7B%5Cfrac%7B1%7D%7B1%2B%5Cleft+%28+%5Cfrac%7Bw%7D%7Ba%7D++%5Cright+%29+%5E2%7D%7D%5C%5C

equation?tex=w
equation?tex=a 互换,就是高通滤波器:

equation?tex=%5Cleft+%7C+G%28jw%29+%5Cright+%7C++%3D+%5Csqrt%7B%5Cfrac%7B1%7D%7B1%2B%5Cleft+%28+%5Cfrac%7Ba%7D%7Bw%7D++%5Cright+%29+%5E2%7D%7D%5C%5C

equation?tex=G%28s%29%3D%5Cfrac%7Bs%7D%7Bs%2Ba%7D%5C%5C

把纵轴改为

equation?tex=-20%5Clog+%5Cleft+%7C+G%28jw%29+%5Cright+%7C ,就得到伯德图了。

452057a7e1fb8ea6227d2b10c72111db.png

10.二阶系统对初始条件的动态响应

二阶系统无处不在,运动现象普遍是二阶系统,如牛顿第二定律

equation?tex=F%3Dma%3Dm+%5Cddot+x%5C%5C

质量弹簧阻尼系统

09896cb0eb5b5101d229a55d2afca363.png

阻尼和速度成正比,牛顿第二定律:

equation?tex=%5Cddot+x%2B%5Cfrac%7BB%7D%7Bm%7D%5Cdot+x%2B%5Cfrac%7Bk%7D%7Bm%7Dx%3DF%5C%5C

equation?tex=w_n%3D%5Csqrt%7B%5Cfrac%7Bk%7D%7Bm%7D%7D :固有频率Natural Frequency

equation?tex=%5Czeta++%3D%5Cfrac%7BB%7D%7B2%5Csqrt%7Bkm%7D%7D :阻尼比Damping Ratio

研究零初始条件,无外力的情况下:

equation?tex=F%3D0%2Cx%280%29%3Dx_0%2C%5Cdot+%7Bx%7D%280%29%3D%5Cdot+x_0

将条件代入:

equation?tex=%5Cddot+x%2B2%5Czeta+w_n+%5Cdot+x%2Bw_n%5E2x%3D0%5C%5C

simulink

equation?tex=%5Cddot+x%3D-2%5Czeta+w_n+x-w_n%5E2x

equation?tex=x%280%29%3D5

equation?tex=%5Cdot+x%280%29%3D0

位置为5,速度为0

6bd02fa48203beb5c2d9d9ea53613448.png

equation?tex=x%28t%29%3De%5E%7B%5Clambda+t%7D%2C%5Cdot+x%28t%29%3D%5Clambda+e%5E%7B%5Clambda+t%7D%2C%5Cddot+x%28t%29%3D%5Clambda%5E2+e%5E%7B%5Clambda+t%7D

equation?tex=%5Clambda%5E2+e%5E%7B%5Clambda+t%7D%2B2%5Czeta+w_n+%5Clambda+e%5E%7B%5Clambda+t%7D%2Bw_n%5E2+e%5E%7B%5Clambda+t%7D%3D0%5C%5C

特征方程 Characteristic Equation:

equation?tex=%5Clambda%5E2+%2B2%5Czeta+w_n+%5Clambda+%2Bw_n%5E2+%3D0%5C%5C

equation?tex=%5Clambda+%3D%5Cfrac%7B-2%5Czeta+w_n+%5Cpm+%5Csqrt%7B4%5Czeta%5E2+w_n%5E2-4w_n%5E2%7D%7D%7B2%7D%5C%5C

equation?tex=%5Clambda_1+%3D-%5Czeta+w_n+%2B+w_n+%5Csqrt%7B%5Czeta%5E2+-1%7D%5C%5C+%5Clambda_2+%3D-%5Czeta+w_n+-+w_n+%5Csqrt%7B%5Czeta%5E2+-1%7D%5C%5C

  • equation?tex=%5Czeta%3E1过阻尼Over damped

equation?tex=%5Clambda_1+%3C+-%5Czeta+w_n+%2B+w_n+%5Czeta%3D0%5C%5C

equation?tex=%5Clambda_2+%3C+-%5Czeta+w_n+-+w_n+%5Czeta%3C0%5C%5C

equation?tex=%5Clambda_1+%3E%5Clambda_2%EF%BC%8Ce%5E%7B%5Clambda_2+t%7D

equation?tex=x%28t%29%3DC_1e%5E%7B%5Clambda_1t%7D%2BC_2e%5E%7B%5Clambda_2t%7D%5C%5C

equation?tex=%5Czeta+%3D2

e8f8026a2c95760f137a82109b5fab10.png

  • equation?tex=%5Czeta%3D1
    临界阻尼Critial damped

equation?tex=%5Clambda_1%3D%5Clambda_2+%3D+-+w_n

equation?tex=x%28t%29%3D%28C_1%2BC_2%29e%5E%7B%5Clambda+t%7D%5C%5C

比过阻尼收敛速度快一些

6d9a27ce1e1f17c9b86408ec2be948e9.png

  • equation?tex=0%3C%5Czeta+%3C1
    欠阻尼Under damped

equation?tex=%5Clambda_1+%3D-%5Czeta+w_n+%2B+iw_n+%5Csqrt%7B1-%5Czeta%5E2+%7D%5C%5C+%5Clambda_2+%3D-%5Czeta+w_n+-+iw_n+%5Csqrt%7B1-%5Czeta%5E2+%7D%5C%5C

equation?tex=%5Cbegin%7Baligned%7D+x%28t%29++%26+%3D+e%5E%7B-%5Czeta+w_n+t%7D%5Cleft+%28+C_1+%5Ccos+w_n+%5Csqrt%7B1-%5Czeta%5E2%7Dt%2BC_2+%5Csin+w_n+%5Csqrt%7B1-%5Czeta%5E2%7Dt+%5Cright+%29%5C%5C++%26+%3D+e%5E%7B-%5Czeta+w_n+t%7D+%5Csqrt%7BC_1%2BC_2%7D%5Csin+%28w_dt%2B%5Cphi%29+%5Cend%7Baligned%7D%5C%5C

