经典的卷积神经网络简介

引言

本文主要用于对7个经典卷积神经网络的初识,大致了解各个网络提出的背景,以及各自对卷积神经网络发展的作用(即网络的特点)。

  • 经典的卷积神经网络:
    • LeNet
    • AlexNet
    • ZF Net
    • VGG
    • GoogLeNet
    • ResNet
    • DenseNet

参考: CNN网络架构演进:从LeNet到DenseNet(本文内容来源,强力推荐)

LeNet(5层)

  • 提出背景:LeCun在1998年提出,用于解决手写数字识别的视觉任务。

  • 历史意义:定义了CNN的基本组件,是CNN的鼻祖。自此,CNN的最基本的架构确定下来:卷积层、池化层、全连接层。如今各大深度学习框架中所使用的LeNet都是简化改进过的LeNet-5(-5表示具有5个层),和原始的LeNet有些许不同,比如把激活函数改为了现在很常用的ReLu。

  • 经典的LeNet-5网络结构:如下图。

    LetNet

  • 数据矩阵计算
    • 输入是单通道的28*28大小矩阵,用矩阵表示就是[1,28,28];
    • cov1:20个5*5的卷积核,滑动步长为1,经过该层后尺寸变为24,28-5+1=24,输出矩阵为[20,24,24];
    • pool1:2*2,步长2,池化操作后,尺寸减半,变为12×12,输出矩阵为[20,12,12];
    • cov2:50个5*5的卷积核,步长1,卷积后尺寸变为8,12-5+1=8,输出矩阵为[50,8,8];
    • pool2:2*2,步长2,池化操作后,尺寸减半,变为4×4,输出矩阵为[50,4,4];
    • fc1:输入为[50,4,4],神经元数目为500,再接relu激活函数,输出为500;
    • fc2:输入为500,神经元个数为10,得到10维的特征向量;
    • output:输入为10维的特征向量,送入softmaxt分类,得到分类结果的概率output。

      cov为卷积层,pool为池化层,fc的全连接层。

AlexNet(8层)

  • 提出背景:AlexNet在2012年ImageNet竞赛中以超过第二名10.9个百分点的绝对优势一举夺冠,从此深度学习和卷积神经网络名声鹊起,深度学习的研究如雨后春笋般出现,AlexNet的出现可谓是卷积神经网络的王者归来。

  • 历史意义

    • 更深的网络
    • 数据增广:数据增广技巧来增加模型泛化能力;
    • ReLU:ReLU代替Sigmoid来加快SGD的收敛速度;
    • dropout:有效缓解了模型的过拟合;
    • LRN:局部响应归一化,减小高激活神经元的使用,后发现这个不起作用,目前已弃用。

Dropout原理类似于浅层学习算法的中集成算法,该方法通过让全连接层的神经元(该模型在前两个全连接层引入Dropout)以一定的概率失去活性(比如0.5)失活的神经元不再参与前向和反向传播,相当于约有一半的神经元不再起作用。在测试的时候,让所有神经元的输出乘0.5。Dropout的引用,有效缓解了模型的过拟合。

Local Responce Normalization(LRN):局部响应归一层的基本思路是,假如这是网络的一块,比如是 13×13×256, LRN 要做的就是选取一个位置,比如说这样一个位置,从这个位置穿过整个通道,能得到 256 个数字,并进行归一化。进行局部响应归一化的动机是,对于这张 13×13 的图像中的每个位置来说,我们可能并不需要太多的高激活神经元。但是后来,很多研究者发现 LRN 起不到太大作用,因为并不重要,而且我们现在并不用 LRN 来训练网络。

ZF-Net(8层)

  • 提出背景:ZFNet是2013ImageNet分类任务的冠军,其网络结构没什么改进,主要是参数的变化,性能较Alex提升了不少。ZF-Net只是将AlexNet第一层卷积核由11变成7,步长由4变为2,第3,4,5卷积层转变为384,384,256。

VGG-Nets(19层)

  • 提出背景:VGG-Nets是由牛津大学VGG(Visual Geometry Group)提出,是2014年ImageNet竞赛定位任务的第一名和分类任务的第二名的中的基础网络。VGG可以看成是加深版本的AlexNet. 都是conv layer + FC layer,在当时看来这是一个非常深的网络了,因为层数高达十多层,我们从其论文名字就知道了(《Very Deep Convolutional Networks for Large-Scale Visual Recognition》),当然以现在的目光看来VGG真的称不上是一个very deep的网络。

