2016年第五届数学建模国际赛小美赛C题对超级细菌的战争解题全过程文档及程序

2016年第五届数学建模国际赛小美赛

C题 对超级细菌的战争

原题再现:

  最近有很多关于我们抗生素耐药性危机的讨论。进化出的能够抵抗抗生素的细菌每年杀死70万人,越来越强大的细菌正在世界各地传播。研究人员担心,我们将进入一个后抗生素时代,在这个时代里,我们被细菌感染,这些细菌可以击败药物提供的每一种药物。下周,联合国将召开一次高级别会议,协调全球打击这些无形敌人的斗争。
  巴顿和其他志同道合的科学家们在60多年前就警告说,抗生素危机即将来临,尽管他们今天大多被遗忘了。他们是对的,但他们被忽视了。他们的失败为今天的新十字军提供了一些重要的教训。
  然而,就在第二次世界大战结束一年后,青霉素的发现者警告说,它可能会变得毫无用处。1945年,亚历山大弗莱明获得诺贝尔奖,他指出了失败的原因。弗莱明说:“无知的人很容易给自己剂量不足,这是一种危险,通过将他的微生物暴露在非致命数量的药物中,使其产生耐药性。”
  这并不是说其他科学家否认了进化论的真实性。这似乎并不重要。当时的科学家发现了更多的抗生素。如果细菌对青霉素产生抗药性,它们总是能够转换成另一种武器。
  在一场持续了十多年的斗争中,改革者推动食品和药品管理局对抗生素进行更严格的监管。他们取得了成功,从市场上撤下了大量违法药品,并制定了更严格的规则,允许新药品进入市场。
  与此同时,抗生素耐药性的真正威胁越来越明显。在20世纪60年代早期,科学家们发现,一旦一种细菌中进化出一种抗性基因,微生物就可以将其捐赠给其他细菌。微生物可以将这些捐赠的基因装载在一块DNA上,进一步加速耐药性的传播。
  1966年,Look杂志上的一篇文章用近乎天启的修辞描述了抗生素耐药性的新观点。“细菌是不是赢得了与人类的战争?”标题写道。文章用一个新的绰号来提及这些细菌:超级细菌。
  然而,事实证明,组织一场对抗抗生素耐药性的斗争比对抗无效或危险的药物要困难得多。早在20世纪50年代,世界卫生组织就组织了关于抗生素耐药性的会议,但最终失败了。参加会议的专家们陷入了关于如何衡量抵抗力以及考虑对公共健康的威胁程度的争论之中。
  同时也很难弄清楚如何对抗抗生素耐药性。为了使劣药退出市场,改革者只有一个目标:FDA。为了减少良药的使用,改革者必须同时达到许多不同的目标:医生、医院管理人员、病人、政府、制药公司——甚至是那些开始给牲畜喂食抗生素以使牲畜长大的农民。
  更糟糕的是,规范抗生素的运动让医生们很生气。他们说,“FDA是谁把这些药拿走的?我已经用了30年了,我的病人似乎越来越好。”
  联合国已经要求你的团队,ICM-FDA帮助你更好地了解抗生素耐药性危机的相关因素。

  任务1:建立一个模型,为抗生素的使用和各方的敏感性提供利益链。在建模过程中,可能需要考虑影响供需的因素的动态性质。
  任务2:在完全竞争市场下预测危机的发展趋势。
  任务3:设计一个便携式抗生素使用管理系统是超级细菌的当务之急。ICM-FDA已被要求参加一个政策策略会议,要求您的团队就您的模型编写一份报告并提出一套政策。
  任务4:制定奖励政策,鼓励饲养者在不使用抗生素的情况下饲养牛。

整体求解过程概述(摘要)