其中

equation?tex=w_d%3Dw_n+%5Csqrt%7B1-%5Czeta%5E2%7D 为阻尼固有频率,
equation?tex=%5Cphi%3D%5Carctan+%5Cfrac%7BC_1%7D%7BC_2%7D

equation?tex=x%28t%29 的表达式可以看出是震荡衰减的

equation?tex=%5Czeta+%3D0.2

97c6bc08d6efbc2f10154f4f8cf1c911.png

  • equation?tex=%5Czeta+%3D0

equation?tex=%5Cbegin%7Baligned%7D+x%28t%29++%26+%3D+e%5E%7B-%5Czeta+w_n+t%7D%5Cleft+%28+C_1+%5Ccos+w_n+%5Csqrt%7B1-%5Czeta%5E2%7Dt%2BC_2+%5Csin+w_n+%5Csqrt%7B1-%5Czeta%5E2%7Dt+%5Cright+%29%5C%5C++%26+%3D+e%5E0%5Cleft+%28+C_1+%5Ccos+w_nt%2BC_2+%5Csin+w_n+t+%5Cright+%29%5C%5C+%26+%3D++%5Csqrt%7BC_1%2BC_2%7D%5Csin+%28w_nt%2B%5Cphi%29+%5Cend%7Baligned%7D%5C%5C

这是正弦函数,没有衰减

6810acc8b3e3daba9422d3af7fa2cc98.png

  • equation?tex=-1%3C+%5Czeta+%3C0

equation?tex=%5Cbegin%7Baligned%7D+x%28t%29++%26+%3D+e%5E%7B-%5Czeta+w_n+t%7D%5Cleft+%28+C_1+%5Ccos+w_n+%5Csqrt%7B1-%5Czeta%5E2%7Dt%2BC_2+%5Csin+w_n+%5Csqrt%7B1-%5Czeta%5E2%7Dt+%5Cright+%29%5C%5C++%26+%3D+e%5E%7B-%5Czeta+w_n+t%7D+%5Csqrt%7BC_1%2BC_2%7D%5Csin+%28w_dt%2B%5Cphi%29+%5Cend%7Baligned%7D%5C%5C

equation?tex=-%5Czeta+w_n+t+%3E0

  • equation?tex=%5Czeta+%3C-1

11.二阶系统的单位阶跃响应

弹簧质量阻尼系统

09896cb0eb5b5101d229a55d2afca363.png

equation?tex=%5Cddot+x%2B2%5Czeta+w_n+%5Cdot+x%2Bw_n%5E2x%3DF%5C%5C

输入:

equation?tex=u%28t%29%3D%5Cfrac%7BF%7D%7Bw_n%5E2%7D%2Cw_n%5E2 为单位化 输出:
equation?tex=x%28t%29

equation?tex=%5Cddot+x%2B2%5Czeta+w_n+%5Cdot+x%2Bw_n%5E2x%3Dw_n%5E2u%28t%29%5C%5C

上一节用的是微分方程的通解和特解,这小节用拉普拉斯变换:

equation?tex=s%5E2X%28s%29%2B2%5Czeta+w_nsX%28s%29%2Bw_n%5E2X%28s%29%3Dw_n%5E2U%28s%29%5C%5C

传递函数:

equation?tex=H%28s%29%3D%5Cfrac%7BX%28s%29%7D%7BU%28s%29%7D%3D%5Cfrac%7Bw_n%5E2%7D%7Bs%5E2%2B2%5Czeta+w_ns%2Bw_n%5E2%7D%5C%5C

1a9b5e2e4d6e9c8e31512a41a78a95e2.png
  • 单位阶跃

equation?tex=X%28s%29%3DU%28s%29H%28s%29%5C%5C+%3D%5Cfrac%7B1%7D%7Bs%7D+%5Ccdot+%5Cfrac%7Bw_n%5E2%7D%7Bs%5E2%2B2%5Czeta+w_ns%2Bw_n%5E2%7D%5C%5C

极点

equation?tex=s%3Dp_1%3D0

equation?tex=s%5E2%2B2%5Czeta+w_ns%2Bw_n%5E2%3D0%5C%5C

equation?tex=%5Cbegin%7Baligned%7D+s++%26+%3D+%5Cfrac%7B-2%5Czeta+w_n+%5Cpm+%5Csqrt%7B4%5Czeta%5E2+w_n%5E2-4w_n%5E2%7D%7D%7B2%7D%5C%5C++%26+%3D+-%5Czeta+w_n+%5Cpm+w_n+%5Csqrt%7B%5Czeta%5E2-1%7D+%5Cend%7Baligned%7D%5C%5C

欠阻尼

equation?tex=0%3C%5Czeta+%3C1

equation?tex=s+%3D-%5Czeta+w_n+%5Cpm+iw_n+%5Csqrt%7B1-%5Czeta%5E2+%7D%5C%5C

equation?tex=p_2%3D-%5Czeta+w_n+%2B+iw_n+%5Csqrt%7B1-%5Czeta%5E2+%7D

equation?tex=p_3%3D-%5Czeta+w_n+-+iw_n+%5Csqrt%7B1-%5Czeta%5E2+%7D

equation?tex=%5Cbegin%7Baligned%7D+X%28s%29++%26+%3D+%5Cfrac%7BA%7D%7Bs-p_1%7D+%2B%5Cfrac%7BB%7D%7Bs-p_2%7D+%2B%5Cfrac%7BC%7D%7Bs-p_3%7D+%5C%5C++%26+%3D+%5Cfrac%7BA%28s-p_2%29%28s-p_3%29%2BB%28s-p_1%29%28s-p_3%29%2BC%28s-p_1%29%28s-p_2%29%7D%7B%28s-p_1%29%28s-p_2%29%7D++%5Cend%7Baligned%7D%5C%5C