  • 历史意义

    • 卷积层使用更小的filter尺寸和间隔:VGG-Nets,用到的卷积核的尺寸无非都是1×1和3×3的小卷积核,可以替代大的filter尺寸;

3×3卷积核的优点:

  • 多个3×3的卷基层比一个大尺寸filter卷基层有更多的非线性,使得判决函数更加具有判决性
  • 多个3×3的卷积层比一个大尺寸的filter有更少的参数,假设卷基层的输入和输出的特征图大小相同为C,那么三个3×3的卷积层参数个数3×(3×3×C×C)=27CC;一个7×7的卷积层参数为49CC;所以可以把三个3×3的filter看成是一个7×7filter的分解(中间层有非线性的分解)

1*1卷积核的优点:作用是在不影响输入输出维数的情况下,对输入进行线性形变,然后通过Relu进行非线性处理,增加网络的非线性表达能力。

GoogLeNet(22层)

  • 提出背景:GoogLeNet在2014的ImageNet分类任务上击败了VGG-Nets夺得冠军,其实力肯定是非常深厚的,GoogLeNet跟AlexNet,VGG-Nets这种单纯依靠加深网络结构进而改进网络性能的思路不一样,它另辟幽径,在加深网络的同时(22层),也在网络结构上做了创新,引入Inception结构代替了单纯的卷积+激活的传统操作(这思路最早由Network in Network提出)。GoogLeNet进一步把对卷积神经网络的研究推上新的高度。
  • 历史意义
    • 引入Inception结构;
    • 中间层的辅助LOSS单元;
    • 后面的全连接层全部替换为简单的全局平均pooling。

ResNet(152层)

  • 提出背景:2015年何恺明推出的ResNet在ISLVRC和COCO上横扫所有选手,获得冠军。ResNet在网络结构上做了大创新,而不再是简单的堆积层数,ResNet在卷积神经网络的新思路,绝对是深度学习发展历程上里程碑式的事件。

  • 历史意义

    • 层数非常深,已经超过百层;
    • 引入残差单元来解决退化问题;
  • 维度匹配方案:

    • zero_padding:对恒等层进行0填充的方式将维度补充完整,这种方法不会增加额外的参数;
    • projection:在恒等层采用1x1的卷积核来增加维度。这种方法会增加额外的参数。

DenseNet

  • 提出背景:自Resnet提出以后,ResNet的变种网络层出不穷,都各有其特点,网络性能也有一定的提升。本文介绍的最后一个网络是CVPR 2017最佳论文DenseNet,论文中提出的DenseNet(Dense Convolutional Network)主要还是和ResNet及Inception网络做对比,思想上有借鉴,但却是全新的结构,网络结构并不复杂,却非常有效,在CIFAR指标上全面超越ResNet。可以说DenseNet吸收了ResNet最精华的部分,并在此上做了更加创新的工作,使得网络性能进一步提升。

  • 历史意义:密集连接:缓解梯度消失问题,加强特征传播,鼓励特征复用,极大的减少了参数量

在同层深度下获得更好的收敛率,DenseNet具有非常强大的内存占用。

keras代码实现:

  • LeNet的Keras实现:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    def LeNet():
    model = Sequential()
    model.add(Conv2D(32,(5,5),strides=(1,1),input_shape=(28,28,1),padding='valid',activation='relu',kernel_initializer='uniform'))
    model.add(MaxPooling2D(pool_size=(2,2)))
    model.add(Conv2D(64,(5,5),strides=(1,1),padding='valid',activation='relu',kernel_initializer='uniform'))
    model.add(MaxPooling2D(pool_size=(2,2)))
    model.add(Flatten())
    model.add(Dense(100,activation='relu'))
    model.add(Dense(10,activation='softmax'))
    return model
  • AlexNet的Keras实现:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    def AlexNet():

