第3章
栈和队列
一、基础知识题
3.1 有五个数依次进栈:1,2,3,4,5。在各种出栈的序列中,以3,4先出的序列有哪几个。(3在4之前出栈)。
【解答】34215 ,34251, 34521
3.2 铁路进行列车调度时,常把站台设计成栈式结构,若进站的六辆列车顺序为:1,2,3,4,5,6, 那么是否能够得到435612, 325641, 154623和135426的出站序列,如果不能,说明为什么不能; 如果能, 说明如何得到(即写出"进栈"或"出栈"的序列)。
【解答】输入序列为123456,不能得出435612和154623。不能得到435612的理由是,输出序列最后两元素是12,前面4个元素(4356)得到后,栈中元素剩12,且2在栈顶,不可能让栈底元素1在栈顶元素2之前出栈。不能得到154623的理由类似,当栈中元素只剩23,且3在栈顶,2不可能先于3出栈。 得到325641的过程如下:1 2 3顺序入栈,32出栈,得到部分输出序列32;然后45入栈,5出栈,部分输出序列变为325;接着6入栈并退栈,部分输出序列变为3256;最后41退栈,得最终结果325641。
得到135426的过程如下:1入栈并出栈,得到部分输出序列1;然后2和3入栈,3出栈,部分输出序列变为13;接着4和5入栈,5,4和2依次出栈,部分输出序列变为13542;最后6入栈并退栈,得最终结果135426。
3.3 若用一个大小为6的数组来实现循环队列,且当前rear和front的值分别为0和3,当从队列中删除一个元素,再加入两个元素后,rear和front的值分别为多少?
【解答】2和 4
3.4 设栈S和队列Q的初始状态为空,元素e1,e2,e3,e4,e5和e6依次通过栈S,一个元素出栈后即进队列Q,若6个元素出队的序列是e3,e5,e4,e6,e2,e1,则栈S的容量至少应该是多少?
【解答】 4
3.5 循环队列的优点是什么,如何判断“空”和“满”。
【解答】循环队列解决了常规用0--m-1的数组表示队列时出现的“假溢出”(即队列未满但不能入队)。在循环队列中我们仍用队头指针等于队尾指针表示队空,而用牺牲一个单元的办法表示队满,即当队尾指针加1(求模)等于队头指针时,表示队列满。也有通过设标记以及用一个队头或队尾指针加上队中元素个数来区分队列的“空”和“满”的。
3.6 设长度为n的链队列用单循环链表表示,若只设头指针,则入队和出队的时间如何?若只设尾指针呢?
【解答】若只设头指针,则入队的时间为O(n),出队的时间为O(1)。若只设尾指针,则入队和出队的时间均为O(1)。
3.7 指出下面程序段的功能是什么?
(1) void demo1(SeqStack S)
{int i,arr[64],n=0;
while(!StackEmpty(S)) arr[n++]=Pop(S);