  最近有很多关于我们抗生素耐药性危机的讨论。超级细菌的出现使抗生素耐药危机成为亟待解决的问题。
  针对课题一,通过供需动态因素分析,建立抗生素使用利益链,分析参与各方对抗生素使用的敏感性,并考虑抗生素对易感人群的影响。首先,通过供需链引出关于抗生素使用的利益链。对于敏感度分析,采用单因素敏感度分析方法对各相关方的敏感度进行分析,得出患者对抗生素使用的敏感度最高,政府对抗生素使用的敏感度最低的结论。
  针对任务二,结合任务中的供需关系中的利益链模型,从供给因素、需求因素、细菌因素三个方面,分析抗生素耐药的相关因素。以两个指标共7项为参考数据,利用BP神经网络建立了抗生素耐药危机发展趋势预测模型,并对图像进行拟合,即对发展趋势进行拟合,从而得出结论:在完全竞争的市场下,抗生素耐药危机将向更为严重的方向发展。
  针对任务三,结合任务一的利益链和任务二的危机预测,创建了便携式抗生素使用管理系统。首先确定管理系统的参与者是相关部门,然后创建系统用例模型,最终生成一个综合分类管理系统。最后,根据任务一和任务二,建立管理制度,提出合理的政策,遏制抗生素滥用。
  针对任务四,主要根据前三个任务的研究结果,综合考虑供需关系、抗生素耐药危机及相关部门等因素,平衡各方利益,提出建立渔牧兽医服务站的建议,它将为农民饲养的牛提供各种服务,包括对牛的防疫和治疗以及监测抗生素的使用。禁止超过抗生素使用标准的黄牛进入市场,对于不使用抗生素饲养黄牛的农户,将获得市场价格3%的奖励,然后利用奖励矩阵建立政策的可行性分析模型,并通过进行详细分析,验证了政策的可行性。

模型假设:

  (1) 对于同一疾病,我们总能找到一种仿制药代替抗生素,但没有明显的抗菌效果。
  (2) 只考虑一般疾病,针对特定疾病予以清除。
  (3) 牲畜中抗生素残留检测标准的存在。
  (4) 排除抗生素生产难度等无关因素。

问题重述:

  任务一的陈述与分析
  建立一个模型,为抗生素的使用和各方的敏感性提供利益链。在建模过程中,应考虑影响供给和需求的因素的动态性质。对于第一个任务,首先要明确利益链的定义,利益链就是利益链上下各方的利益链。对于第一个问题,首先要明确利益链的定义,利益链是链条上人与下游人之间的利益关系。首先,通过对标题的分析得出一些关键角色:医生、医院管理者、政府、患者、制药公司和养殖户。首先对供应链进行分析,得到抗生素生产和使用过程中的供需关系,得到利益链模型,并对各参与方的利益链模型从供应侧(抗生素生产商)和需求侧(易感人群)两个方面进行敏感性分析。

  任务二的陈述与分析
  在完全竞争市场下预测危机的发展趋势。对于第二项任务,首先必须明确市场完全竞争的概念和危机,即在政府等外部因素缺位的情况下,市场完全由“看不见的手”控制抗生素耐药性危机。为此,总结了抗生素生产和使用过程的流程图,找出影响抗生素耐药性的六个因素,利用灰色神经网络系统建立危机预测模型,通过数据采集和归一化处理,利用模型预测发展趋势。

  任务三的重述与分析
  设计一个便携式抗生素使用管理系统是当务之急。我们应该就我们的模式写一份报告,并提出一套政策。对于任务三,抗生素的滥用已经成为一个日益严重的问题,为了避免超级细菌的产生,我们需要对抗生素的使用进行管理和监测。首先明确便携式管理系统的用户是相关部门,将系统的参与者确定为相关部门、抗生素医疗机构和抗生素农业机构,建立系统用例模型,定义每个参与者的功能,最后生成一个层次化的管理系统。针对不同类型的参与者和不同方面的措施,从医疗机构、农户、饲料生产企业、知识普及等方面提出了具体的政策建议。

  任务4的重述和分析
  我们被要求为农民制定一项奖励政策,鼓励他们饲养没有抗生素的牛。对于第四项任务,我们需要利用前三项任务的成果得出具体的激励政策,从市场供求、抗生素耐药危机的发展趋势、相关部门的具体措施等方面,结合农民群体的特殊性和自身利益,提出一些激励政策,使农民不使用抗生素喂养。然后利用报酬矩阵建立可行性验证模型,并利用模型分析得出激励政策是否可行。