equation?tex=s%3Dp_1%3D0 时:

equation?tex=A%28-p_2%29%28-p_3%29%3Dw_n%5E2%5C%5C

equation?tex=A%28%5Czeta+w_n+-+iw_n+%5Csqrt%7B1-%5Czeta%5E2+%7D%29%28%5Czeta+w_n+%2B+iw_n+%5Csqrt%7B1-%5Czeta%5E2+%7D%29%3Dw_n%5E2%5C%5C

equation?tex=A%28%5Czeta%5E2+w_n%5E2+%2B+w_n%5E2+%281-%5Czeta%5E2+%29%29%3Dw_n%5E2%5C%5C

equation?tex=A++%3D1%5C%5C

equation?tex=s%3Dp_2%3D-%5Czeta+w_n+%2B+iw_n+%5Csqrt%7B1-%5Czeta%5E2+%7D 时:

equation?tex=B%28-%5Czeta+w_n+%2B+iw_n+%5Csqrt%7B1-%5Czeta%5E2+%7D-0%29%28-%5Czeta+w_n%5C%5C+%2B+iw_n+%5Csqrt%7B1-%5Czeta%5E2+%7D%2B%5Czeta+w_n+%2B+iw_n+%5Csqrt%7B1-%5Czeta%5E2+%7D%29%3Dw_n%5E2%5C%5C

equation?tex=B%28-%5Czeta+w_n+%2B+iw_n+%5Csqrt%7B1-%5Czeta%5E2+%7D%29%282+iw_n+%5Csqrt%7B1-%5Czeta%5E2+%7D%29%3Dw_n%5E2%5C%5C

equation?tex=B%28-2i%5Czeta+w_n%5E2%5Csqrt%7B1-%5Czeta%5E2+%7D+-2w_n%5E2%281-%5Czeta%5E2+%29%29%3Dw_n%5E2%5C%5C

equation?tex=%5Cbegin%7Baligned%7D+B++%26+%3D+-%5Cfrac%7B1%7D%7B2%7D+%5Ccdot+%5Cfrac%7B1%7D%7B%281-%5Czeta%5E2+%29%2B+i%5Czeta+%5Csqrt%7B1-%5Czeta%5E2+%7D%7D%5C%5C+%26+%3D+-%5Cfrac%7B1%7D%7B2%7D+%5Ccdot+%5Cfrac%7B%281-%5Czeta%5E2+%29-i%5Czeta+%5Csqrt%7B1-%5Czeta%5E2+%7D%7D%7B%281-%5Czeta%5E2+%29%5E2%2B%5Czeta%5E2+%281-%5Czeta%5E2+%29%7D%5C%5C+%26+%3D+-%5Cfrac%7B1%7D%7B2%7D+%5Ccdot+%5Cfrac%7B1-%5Czeta%5E2+-i%5Czeta+%5Csqrt%7B1-%5Czeta%5E2+%7D%7D%7B1-%5Czeta%5E2%7D%5C%5C+%26+%3D+-%5Cfrac%7B1%7D%7B2%7D+%5Ccdot%5Cleft+%5B+1+-+%5Cfrac%7B%5Czeta+%5Csqrt%7B1-%5Czeta%5E2+%7D%7D%7B1-%5Czeta%5E2%7Di++%5Cright+%5D+%5C%5C+%26+%3D+-%5Cfrac%7B1%7D%7B2%7D+%5Ccdot%5Cleft+%5B+1+-+%5Cfrac%7B%5Czeta+%7D%7B%5Csqrt%7B1-%5Czeta%5E2%7D%7Di++%5Cright+%5D+%5C%5C+%5Cend%7Baligned%7D%5C%5C

equation?tex=s%3Dp_3 :

equation?tex=C%3DB%5E%2A

equation?tex=%5Cbegin%7Baligned%7D+X%28s%29+%26+%3D+%5Cfrac%7B1%7D%7Bs-p_1%7D+%5C%5C%26-+%5Cfrac%7B1%7D%7B2%7D+%5Ccdot%5Cleft+%5B+1+-+%5Cfrac%7B%5Czeta+%7D%7B%5Csqrt%7B1-%5Czeta%5E2%7D%7Di++%5Cright+%5D%5Cfrac%7B1%7D%7Bs-p_2%7D%5C%5C+%26-+%5Cfrac%7B1%7D%7B2%7D+%5Ccdot%5Cleft+%5B+1+%2B+%5Cfrac%7B%5Czeta+%7D%7B%5Csqrt%7B1-%5Czeta%5E2%7D%7Di++%5Cright+%5D+%5Cfrac%7B1%7D%7Bs-p_3%7D+%5C%5C%5Cend%7Baligned%7D%5C%5C