    model = Sequential()
    model.add(Conv2D(96,(11,11),strides=(4,4),input_shape=(227,227,3),padding='valid',activation='relu',kernel_initializer='uniform'))
    model.add(MaxPooling2D(pool_size=(3,3),strides=(2,2)))
    model.add(Conv2D(256,(5,5),strides=(1,1),padding='same',activation='relu',kernel_initializer='uniform'))
    model.add(MaxPooling2D(pool_size=(3,3),strides=(2,2)))
    model.add(Conv2D(384,(3,3),strides=(1,1),padding='same',activation='relu',kernel_initializer='uniform'))
    model.add(Conv2D(384,(3,3),strides=(1,1),padding='same',activation='relu',kernel_initializer='uniform'))
    model.add(Conv2D(256,(3,3),strides=(1,1),padding='same',activation='relu',kernel_initializer='uniform'))
    model.add(MaxPooling2D(pool_size=(3,3),strides=(2,2)))
    model.add(Flatten())
    model.add(Dense(4096,activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(4096,activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(1000,activation='softmax'))
    return model
  • ZF-Net的Keras实现:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    def ZF_Net():
    model = Sequential()
    model.add(Conv2D(96,(7,7),strides=(2,2),input_shape=(224,224,3),padding='valid',activation='relu',kernel_initializer='uniform'))
    model.add(MaxPooling2D(pool_size=(3,3),strides=(2,2)))
    model.add(Conv2D(256,(5,5),strides=(2,2),padding='same',activation='relu',kernel_initializer='uniform'))
    model.add(MaxPooling2D(pool_size=(3,3),strides=(2,2)))
    model.add(Conv2D(384,(3,3),strides=(1,1),padding='same',activation='relu',kernel_initializer='uniform'))
    model.add(Conv2D(384,(3,3),strides=(1,1),padding='same',activation='relu',kernel_initializer='uniform'))
    model.add(Conv2D(256,(3,3),strides=(1,1),padding='same',activation='relu',kernel_initializer='uniform'))
    model.add(MaxPooling2D(pool_size=(3,3),strides=(2,2)))
    model.add(Flatten())
    model.add(Dense(4096,activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(4096,activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(1000,activation='softmax'))
    return model
  • VGG-16的Keras实现:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    def VGG_16():   
    model = Sequential()

    model.add(Conv2D(64,(3,3),strides=(1,1),input_shape=(224,224,3),padding='same',activation='relu',kernel_initializer='uniform'))
    model.add(Conv2D(64,(3,3),strides=(1,1),padding='same',activation='relu',kernel_initializer='uniform'))
    model.add(MaxPooling2D(pool_size=(2,2)))

    model.add(Conv2D(128,(3,2),strides=(1,1),padding='same',activation='relu',kernel_initializer='uniform'))
    model.add(Conv2D(128,(3,3),strides=(1,1),padding='same',activation='relu',kernel_initializer='uniform'))
    model.add(MaxPooling2D(pool_size=(2,2)))

    model.add(Conv2D(256,(3,3),strides=(1,1),padding='same',activation='relu',kernel_initializer='uniform'))
    model.add(Conv2D(256,(3,3),strides=(1,1),padding='same',activation='relu',kernel_initializer='uniform'))
    model.add(Conv2D(256,(3,3),strides=(1,1),padding='same',activation='relu',kernel_initializer='uniform'))
    model.add(MaxPooling2D(pool_size=(2,2)))

    model.add(Conv2D(512,(3,3),strides=(1,1),padding='same',activation='relu',kernel_initializer='uniform'))
    model.add(Conv2D(512,(3,3),strides=(1,1),padding='same',activation='relu',kernel_initializer='uniform'))
    model.add(Conv2D(512,(3,3),strides=(1,1),padding='same',activation='relu',kernel_initializer='uniform'))
    model.add(MaxPooling2D(pool_size=(2,2)))

    model.add(Conv2D(512,(3,3),strides=(1,1),padding='same',activation='relu',kernel_initializer='uniform'))
    model.add(Conv2D(512,(3,3),strides=(1,1),padding='same',activation='relu',kernel_initializer='uniform'))
    model.add(Conv2D(512,(3,3),strides=(1,1),padding='same',activation='relu',kernel_initializer='uniform'))
    model.add(MaxPooling2D(pool_size=(2,2)))

    model.add(Flatten())
    model.add(Dense(4096,activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(4096,activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(1000,activation='softmax'))

    return model
  • GoogLeNet的Keras实现:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    def Conv2d_BN(x, nb_filter,kernel_size, padding='same',strides=(1,1),name=None):
    if name is not None:
    bn_name = name + '_bn'
    conv_name = name + '_conv'
    else:
    bn_name = None
    conv_name = None