模型的建立与求解整体论文缩略图

在这里插入图片描述
在这里插入图片描述

全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

部分程序代码:(代码和文档not free)

from scipy import stats 
import numpy as np 
from numpy.random import rand 
import math 
import matplotlib.pyplot as plt 
import numpy as np 
from scipy.stats import chisquare 
from scipy.optimize import curve_fit 
pre_rst = [0.1, 0.12, 0.2, 0.15, 0.15, 0.17, 0.14, 0.14, 0.16,
0.4, 0.37, 0.38, 0.28, 0.28]
pre_use = [153, 136, 125, 117, 116, 111, 117, 121, 120, 113, 111, 105, 
104, 102]
def cal_r(t, x0, x1, x2):r = (1/t)*math.log((1/x0-1/x1)/(1/x1-1/x2))return r
def cal_n(r, t, x0, x1):n = (1-math.e**(-r*t))/(1/x1-math.e**(-r*t)/x0)return n
def cal_rst(t, r, n):return n/(1+(n/0.1-1)*math.e**(-r*t))
r=cal_r(2.0, 0.14, 0.28, 0.37)
n=cal_n(r, 2.0, 0.14, 0.37)
pdt_rst = []
years = len(pre_rst)-2
for i in range(1,years,1):pdt_rst.append(cal_rst(i,r,n))
# pre_use = pre_use[:len(pre_use)-3]
pre_use = sorted(pre_use)
pdt_rst = sorted(pre_rst)
# z1 = np.polyfit(pre_use, pdt_rst, 3)#用 3 次多项式拟合
# p1 = np.poly1d(z1)
# 模拟医院,医生,病人的动作
def func(x,a,b):return a*np.log(b*x)
popt, pcov = curve_fit(func, pre_use, pdt_rst)
a=popt[0]#popt 里面是拟合系数,读者可以自己 help 其用法
b=popt[1]
print a,b
print 'func:',func(147,a,b)
print 'optimal:',func(120,a,b)
class Patient:# p_id 为病人的病号,drug 为当前用药,resistant 为抗药性,recover 为恢复状
况,cure_days 为已经治疗的天数def __init__(self, pid, drug, resistant, recover, cure_days):self.pid = pidself.drug = drugself.resistant = resistantself.recover = recoverself.cure_days = cure_days
RESISTANT = 0.5
T1 = 5
T2 = 10
DAY_PATIENTS = 30 # 每天 30 个病人
p_id = 0
sim_cure_days = []
sim_d1_sale = []
pre_use = [153, 136, 125, 117, 116, 111, 117, 121, 120, 113, 111, 105, 
104, 102]
mean_use = np.mean(pre_use)
# 描述进入医院的病人
def ent_hpt(patients):# day_rst = stats.poisson.pmf(np.arange(DAY_PATIENTS), RESISTANT) # 每
天病人的抗药性分布day_rst = rand(DAY_PATIENTS)tmp = np.mean(day_rst)for i in range(len(day_rst)):day_rst[i] = day_rst[i]*RESISTANT/0.5day_ptn = map(lambda x: Patient(p_id, 1, x, 0.0, 0.0), day_rst)patients += day_ptnreturn patients
def cure(patients, rec_ptn, drug1_sale, drug2_sale, use, total_cure_days):tmp = []for p in patients:if p.drug == 1 and p.cure_days > 0:# cdp = use*((0.5*(1-p.recover/p.cure_days) + 
0.5*p.cure_days/T1)**2)# cdp = (use*(1-p.recover/p.cure_days))**2cdp = 0.3*((1-use)*(1 - p.recover / p.cure_days))if rand() < cdp:p.drug = 2rec_ratio = 0if p.drug == 1:rec_ratio = (float)((1-p.resistant))/T1drug1_sale += 1if p.drug == 2:rec_ratio = 1.0/T2drug2_sale += 1p.recover += rec_ratiop.cure_days += 1if p.recover >= 1:tmp.append(p)rec_ptn.append(p)total_cure_days.append(p.cure_days)for p in tmp:patients.remove(p)return patients, rec_ptn, drug1_sale, drug2_sale, total_cure_days
def sim_hosp(use):all_patients = []rec_patients = []cure_days = []d1_sale = 0d2_sale = 0for i in range(30):
patients = ent_hpt(all_patients)while all_patients:patients, recover_patients, d1s, d2s, cure_days = cure(patients, 
rec_patients, d1_sale, d2_sale, use, cure_days)d1_sale = d1sd1_count = 0for p in rec_patients:if p.drug == 1:d1_count += 1sim_cure_days.append(np.mean(cure_days))sim_d1_sale.append(d1s)# print '平均治疗时间: ', np.mean(total_cure_days)# print '抗生素销售: ', d1_sale# print '二线药物销售: ', d2_sale# print '坚持使用抗生素病人数: ', d1_count
# 市场自由发展
next_cure_days = []
next_d1_sale = []
max_use = np.mean(pre_use)
RESISTANT = func(max_use,a,b)
curr_use = max_use
pdt_rst = [0.1792628046926503, 0.2943181818181818, 0.43063362673704436, 
0.558124635993011, 0.6535518026442507, 0.713738475784049, 0.7476984370881284, 
0.7656659431653637, 0.7748492466183726, 0.7794600206940622, 
0.7817543053571258]
for rst in pdt_rst:print rstRESISTANT = rstsim_hosp(curr_use/200)
print sim_cure_days
print sim_d1_sale
sim_uses = np.arange(80,200,1)
min_use = np.min(sim_uses)
max_use = np.max(sim_uses)
for use in sim_uses:RESISTANT = func(use,a,b)sim_hosp(use)print use,'==>',RESISTANT,'==>',sim_cure_days[len(sim_cure_days)-1]
print sim_cure_days
print sim_d1_sale
d1s_min = np.min(sim_d1_sale)
d1s_max = np.max(sim_d1_sale)
sim_d1_sale = map(lambda x: x*1.0/d1s_max,sim_d1_sale)
cd_min = np.min(sim_cure_days)
cd_max = np.max(sim_cure_days)
# sim_cure_days = map(lambda x: x*1.0/cd_max,sim_cure_days)
profits = []