equation?tex=%5Cbegin%7Baligned%7D+x%28t%29+%26+%3D1-%5Cfrac%7B1%7D%7B2%7D+%5Ccdot%5Cleft+%5B+1+-+%5Cfrac%7B%5Czeta+%7D%7B%5Csqrt%7B1-%5Czeta%5E2%7D%7Di++%5Cright+%5De%5E%7Bp_2t%7D%5C%5C+%26+-+%5Cfrac%7B1%7D%7B2%7D+%5Ccdot%5Cleft+%5B+1+%2B+%5Cfrac%7B%5Czeta+%7D%7B%5Csqrt%7B1-%5Czeta%5E2%7D%7Di++%5Cright+%5D+e%5E%7Bp_3t%7D%5C%5C+%26+%3D1-%5Cfrac%7B1%7D%7B2%7D+%5Ccdot%5Cleft+%5B+1+-+%5Cfrac%7B%5Czeta+%7D%7B%5Csqrt%7B1-%5Czeta%5E2%7D%7Di++%5Cright+%5De%5E%7B%28-%5Czeta+w_n+%2B+iw_n+%5Csqrt%7B1-%5Czeta%5E2+%7D%29t%7D%5C%5C+%26+-+%5Cfrac%7B1%7D%7B2%7D+%5Ccdot%5Cleft+%5B+1+%2B+%5Cfrac%7B%5Czeta+%7D%7B%5Csqrt%7B1-%5Czeta%5E2%7D%7Di++%5Cright+%5D+e%5E%7B%28-%5Czeta+w_n+-+iw_n+%5Csqrt%7B1-%5Czeta%5E2+%7D%29t%7D%5C%5C+%26+%3D1-%5Cfrac%7B1%7D%7B2%7De%5E%7B-%5Czeta+w_n+t%7D+%5Ccdot+%5Cleft+%28+%5Cleft+%5B+1+-+%5Cfrac%7B%5Czeta+%7D%7B%5Csqrt%7B1-%5Czeta%5E2%7D%7Di++%5Cright+%5De%5E%7Biw_dt%7D-+%5Cleft+%5B+1+%2B+%5Cfrac%7B%5Czeta+%7D%7B%5Csqrt%7B1-%5Czeta%5E2%7D%7Di++%5Cright+%5D+e%5E%7B-iw_dt%7D+%5Cright+%29+%5C%5C+%26+%3D1-e%5E%7B-%5Czeta+w_n+t%7D+%5Ccdot+%5Cleft+%28%5Cfrac%7B1%7D%7B2%7D+%5Cleft+%28+e%5E%7Biw_dt%7D+%2Be%5E%7B-iw_dt%7D+%5Cright+%29%2B+%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7B%5Czeta+%7D%7B%5Csqrt%7B1-%5Czeta%5E2%7D%7Di+%5Cleft+%28+-e%5E%7Biw_dt%7D+%2Be%5E%7B-iw_dt%7D+%5Cright+%29%5Cright+%29+%5C%5C+%26+%3D1-e%5E%7B-%5Czeta+w_n+t%7D+%5Ccdot+%5Cleft+%28%5Ccos+w_dt%2B%5Cfrac%7B%5Czeta+%7D%7B%5Csqrt%7B1-%5Czeta%5E2%7D%7D+%5Csin+w_dt+%5Cright+%29+%5C%5C+%26+%3D1-e%5E%7B-%5Czeta+w_n+t%7D+%5Csqrt%7B1%2B%5Cfrac%7B%5Czeta%5E2+%7D%7B1-%5Czeta%5E2%7D%7D++%5Csin+%28w_dt+%2B%5Cphi+%29%5C%5C+%26+%3D1-e%5E%7B-%5Czeta+w_n+t%7D+%5Csqrt%7B%5Cfrac%7B1+%7D%7B1-%5Czeta%5E2%7D%7D++%5Csin+%28w_dt+%2B%5Cphi+%29+%5Cend%7Baligned%7D%5C%5C

因此是震荡衰减的。


Matlab 仿真

54014eed0b63157918720731905845f2.png

c1972a936a073673e04025396ee2a65a.png

c8d6b534885dc64046bbb22305d07e34.png

12.二阶系统的性能分析与比较

如何衡量系统的性能?

欠阻尼动态响应:

equation?tex=x%28t%29%3D1-e%5E%7B-%5Czeta+w_n+t%7D+%5Csqrt%7B%5Cfrac%7B1+%7D%7B1-%5Czeta%5E2%7D%7D++%5Csin+%28w_dt+%2B%5Cphi+%29%5C%5C

equation?tex=T_d 延迟时间Delay time:系统达到稳态50%所需的时间

equation?tex=T_r 上升时间Rise time:100%

equation?tex=M_p 最大超调量 Max Overshoot

equation?tex=%28x_p-1%29%5Ctimes+100+%5C%25%5C%5C

equation?tex=x_p%3Dx%28t_p%29

equation?tex=T_%7Bss%7D 稳态时间或调节时间Setting time

6a1a31e1420d4fc8895320ebdbaf1162.png

equation?tex=T_r :

equation?tex=1%3D1-e%5E%7B-%5Czeta+w_n+t_r%7D+%5Csqrt%7B%5Cfrac%7B1+%7D%7B1-%5Czeta%5E2%7D%7D++%5Csin+%28w_dt_r+%2B%5Cphi+%29%5C%5C

equation?tex=%5Csin+%28w_dt_r+%2B%5Cphi+%29%3D0%5C%5C

equation?tex=w_dt_r+%2B%5Cphi%3D%5Cpi%5C%5C

equation?tex=t_r+%3D%5Cfrac%7B%5Cpi-%5Cphi%7D%7Bw_d%7D%5C%5C

equation?tex=M_p :

equation?tex=%5Cdot+x%3D0%2C%5Cquad+1st

equation?tex=t_p%3D%5Cfrac%7B%5Cpi-%7D%7Bw_d%7D%5C%5C

equation?tex=M_p%3De%5E%7B-%5Cfrac%7B%5Czeta+%5Cpi%7D%7B%5Csqrt%7B1-%5Czeta%5E2%7D%7D%7D+%5Ctimes+100+%5C%25%5C%5C

equation?tex=T_%7Bss%7D : 2%
equation?tex=T_%7Bss%7D%3D%5Cfrac%7B4%7D%7B%5Czeta+w_n%7D%5C%5C