    x = Conv2D(nb_filter,kernel_size,padding=padding,strides=strides,activation='relu',name=conv_name)(x)
    x = BatchNormalization(axis=3,name=bn_name)(x)
    return x

    def Inception(x,nb_filter):
    branch1x1 = Conv2d_BN(x,nb_filter,(1,1), padding='same',strides=(1,1),name=None)

    branch3x3 = Conv2d_BN(x,nb_filter,(1,1), padding='same',strides=(1,1),name=None)
    branch3x3 = Conv2d_BN(branch3x3,nb_filter,(3,3), padding='same',strides=(1,1),name=None)

    branch5x5 = Conv2d_BN(x,nb_filter,(1,1), padding='same',strides=(1,1),name=None)
    branch5x5 = Conv2d_BN(branch5x5,nb_filter,(1,1), padding='same',strides=(1,1),name=None)

    branchpool = MaxPooling2D(pool_size=(3,3),strides=(1,1),padding='same')(x)
    branchpool = Conv2d_BN(branchpool,nb_filter,(1,1),padding='same',strides=(1,1),name=None)

    x = concatenate([branch1x1,branch3x3,branch5x5,branchpool],axis=3)

    return x

    def GoogLeNet():
    inpt = Input(shape=(224,224,3))
    #padding = 'same',填充为(步长-1)/2,还可以用ZeroPadding2D((3,3))
    x = Conv2d_BN(inpt,64,(7,7),strides=(2,2),padding='same')
    x = MaxPooling2D(pool_size=(3,3),strides=(2,2),padding='same')(x)
    x = Conv2d_BN(x,192,(3,3),strides=(1,1),padding='same')
    x = MaxPooling2D(pool_size=(3,3),strides=(2,2),padding='same')(x)
    x = Inception(x,64)#256
    x = Inception(x,120)#480
    x = MaxPooling2D(pool_size=(3,3),strides=(2,2),padding='same')(x)
    x = Inception(x,128)#512
    x = Inception(x,128)
    x = Inception(x,128)
    x = Inception(x,132)#528
    x = Inception(x,208)#832
    x = MaxPooling2D(pool_size=(3,3),strides=(2,2),padding='same')(x)
    x = Inception(x,208)
    x = Inception(x,256)#1024
    x = AveragePooling2D(pool_size=(7,7),strides=(7,7),padding='same')(x)
    x = Dropout(0.4)(x)
    x = Dense(1000,activation='relu')(x)
    x = Dense(1000,activation='softmax')(x)
    model = Model(inpt,x,name='inception')
    return model
  • ResNet-50的Keras实现:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    def Conv2d_BN(x, nb_filter,kernel_size, strides=(1,1), padding='same',name=None):
    if name is not None:
    bn_name = name + '_bn'
    conv_name = name + '_conv'
    else:
    bn_name = None
    conv_name = None

    x = Conv2D(nb_filter,kernel_size,padding=padding,strides=strides,activation='relu',name=conv_name)(x)
    x = BatchNormalization(axis=3,name=bn_name)(x)
    return x

    def Conv_Block(inpt,nb_filter,kernel_size,strides=(1,1), with_conv_shortcut=False):
    x = Conv2d_BN(inpt,nb_filter=nb_filter[0],kernel_size=(1,1),strides=strides,padding='same')
    x = Conv2d_BN(x, nb_filter=nb_filter[1], kernel_size=(3,3), padding='same')
    x = Conv2d_BN(x, nb_filter=nb_filter[2], kernel_size=(1,1), padding='same')
    if with_conv_shortcut:
    shortcut = Conv2d_BN(inpt,nb_filter=nb_filter[2],strides=strides,kernel_size=kernel_size)
    x = add([x,shortcut])
    return x
    else:
    x = add([x,inpt])
    return x

    def ResNet50():
    inpt = Input(shape=(224,224,3))
    x = ZeroPadding2D((3,3))(inpt)
    x = Conv2d_BN(x,nb_filter=64,kernel_size=(7,7),strides=(2,2),padding='valid')
    x = MaxPooling2D(pool_size=(3,3),strides=(2,2),padding='same')(x)

    x = Conv_Block(x,nb_filter=[64,64,256],kernel_size=(3,3),strides=(1,1),with_conv_shortcut=True)
    x = Conv_Block(x,nb_filter=[64,64,256],kernel_size=(3,3))
    x = Conv_Block(x,nb_filter=[64,64,256],kernel_size=(3,3))