for i in range(len(sim_cure_days)):profits.append(sim_cure_days[i]+10.0/sim_d1_sale[i])
print profits
uses = sim_uses
min_pft = np.min(profits)
max_pft = np.max(profits)
print max_pft,min_pft
plt.figure(figsize=(30,9),dpi=80)
plt.yticks(np.linspace(min_pft-1,max_pft+1,num=(int)(max_pftmin_pft)+1,endpoint=True))
plt.xticks(np.linspace(min_use,max_use,num=(max_usemin_use)/5+1,endpoint=True))
plt.ylim(min_pft-1,max_pft+1)
plt.xlim(min_use-0.2,max_use+0.2)
plt.ylabel('Profit',fontsize=15)
plt.xlabel('Drug use',fontsize=15)
plt.plot(uses,profits,label='Profit',marker='d',linewidth=2.5,markersize=6,
color='fuchsia')
# 
plt.plot(X,fit_vals,label='Fit',marker='s',linewidth=2.5,markersize=10,colo
r='cornflowerblue')
plt.legend(loc='upper right')
plt.show()
plt.figure(figsize=(30,9),dpi=80)
plt.yticks(np.linspace(min_pft-1,max_pft+1,num=(int)(max_pftmin_pft)+1,endpoint=True))
plt.xticks(np.linspace(min_use,max_use,num=(max_use-min_use)/5+1,endpoint=True))
plt.ylim(min_pft-1,max_pft+1)
plt.xlim(min_use-0.2,max_use+0.2)
plt.ylabel('Profit',fontsize=15)
plt.xlabel('Drug use',fontsize=15)
plt.plot(uses,profits,label='Profit',marker='d',linewidth=2.5,markersize=6,
color='fuchsia')
# 
plt.plot(X,fit_vals,label='Fit',marker='s',linewidth=2.5,markersize=10,colo
r='cornflowerblue')
plt.legend(loc='upper right')
plt.show()
import math
import matplotlib.pyplot as plt
import numpy as np
from scipy.stats import chisquare
from scipy.optimize import curve_fit
pre_rst = [0.1, 0.12, 0.2, 0.15, 0.15, 0.17, 0.14, 0.14, 0.16,
0.4, 0.37, 0.38, 0.28, 0.28]
pre_use = [153, 136, 125, 117, 116, 111, 117, 121, 120, 113, 111,
105, 104, 102]
def cal_r(t, x0, x1, x2):r = (1/t)*math.log((1/x0-1/x1)/(1/x1-1/x2))return r
def cal_n(r, t, x0, x1):n = (1-math.e**(-r*t))/(1/x1-math.e**(-r*t)/x0)return n
def cal_rst(t, r, n):return n/(1+(n/0.1-1)*math.e**(-r*t))
# pre_rs = 
[cal_r(1,0.1,0.12,0.2),cal_r(1,0.14,0.16,0.4),cal_r(2,0.14,0.16,0.37)]
# pre_ns =[cal_n(pre_rs[0],1,0.1,0.2),cal_n(pre_rs[1],1,0.14,0.4),cal_n(pre_rs[
2],2,0.14,0.37)]
#
# print pre_ns
r=cal_r(2.0, 0.12, 0.15, 0.17)
n=cal_n(r, 2.0, 0.12, 0.17)
print 'r=',r
print 'n=',n
pdt_rst = []
years = len(pre_rst)-2
for i in range(1,years,1):pdt_rst.append(cal_rst(i,r,n))
next_rsts = []
for i in range(12,22,1):next_rsts.append(cal_rst(i,r,n))
print 'next_years:',next_rsts
data_names = range(2002,2013,1)
X = range(len(data_names))
print 'pdt_rst', pdt_rst
plt.figure(figsize=(30,9),dpi=80)
plt.yticks(np.linspace(0,1,num=11,endpoint=True))
plt.xticks(range(len(data_names)),data_names)
X = range(len(data_names))
plt.ylim(0,1.2)
plt.xlim(-0.2,len(data_names)+0.2)
plt.xlabel('Drug use',fontsize = 15)
plt.ylabel('Resistant',fontsize=15)
plt.plot(X,pdt_rst,label='Predict',marker='d',linewidth=2.5,markersiz
e=6,color='fuchsia')
plt.plot(X,pre_rst[3:],label='Real',marker='s',linewidth=2.5,markersi
ze=10,color='cornflowerblue')
plt.legend(loc='upper right')
plt.show()
# pre_use = pre_use[:len(pre_use)-3]
# pre_use = sorted(pre_use)
# # print pre_use
# pdt_rst = sorted(pre_rst[3:])
# def func(x,a,b):
# return a*np.log(b*x)
# popt, pcov = curve_fit(func, pre_use, pdt_rst)
# a=popt[0]
# b=popt[1]
# print a,b
plt.plot(X,pdt_rst,label='Real',marker='d',linewidth=2.5,markersize=6
,color='fuchsia')
# 
plt.plot(X,fit_vals,label='Fit',marker='s',linewidth=2.5,markersize=1
0,color='cornflowerblue')
# plt.legend(loc='upper right')
# plt.show()
pdt_rst = [0.1792628046926503, 0.2943181818181818, 0.43063362673704436, 
0.558124635993011, 0.6535518026442507, 0.713738475784049, 
0.7476984370881284, 0.7656659431653637, 0.7748492466183726, 
0.7794600206940622, 0.7817543053571258]
data_names = range(2013,2024,1)
plt.figure(figsize=(30,9),dpi=80)
plt.yticks(np.linspace(0,1,num=11,endpoint=True))
plt.xticks(range(len(data_names)),data_names)
X = range(len(data_names))
plt.ylim(0,1.2)
plt.xlim(-0.2,len(data_names)+0.2)
plt.xlabel('Year',fontsize = 15)
plt.ylabel('Resistant',fontsize=15)
plt.plot(X,pdt_rst,label='Prediction',marker='d',linewidth=2.5,marker
size=6,color='fuchsia')
# 
plt.plot(X,fit_vals,label='Fit',marker='s',linewidth=2.5,markersize=1
0,color='cornflowerblue')
plt.legend(loc='upper right')
plt.show()
全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/240808.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Sass】网易云动画播放器