5%

equation?tex=T_%7Bss%7D%3D%5Cfrac%7B3%7D%7B%5Czeta+w_n%7D%5C%5C

分析手段和方法

b537200a4e9ca42f8dbb79ea0e8375a0.png
  • 计分规则:1分,2分,3分

equation?tex=T_r 越小越好

equation?tex=M_p 越小越好

equation?tex=T_%7Bss%7D 越小越好

equation?tex=%5Cbegin%7Barray%7D%5Bb%5D%7B%7Cc%7Cc%7C%7D+%5Chline+%26+T_r+%26+M_p+%26+T_%7Bss%7D+%5C%5C+%5Chline+system1%26+3+%261%261+%5C%5C+%5Chline+system2++%26+2+%262%263+%5C%5C+%5Chline+system3++%26+1+%263%262%5C%5C+%5Cend%7Barray%7D%5C%5C

雷达图

bf9b8587e34f00715c3c116a2f31a1df.png

13.二阶系统频率响应分析

不同阻尼比的频率响应

equation?tex=M_i+%5Csin%28wt%2B%5Cphi_i%29%5Cto+G%28s%29+%5Cto+M_o+%5Csin%28wt%2B%5Cphi_o%29%5C%5C

振幅响应:

equation?tex=%5Cfrac%7BM_o%7D%7BM_i%7D%3D%5Cleft+%7C+G%28jw%29+%5Cright+%7C+%5C%5C

辐角响应:

equation?tex=%5Cphi_o+-%5Cphi_i+%3D+%5Cangle+G%28jw%29%5C%5C

用这个结论分析二阶系统

传递函数:

equation?tex=G%28s%29%3D%5Cfrac%7Bw_n%5E2%7D%7Bs%5E2%2B2%5Czeta+w_ns%2Bw_n%5E2%7D%5C%5C

equation?tex=w_n :固有频率

equation?tex=%5Czeta :阻尼比

equation?tex=%5Cbegin%7Baligned%7D+G%28jw%29++%26+%3D+%5Cfrac%7Bw_n%5E2%7D%7B-w%5E2%2B2%5Czeta+w_nwj%2Bw_n%5E2%7D%5C%5C++%26+%3D+%5Cfrac%7B1%7D%7B-%5Cfrac%7Bw%5E2%7D%7Bw_n%5E2%7D%2B2%5Czeta+%5Cfrac%7Bw%7D%7Bw_n%7Dj%2B1%7D%5C%5C+%26+%3D+%5Cfrac%7B1%7D%7B-%5COmega%5E2%2B2%5Czeta+%5COmega+j%2B1%7D%5C%5C+%26+%3D+%5Cfrac%7B1-%5COmega%5E2%2B2%5Czeta+%5COmega+j%7D%7B%281-%5COmega%5E2%29%5E2%2B4%5Czeta%5E2+%5COmega%5E2+%7D%5C%5C+%26+%3D+%5Cfrac%7B1-%5COmega%5E2%7D%7B%281-%5COmega%5E2%29%5E2%2B4%5Czeta%5E2+%5COmega%5E2+%7D-+%5Cfrac%7B2%5Czeta+%5COmega+%7D%7B%281-%5COmega%5E2%29%5E2%2B4%5Czeta%5E2+%5COmega%5E2+%7Dj%5C%5C+%5Cend%7Baligned%7D%5C%5C

其中

equation?tex=%5COmega%3D%5Cfrac%7Bw%7D%7Bw_n%7D ,输入频率比上固有频率

振幅响应:

equation?tex=%5Cbegin%7Baligned%7D+%5Cleft+%7C+G%28jw%29++%5Cright+%7C++%26+%3D+%5Csqrt%7B+Real%5Cleft+%28+G%28jw%29+%5Cright+%29%5E2+%2B+I_m+%5Cleft+%28+G%28jw%29+%5Cright+%29%5E2%7D+%5C%5C+%26+%3D%5Csqrt%7B+%5Cfrac%7B%281-%5COmega%5E2%29%5E2%2B4%5Czeta%5E2+%5COmega%5E2%7D%7B%5Cleft+%28+%281-%5COmega%5E2%29%5E2%2B4%5Czeta%5E2+%5COmega%5E2+%5Cright+%29+%5E2%7D%7D%5C%5C+%26+%3D%5Csqrt%7B+%5Cfrac%7B1%7D%7B%281-%5COmega%5E2%29%5E2%2B4%5Czeta%5E2+%5COmega%5E2+%7D%7D+%5Cend%7Baligned%7D%5C%5C

分析

  • equation?tex=%5COmega%3D0%2C%5Comega%3D0

equation?tex=%5Cleft+%7C+G%28jw%29++%5Cright+%7C+%3D1%5C%5C

  • equation?tex=%5COmega+%5Cto+%5Cinfty%2C%5Comega+%5Cgg+%5Comega_n

equation?tex=%5Cleft+%7C+G%28jw%29++%5Cright+%7C+%5Cto+1%5C%5C

  • equation?tex=%5COmega+%3D1%2C%5Comega+%3D%5Comega_n ,输入频率等于固有频率

equation?tex=%5Cleft+%7C+G%28jw%29++%5Cright+%7C+%3D+%5Cfrac%7B1%7D%7B2%5Czeta%7D%5C%5C

equation?tex=%5Czeta+%3C+0.5

equation?tex=%5Cleft+%7C+G%28jw%29++%5Cright+%7C+%3E+1%5C

equation?tex=%5Czeta+%3E+0.5

equation?tex=%5Cleft+%7C+G%28jw%29++%5Cright+%7C+%3C+1%5C%5C

因此在

equation?tex=%5COmega%3D1 一定存在极值 求极值,令

equation?tex=f%28%5COmega%29%3D%281-%5COmega%5E2%29%5E2%2B4%5Czeta%5E2+%5COmega%5E2%5C%5C