    x = Conv_Block(x,nb_filter=[128,128,512],kernel_size=(3,3),strides=(2,2),with_conv_shortcut=True)
    x = Conv_Block(x,nb_filter=[128,128,512],kernel_size=(3,3))
    x = Conv_Block(x,nb_filter=[128,128,512],kernel_size=(3,3))
    x = Conv_Block(x,nb_filter=[128,128,512],kernel_size=(3,3))

    x = Conv_Block(x,nb_filter=[256,256,1024],kernel_size=(3,3),strides=(2,2),with_conv_shortcut=True)
    x = Conv_Block(x,nb_filter=[256,256,1024],kernel_size=(3,3))
    x = Conv_Block(x,nb_filter=[256,256,1024],kernel_size=(3,3))
    x = Conv_Block(x,nb_filter=[256,256,1024],kernel_size=(3,3))
    x = Conv_Block(x,nb_filter=[256,256,1024],kernel_size=(3,3))
    x = Conv_Block(x,nb_filter=[256,256,1024],kernel_size=(3,3))

    x = Conv_Block(x,nb_filter=[512,512,2048],kernel_size=(3,3),strides=(2,2),with_conv_shortcut=True)
    x = Conv_Block(x,nb_filter=[512,512,2048],kernel_size=(3,3))
    x = Conv_Block(x,nb_filter=[512,512,2048],kernel_size=(3,3))
    x = AveragePooling2D(pool_size=(7,7))(x)
    x = Flatten()(x)
    x = Dense(1000,activation='softmax')(x)

    model = Model(inputs=inpt,outputs=x)
    return model
  • DenseNet-121的Keras实现:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    110
    111
    112
    113
    114
    115
    116
    117
    118
    119
    120
    121
    122
    123
    124
    125
    126
    127
    128
    129
    130
    131
    132
    133
    134
    135
    136
    137
    138
    139
    140
    141
    142
    143
    144
    145
    146
    147
    148
    149
    150
    151
    152
    153
    154
    155
    156
    157
    158
    159
    160
    def DenseNet121(nb_dense_block=4, growth_rate=32, nb_filter=64, reduction=0.0, dropout_rate=0.0, weight_decay=1e-4, classes=1000, weights_path=None):
    '''Instantiate the DenseNet 121 architecture,
    # Arguments
    nb_dense_block: number of dense blocks to add to end
    growth_rate: number of filters to add per dense block
    nb_filter: initial number of filters
    reduction: reduction factor of transition blocks.
    dropout_rate: dropout rate
    weight_decay: weight decay factor
    classes: optional number of classes to classify images
    weights_path: path to pre-trained weights
    # Returns
    A Keras model instance.
    '''
    eps = 1.1e-5

    # compute compression factor
    compression = 1.0 - reduction

    # Handle Dimension Ordering for different backends
    global concat_axis
    if K.image_dim_ordering() == 'tf':
    concat_axis = 3
    img_input = Input(shape=(224, 224, 3), name='data')
    else:
    concat_axis = 1
    img_input = Input(shape=(3, 224, 224), name='data')

    # From architecture for ImageNet (Table 1 in the paper)
    nb_filter = 64
    nb_layers = [6,12,24,16] # For DenseNet-121

    # Initial convolution
    x = ZeroPadding2D((3, 3), name='conv1_zeropadding')(img_input)
    x = Convolution2D(nb_filter, 7, 7, subsample=(2, 2), name='conv1', bias=False)(x)
    x = BatchNormalization(epsilon=eps, axis=concat_axis, name='conv1_bn')(x)
    x = Scale(axis=concat_axis, name='conv1_scale')(x)
    x = Activation('relu', name='relu1')(x)
    x = ZeroPadding2D((1, 1), name='pool1_zeropadding')(x)
    x = MaxPooling2D((3, 3), strides=(2, 2), name='pool1')(x)

    # Add dense blocks
    for block_idx in range(nb_dense_block - 1):
    stage = block_idx+2
    x, nb_filter = dense_block(x, stage, nb_layers[block_idx], nb_filter, growth_rate, dropout_rate=dropout_rate, weight_decay=weight_decay)