简介 仿网易云播放动画 效果图 sass src/assets/style/musicPlay.sass // TODO 音乐播放器动画 // ? 动画停止class >>> .muscic-play-stop // HTML结构 // <div class"music-play"> // <div class"bg-primary"></div>…

安捷伦Agilent 8720ES网络分析仪

Agilent安捷伦8720ES S-参数矢量网络分析仪 50MHz至20GHz 100 dB 的动态范围 优异的测量精度 2个测量通道 4个显示通道 频率和功率扫描 快扫描和数据传输速度 通过/失败测试&#xff0c;强大的标记功能 电校准&#xff08;ECal&#xff09; 内部使用测试序列的自动化 可选时域…

当物联网技术遇上圣诞节,会给你带来怎样的商业灵感

智能物联网项目可以将更浓烈的节日气氛融入到千家万户。有市场嗅觉的朋友已经踏上了这种创新与传统相遇的旅程&#xff0c;你可以参考一下他们的点子。 物联网智能照明 借助物联网技术&#xff0c;你可以创建一个智能照明系统&#xff0c;让每一束灯光闪烁出美妙的色彩或图案…

正则表达式与bs4选择器筛选论文数准确率之比较

一、正则爬取论文网首页论文标题的示例 import requests import re from bs4 import BeautifulSoupheaders {User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/83.0.4103.116 Safari/537.36}def get_html(url):try:res…