equation?tex=%5Cbegin%7Baligned%7D+%5Cfrac%7B%5Cmathrm%7Bd%7D+f%28%5COmega%29%7D%7B%5Cmathrm%7Bd%7D+%5COmega%7D++%26+%3D+%281-%5COmega%5E2%29%5E2%2B4%5Czeta%5E2+%5COmega%5E2%5C%5C+%26+%3D+2%281-%5COmega%5E2%29%28-2%5COmega%29%2B8%5Czeta%5E2+%5COmega%5C%5C+%26+%3D+%5COmega%28-1%2B%5COmega%5E2%2B2%5Czeta%5E2+%29%3D0%5C%5C+%26%5CRightarrow+-1%2B%5COmega%5E2%2B2%5Czeta%5E2+%3D+0%5C%5C+%26%5CRightarrow+%5COmega%3D%5Csqrt%7B1-2%5Czeta%5E2+%7D+%5Cend%7Baligned%7D%5C%5C

equation?tex=1-2%5Czeta%5E2+%3E0 时存在极值

equation?tex=%5Comega%3D%5Comega_n%5Csqrt%7B1-2%5Czeta%5E2+%7D%5C%5C

这个频率称为系统的谐振振频率,

equation?tex=%5Czeta+%5Cto+0 ,谐振频率和固有频率非常接近
equation?tex=%5Comega+%5Capprox+%5Comega_n

当输入频率等于谐振频率时:

equation?tex=%5Cleft+%7C+G%28jw%29++%5Cright+%7C+_%7B%5Comega+%3D+%5Comega_n%5Csqrt%7B1-2%5Czeta%5E2+%7D%7D%3D%5Cfrac%7B1%7D%7B2%5Czeta+%5Csqrt%7B1-%5Czeta%5E2+%7D%7D+%5C%5C

  • equation?tex=%5Czeta+%3D1%2C%5Comega%3D%5Comega_n 时:

equation?tex=%5Cleft+%7C+G%28jw%29++%5Cright+%7C+%3D+%5Cfrac%7B1%7D%7B2%7D+%5C%5C
  • equation?tex=%5Czeta+%3D0.5%2C%5Comega%3D%5Comega_n%EF%BC%8C%5Comega+%3D+%5Comega_n%5Csqrt%7B1-2%5Czeta%5E2+%7D 时:

equation?tex=%5Cleft+%7C+G%28jw%29++%5Cright+%7C+%3D+1+%5C%5C

equation?tex=%5Cleft+%7C+G%28jw%29++%5Cright+%7C+%3D+1.16+%5C%5C
  • equation?tex=%5Czeta+%3D0%2C%5Comega%3D%5Comega_n 时:

equation?tex=%5Cleft+%7C+G%28jw%29++%5Cright+%7C+%5Cto+%5Cinfty+%5C%5C

对于阻尼比比较小的系统来说,如果外力的频率在谐振频率(极值)附近,那么系统就会表现出强烈的振幅响应,不同的系统有不同的谐振频率,对外界刺激响应也就不同。

不同阻尼比的频率响应

14.伯德图

伯德图是表示频率响应的图示方法,频率响纵坐标改为

equation?tex=-20+%5Clog+M ,和辐角响应合称伯德图。

对于传递函数:

equation?tex=G%28s%29%3D%5Cfrac%7Bs%2B2%7D%7Bs%2B4%7D%5C%5C

直接在命令窗口输入:

>> bode([1 2],[1 4])

e063e04e9c4283626ef73f0ea1b686db.png

dB decibel 分贝 dec 指十分之一,bel人名,分贝表示的是电话、电报的信号损失

equation?tex=dB%3D10%5Clog_%7B10%7D+%5Cfrac%7BP_M%7D%7BP_R%7D%5C%5C

equation?tex=P_M : 测量功率

equation?tex=P_R : 参考功率

加对数是为了把较大的数值降低,便于记录,如

equation?tex=10%5Clog_%7B10%7D+10%5E%7B20%7D%3D120+dB%5C%5C

振幅和功率为平方关系

equation?tex=P%3Df%28M%5E2%29%5C%5C

equation?tex=%5Cbegin%7Baligned%7D+dB++%26+%3D+10%5Clog_%7B10%7D+%5Cfrac%7BP_M%7D%7BP_R%7D+%5C%5C+%26+%3D+10%5Clog_%7B10%7D+%5Cleft+%28+%5Cfrac%7BM_o%7D%7BM_i%7D+%5Cright+%29%5E2+%5C%5C+%26+%3D+20%5Clog_%7B10%7D+%5Cfrac%7BM_o%7D%7BM_i%7D%5C%5C+%26+%3D+20%5Clog_%7B10%7D+M+%5Cend%7Baligned%7D+%5C%5C

积分

equation?tex=G%28j%5Comega%29%3D%5Cfrac%7B1%7D%7Bj+%5Comega%7D%3D-%5Cfrac%7B1%7D%7B+%5Comega%7Dj

equation?tex=%5Cleft+%7C+G%28j%5Comega%29+%5Cright+%7C+%3D%5Cfrac%7B1%7D%7B+%5Comega%7D%5C%5C

equation?tex=20%5Clog_%7B10%7D+%5Cfrac%7B1%7D%7B+%5Comega%7D+%3D+-20%5Clog_%7B10%7D+%5Comega%5C%5C

d91cfc88d0df33a358e45d630fb96e82.png

equation?tex=%5Cleft+%7C+G%28j+%5Comega%29+%5Cright+%7C+%3D%5Csqrt%7B%5Cfrac%7B1%7D%7B1%2B%5Cleft+%28+%5Cfrac%7B%5Comega+%7D%7Ba%7D++%5Cright+%29%5E2%7D%7D%5C%5C

equation?tex=%5Cangle+G%28j+%5Comega%29%3D-%5Carctan+%5Cleft+%28+%5Cfrac%7B%5Comega+%7D%7Ba%7D++%5Cright+%29+%5C%5C