    # Add transition_block
    x = transition_block(x, stage, nb_filter, compression=compression, dropout_rate=dropout_rate, weight_decay=weight_decay)
    nb_filter = int(nb_filter * compression)

    final_stage = stage + 1
    x, nb_filter = dense_block(x, final_stage, nb_layers[-1], nb_filter, growth_rate, dropout_rate=dropout_rate, weight_decay=weight_decay)

    x = BatchNormalization(epsilon=eps, axis=concat_axis, name='conv'+str(final_stage)+'_blk_bn')(x)
    x = Scale(axis=concat_axis, name='conv'+str(final_stage)+'_blk_scale')(x)
    x = Activation('relu', name='relu'+str(final_stage)+'_blk')(x)
    x = GlobalAveragePooling2D(name='pool'+str(final_stage))(x)

    x = Dense(classes, name='fc6')(x)
    x = Activation('softmax', name='prob')(x)

    model = Model(img_input, x, name='densenet')

    if weights_path is not None:
    model.load_weights(weights_path)

    return model


    def conv_block(x, stage, branch, nb_filter, dropout_rate=None, weight_decay=1e-4):
    '''Apply BatchNorm, Relu, bottleneck 1x1 Conv2D, 3x3 Conv2D, and option dropout
    # Arguments
    x: input tensor
    stage: index for dense block
    branch: layer index within each dense block
    nb_filter: number of filters
    dropout_rate: dropout rate
    weight_decay: weight decay factor
    '''
    eps = 1.1e-5
    conv_name_base = 'conv' + str(stage) + '_' + str(branch)
    relu_name_base = 'relu' + str(stage) + '_' + str(branch)

    # 1x1 Convolution (Bottleneck layer)
    inter_channel = nb_filter * 4
    x = BatchNormalization(epsilon=eps, axis=concat_axis, name=conv_name_base+'_x1_bn')(x)
    x = Scale(axis=concat_axis, name=conv_name_base+'_x1_scale')(x)
    x = Activation('relu', name=relu_name_base+'_x1')(x)
    x = Convolution2D(inter_channel, 1, 1, name=conv_name_base+'_x1', bias=False)(x)

    if dropout_rate:
    x = Dropout(dropout_rate)(x)

    # 3x3 Convolution
    x = BatchNormalization(epsilon=eps, axis=concat_axis, name=conv_name_base+'_x2_bn')(x)
    x = Scale(axis=concat_axis, name=conv_name_base+'_x2_scale')(x)
    x = Activation('relu', name=relu_name_base+'_x2')(x)
    x = ZeroPadding2D((1, 1), name=conv_name_base+'_x2_zeropadding')(x)
    x = Convolution2D(nb_filter, 3, 3, name=conv_name_base+'_x2', bias=False)(x)

    if dropout_rate:
    x = Dropout(dropout_rate)(x)

    return x


    def transition_block(x, stage, nb_filter, compression=1.0, dropout_rate=None, weight_decay=1E-4):
    ''' Apply BatchNorm, 1x1 Convolution, averagePooling, optional compression, dropout
    # Arguments
    x: input tensor
    stage: index for dense block
    nb_filter: number of filters
    compression: calculated as 1 - reduction. Reduces the number of feature maps in the transition block.
    dropout_rate: dropout rate
    weight_decay: weight decay factor
    '''

    eps = 1.1e-5
    conv_name_base = 'conv' + str(stage) + '_blk'
    relu_name_base = 'relu' + str(stage) + '_blk'
    pool_name_base = 'pool' + str(stage)

    x = BatchNormalization(epsilon=eps, axis=concat_axis, name=conv_name_base+'_bn')(x)
    x = Scale(axis=concat_axis, name=conv_name_base+'_scale')(x)
    x = Activation('relu', name=relu_name_base)(x)
    x = Convolution2D(int(nb_filter * compression), 1, 1, name=conv_name_base, bias=False)(x)

    if dropout_rate:
    x = Dropout(dropout_rate)(x)

    x = AveragePooling2D((2, 2), strides=(2, 2), name=pool_name_base)(x)

    return x


    def dense_block(x, stage, nb_layers, nb_filter, growth_rate, dropout_rate=None, weight_decay=1e-4, grow_nb_filters=True):
    ''' Build a dense_block where the output of each conv_block is fed to subsequent ones
    # Arguments
    x: input tensor
    stage: index for dense block
    nb_layers: the number of layers of conv_block to append to the model.
    nb_filter: number of filters
    growth_rate: growth rate
    dropout_rate: dropout rate
    weight_decay: weight decay factor
    grow_nb_filters: flag to decide to allow number of filters to grow
    '''

    eps = 1.1e-5
    concat_feat = x

    for i in range(nb_layers):
    branch = i+1
    x = conv_block(concat_feat, stage, branch, growth_rate, dropout_rate, weight_decay)
    concat_feat = merge([concat_feat, x], mode='concat', concat_axis=concat_axis, name='concat_'+str(stage)+'_'+str(branch))

    if grow_nb_filters:
    nb_filter += growth_rate

    return concat_feat, nb_filter

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/242276.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C#中的运算符和异常处理

C#中的运算符 运算符的声明 异常处理 try表示试图进行某件事 catch表示发送了某件异常时,进行某件事 finally最终进行某件事 抛出异常

C#中的程序成分总结

C#中的程序成分 编译预处理 程序的组织 名称空间 嵌套类型 程序集 语法小结 类型的声明 类的成员

iOS开发的学习笔记

引言之前做过半年的iOS开发,从完全不懂的移动开发的菜鸟,到完成前端UI开发的菜鸟,做的一些笔记,希望对大家有用,也希望这些总结的东西对以后会有作用。 开发环境iOS的系统框架分为四个层次:核心操作系统层&…

国际人工智能算法与应用研讨会(WASA 2018)参会笔记

从博士师兄那里知道就在天津高新区有这个会议,就跟着师兄报名了,下面是参会第一天的感想。 背景WASA是人工智能领域的国际性大型会议,也是中国计算机学会(CCF)推荐的会议。旨在为人工智能研究者、开发者和企业提供一个…

C#类型转换和常用类

C#类型转换 任何事物都是对象 表达式中的类型转换 强制类型装换 普通类型装换 基本类型 数与字符串的转换 常用类(类都有方法)

c#数组和集合

c#数组和集合 数组 集合 遍历它 foreach只能取得元素,不能修改元素 另一个例子 遍历它

数据结构与算法(一)——排序

虽然之前学过数据结构,但是已时隔四年,大概四月份复习了一遍,但是很多概念也是一知半解,所以重新整理知识点和运行代码的方式来巩固知识。 引言排序:是计算机程序设计中的一种重要操作,功能是将一个数据元素…

PHP(四)——性能优化

之前基于PHP开发的过程中,一直没有涉及到PHP性能优化的问题,但是一般来说PHP性能问题占整个项目性能问题一般占30%-50%部分,所以说,这部分内容是非常重要的。下面是最近自己PHP性能优化学习的资料整理。 引言[1]PHP存在性能问题的…

C#常用的算法

C#常用的算法 遍试算法 迭代算法 递归 递归算法的基本思想:分而治之

C#流和文件

C#流和文件 文件及文件夹管理 WinForm中的文件对话框 文件内容的读写 注册表操作

C#中程序错误的种类和程序的调试

C#中程序错误的种类 语法错误 运行错误 逻辑错误 程序调试的基本手段 然后运行 调试程序例子 例子2:读文件 没有找到文件 null引用就是没有进行初始化 索引超出数组界限

C#中window窗体和控件

C#中window窗体和控件 布局与事件–界面的基本问题 布局 就是拉动窗体的时候,按钮也在跟着变动。 事件 //简单的计算器 using System; using System.Drawing; using System.Collections; using System.ComponentModel; using System.Windows.Forms; namespa…

C#常用的控件

C#常用的控件 窗体 菜单、工具栏、对话框 用户控件及控件的继承

C#绘图及图像

C#绘图及图像 绘图的基本方法 绘图的应用

C#实现定时器

C#实现定时器 方法一 布局 代码 using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Linq; using System.Text; using System.Threading.Tasks; using System.Windows.Forms;namespace…

mark

这里写自定义目录标题欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注…

C语言的进阶-指针的应用

指针的应用 #include <stdio.h> void swap(int *p,int *q); int main() {int a 5;int b 8;swap(&a,&b);printf("a%d,b%d\n",a,b);return 0; }void swap(int *p,int *q) {int t *p;*p *q;*q t; }函数只能返回一个值&#xff01; 可以通过参数返回多…

C语言进阶-指针与数组

C语言进阶-指针与数组 q可以改变指向的内容&#xff0c;但不能改变指向的地址 p可以改变指向地址&#xff0c;但不能改变指向内容

发布文章测试

这里写自定义目录标题欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题&#xff0c;有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注…