低频

equation?tex=%5Comega+%5Cll+a

equation?tex=%5Cleft+%7C+G%28j+%5Comega%29+%5Cright+%7C+%3D1%5C%5C

equation?tex=20%5Clog_%7B10%7D+%5Cleft+%7C+G%28j+%5Comega%29+%5Cright+%7C+%3D+0%5C%5C

截至频率

equation?tex=%5Comega+%3Da

equation?tex=%5Cleft+%7C+G%28j+%5Comega%29+%5Cright+%7C+%3D%5Csqrt%7B%5Cfrac%7B1%7D%7B2%7D%7D%5C%5C

equation?tex=20%5Clog_%7B10%7D+%5Cleft+%7C+G%28j+%5Comega%29+%5Cright+%7C+%3D+-20%5Clog_%7B10%7D+%5Csqrt%7B2%7D+%3D+-3dB%5C%5C

equation?tex=%5Cangle+G%28j+%5Comega%29%3D-%5Carctan+1%3D-45%C2%B0%5C%5C

高频

equation?tex=%5Comega+%5Cgg+a

equation?tex=%5Cleft+%7C+G%28j%5Comega%29+%5Cright+%7C+%3D%5Cfrac%7B1%7D%7B+%5Comega%7D%5C%5C

equation?tex=20%5Clog_%7B10%7D+%5Cfrac%7B1%7D%7B+%5Comega%7D+%3D+-20%5Clog_%7B10%7D+%5Comega%5C%5C

equation?tex=%5Cangle+G%28j+%5Comega%29%3D-%5Carctan+1%3D-90%C2%B0%5C%5C

152dec7fedeb93fa5188133bf4375d97.png

equation?tex=G%28j%5Comega%29%3DG_1%28j%5Comega%29+%5Ccdot+G_2%28j%5Comega%29%3Dr_1e%5E%7Bj+%5Ctheta_1%7D%5Ccdot+r_2e%5E%7Bj+%5Ctheta_2%7D%3Dr_1r_2e%5E%7Bj+%28%5Ctheta_1%2B%5Ctheta_2%29%7D%5C%5C

equation?tex=%5Cleft+%7C+G%28j%5Comega%29+%5Cright+%7C+%3D20+%5Clg+%5Cleft+%7C+G_1%28j%5Comega%29+%5Cright+%7C+%2B20+%5Clg+%5Cleft+%7C+G_2%28j%5Comega%29+%5Cright+%7C+%5C%5C

例:

equation?tex=G%28s%29%3D%5Cfrac%7B+s%2B4%7D%7Bs%2B8%7D%3D%5Cfrac%7B4%28%5Cfrac%7B1%7D%7B4%7Ds%2B1+%29%7D%7B8%28%5Cfrac%7B1%7D%7B8%7Ds%2B1+%29%7D%3D%5Cfrac%7B1%7D%7B2%7D++%5Ccdot+%28%5Cfrac%7B1%7D%7B4%7Ds%2B1+%29+%5Ccdot+%5Cfrac%7B1%7D%7B%5Cfrac%7B1%7D%7B8%7Ds%2B1%7D+%5C%5C

拆分

equation?tex=%5Cto 叠加
>> bode([0 1],[0 2])

299f9d817f4552cf7cf329311ea524b9.png
>> bode([1/4 1],[0 1])

37cda38be751d2d7cca25070b8fccbad.png
>> bode([0 1],[1/8 1])

b26ccf52b3a7852d0b1472218467a3c5.png
>> bode([1 4],[1 8])

bdabd60f7f6d4b07ee0b4303acd59571.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/246042.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

android 生命周期_Android生命周期组件 Lifecycle 源码详解(一)

在上篇文章:warmcheng:Android生命周期组件 Lifecycle 使用详解​zhuanlan.zhihu.com中,我们讲了 Lifecycle 的简单使用,本篇我们来研究下它的源码。 基础环境搭建首先,按照上篇文章所讲,快速搭建环境。添加…

Leetcode1143. 最长公共子序列(c#)

题解&#xff1a;力扣 public class Solution{public int LongestCommonSubsequence(string text1, string text2){int num1 text1.Length;int num2 text2.Length;int[,] dp new int[num1 1, num2 1];for(int i 0; i < num1; i){for(int j 0; j < num2; j){if(t…

telnet到设备里 php_PHP自动生成设备周检修计划

背景维修人员根据设备年度检修计划&#xff0c;然后制订周检修计划(设备年度计划包含设备一年需要维护几次等信息&#xff0c;根据年度计划分解到某一个周去执行)。在这个过程中&#xff0c;大量的excel复制粘贴工作&#xff0c;浪费人力并且容易出错。并且在审核过程中&#x…

通俗讲解:图像傅里叶变换

转自某乎&#xff1a;通俗讲解&#xff1a;图像傅里叶变换 - 知乎 这里我们主要要讲的是二维图像傅里叶变换&#xff0c;但是我们首先来看一张很厉害的一维傅里叶变换动图。 妈耶~厉害哇&#xff01;它把时域和频域解释的很清楚&#xff01; 什么&#xff01;你看不懂&#x…

数据库断线重连_干货分享—Niushop数据库配置

前几期阿牛ger主讲了代码编码规范&#xff0c;整洁规范的代码有利于我们查询和再次开发&#xff0c;也方便我们检测与修复bug&#xff01;这期&#xff0c;阿牛ger主要与大家分享数据库编码配置&#xff1a;数据库配置Niushop数据库配置方式与thinkphp相同&#xff0c;文件路径…

怎么将matlab滤波器系数导出_matlab与FPGA数字信号处理系列(1)——通过matlab工具箱设计FIR数字滤波器...

以99阶FIR低通滤波器为例&#xff0c;学习使用matlab的fdatool工具箱设计滤波器&#xff0c;并将滤波器系数导出到.coe文件&#xff0c;联合Vivado进行FPGA的FIR滤波器设计。本文滤波器参数为&#xff1a;低通FIR滤波器&#xff0c;窗函数设计&#xff0c;采用布莱克曼窗&#…

UGUI 合批原理

转自&#xff1a; UGUI合批原理笔记 - 赵青青 - 博客园 UGUI合批规则图解_时光不染-CSDN博客_ugui合批规则 合批的过程# 网格更新机制# Cavans.SendWillRenderCanvas m_LayoutRebuildQueuem_GraphicRebuildQueueCanvas.BuildBatch 更新所有DrawCall WaitingForJob 子线程网格…

vb.net 设置打印纸张与页边距_装订文档时不想让文字被挡住?在Excel中你可以这样设置打印!...

平时我们在打印文档的时候&#xff0c;通常会把文档左侧的页边距设置的大一点&#xff0c;这样在装订的时候显得美观一点。但如果我们进行双面打印时&#xff0c;文档左右两边的页边距刚好相反&#xff0c;装订时第2页的文本很容易被挡住&#xff0c;这样子反而更难装订了。那么…

CPU Cache原理与示例

转自这篇 CPU Cache&#xff0c;估计也没人看 基础知识 首先&#xff0c;我们都知道现在的 CPU 多核技术&#xff0c;都会有几级缓存&#xff0c;老的 CPU 会有两级内存&#xff08;L1 和 L2&#xff09;&#xff0c;新的CPU会有三级内存&#xff08;L1&#xff0c;L2&#x…

python集合的基本操作不包括_Python基础知识储备,List集合基本操作大盘点

List列表是Python中最基本的数据结构&#xff0c;也是Python中使用频率最高的数据类型&#xff0c;List列表中的元素不需要具有相同类型&#xff0c;使用起来非常方便。现在就来体验一下List列表的基本操作。 list集合基本操作 List的基本操作&#xff08;&#xff0c;copy&…

mysql blob hex_数据库的完整备份与恢复 quot;--hex-blobquot; - - ITeye博客

闲言少絮&#xff0c;这个程序利用MySql数据库自带小程序进行数据库的备份和还原。这两个程序分别是&#xff1a;mysql.exe和mysqldump.exe。这两个程序在您安装Mysql数据库的时候会自动安装到数据库的bin目录。这两个程序存在的目录为&#xff1a;C:\Program File\MySQL\MySQL…

android中怎么保存checkbox中的checked属性_Vue 精粹:v-model指令在组件中怎么玩

最近在写组件的时候&#xff0c;遇到了 v-model 的使用问题&#xff0c;在 Vue 官方文档中&#xff0c;有两小端内容是关于 v-model 指令在组件中的使用,查阅文档后&#xff0c;依然不得要领&#xff0c;最后几番折腾&#xff0c;理论结合实践&#xff0c;终于领悟其精髓&#…

linux location root访问文件夹404_如何使网站支持https访问?nginx配置https证书

购买SSL证书要想使用https访问你的网址&#xff0c;首先得拥有颁发的SSL证书。我使用的是免费版&#xff0c;有效期为一年&#xff0c;过期后再重新申请。申请SSL证书购买后&#xff0c;可在搜索框输入证书关键字进入到控制台。点击证书申请&#xff0c;按照提示填写完相关信息…

mysql rank函数_Sql 四大排名函数(ROW_NUMBER、RANK、DENSE_RANK、NTILE)简介

排名函数是Sql Server2005新增的功能&#xff0c;下面简单介绍一下他们各自的用法和区别。我们新建一张Order表并添加一些初始数据方便我们查看效果。表结构和初始数据Sql附上表结构和初始数据图&#xff1a;一、ROW_NUMBERrow_number的用途的非常广泛&#xff0c;排序最好用他…

git2.29.2.2怎么安装_MySQL5.5怎么安装

安装MySQL5.5的步骤&#xff1a;1、 官网下载mysql5.5下载地址&#xff1a;http://dev.mysql.com/downloads/mysql/5.5.html#downloads2、 安装mysql5.5注意&#xff0c;安装之前&#xff0c;请关闭杀毒软件。1)、 打开下载的mysql-5.5.53-winx64.msi2) 、点击下一步3)、 选中复…

未声明spire。它可能因保护级别而不可访问_信息系统安全:访问控制技术概述...

1.访问控制基本概念身份认证技术解决了识别“用户是谁”的问题&#xff0c;那么认证通过的用户是不是可以无条件地使用所有资源呢&#xff1f;答案是否定的。访问控制(Access Control)技术就是用来管理用户对系统资源的访问。访问控制是国际标准ISO7498-2中的五项安全服务之一&…

c++反汇编与逆向分析技术揭秘_C++反汇编与逆向分析技术揭秘

一、单类继承在父类中声明为私有的成员&#xff0c;子类对象无法直接访问&#xff0c;但是在子类对象的内存结构中&#xff0c;父类私有的成员数据依然存在。C语法规定的访问限制仅限于编译层面&#xff0c;在编译过程中进行语法检查&#xff0c;因此访问控制不会影响对象的内存…

std::atomic原子操作

第十一节std::atomic原子操作_HITXJ的博客-CSDN博客_std::atomic用法

php与mysql列表_PHP+Mysql+jQuery实现的查询和列表框选择

本篇文章主要介绍PHPMysqljQuery实现的查询和列表框选择&#xff0c;感兴趣的朋友参考下&#xff0c;希望对大家有所帮助。本文讲解如何通过ajax查询mysql数据&#xff0c;并将返回的数据显示在待选列表中&#xff0c;再通过选择最终将选项加入到已选区&#xff0c;可以用在许多…

range函数python2和3区别_range函数python2和3区别

range函数是一个用来创建算数级数序列的通用函数&#xff0c;返回一个[start, start step, start 2 * step, ...]结构的整数序列&#xff1b;py2中的range()函数用法&#xff1a;&#xff08;推荐学习&#xff1a;Python视频教程&#xff09; range()返回的是一个列表>>&…