4种常见的数据库索引

数据库索引是优化数据库系统性能的关键组成部分。如果没有有效的索引&#xff0c;查询可能会变得缓慢且低效&#xff0c;从而导致用户体验不佳并降低生产力。在这篇文章中&#xff0c;我们将探讨创建和使用数据库索引的一些最佳实践。 常见的索引算法有&#xff1a; 1. B-Tree…

Hadoop入门学习笔记——二、在虚拟机里部署HDFS集群

视频课程地址&#xff1a;https://www.bilibili.com/video/BV1WY4y197g7 课程资料链接&#xff1a;https://pan.baidu.com/s/15KpnWeKpvExpKmOC8xjmtQ?pwd5ay8 Hadoop入门学习笔记&#xff08;汇总&#xff09; 目录 二、在虚拟机里部署HDFS集群2.1. 部署node1虚拟机2.2. 部…

【Angular】Angular中的最差实践

自我介绍 做一个简单介绍&#xff0c;酒架年近48 &#xff0c;有20多年IT工作经历&#xff0c;目前在一家500强做企业架构&#xff0e;因为工作需要&#xff0c;另外也因为兴趣涉猎比较广&#xff0c;为了自己学习建立了三个博客&#xff0c;分别是【全球IT瞭望】&#xff0c;【…

【数据结构入门精讲 | 第十六篇】并查集知识点及考研408、企业面试练习

上一篇中我们进行了散列表的相关练习&#xff0c;在这一篇中我们要学习的是并查集。 目录 概念伪代码选择题填空题编程题7-1 朋友圈R7-1 笛卡尔树R7-2 部落R7-3 秀恩爱分得快 在许多实际应用场景中&#xff0c;我们需要对元素进行分组&#xff0c;并且在这些分组中进行查询和修…

常用Python自动化测试框架有哪些?优缺点对比

随着技术的进步和自动化技术的出现&#xff0c;市面上出现了一些自动化测试框架。只需要进行一些适用性和效率参数的调整&#xff0c;这些自动化测试框架就能够开箱即用&#xff0c;大大节省了测试时间。而且由于这些框架被广泛使用&#xff0c;他们具有很好的健壮性&#xff0…

Python 运算符 算数运算符 关系运算符 赋值运算符 逻辑运算 (逻辑运算符的优先级) 位运算 成员运算符 身份运算符 运算符的优先级

1 运算符算数运算符关系运算符赋值运算符逻辑运算逻辑运算符的优先级 位运算布尔运算符移位运算符 成员运算符身份运算符运算符的优先级 运算符 算数运算符 四则运算 - * / a 8 b 9 print(ab)#与Java类似 也可以进行字符串的连接 注意:字符串数字字符串 不存在会抛出异常…

车云TCP链路偶现链接失联问题排查

一、问题分析 1.1 车云tcp长连接分析排查 在15:37:32.039上线&#xff0c; 在 16:07:26.527下线&#xff0c;车云长连接通道稳定&#xff0c;且该期间心跳数据正常。 1.2 云向驾仓推送数据分析 在15:37:42 进行车辆接管后&#xff0c;该车辆下线&#xff0c;且无法在上线&am…

SQL变更评审常见问题分享

SQL变更评审分享 概述 SQL变更&#xff0c;是我们在开发迭代中不可避免的场景&#xff0c;SQL变更通常是指DDL和DML语句变更&#xff0c;这些sql会影响到数据库表结构或具体数据&#xff0c;变更时如果执行到存在问题的sql脚本&#xff0c;会对实际应用操作难以评估的损失&…

Java研学-Servlet 基础

一 概述 1 介绍 Servlet&#xff08;Server Applet&#xff09;是Java Servlet的简称&#xff0c;称为小服务程序或服务连接器&#xff0c;用Java编写的服务器端程序&#xff0c;具有独立于平台和协议的特性&#xff0c;主要功能在于交互式地浏览和生成数据&#xff0c;生成动…

会员管理怎么做?

会员管理是企业运营的重要组成部分&#xff0c;它涉及到会员的招募、维护、激励、保留、转化等多个环节。下面&#xff0c;我们将结合具体的案例&#xff0c;详细介绍会员管理的具体做法。 首先&#xff0c;会员的招募是会员管理的第一步 企业需要通过各种方式吸引消费者成为会…

3D数字化系统建设

以3D可视化、数字化技术为基础&#xff0c;其实&#xff0c;很多传统的系统软件都可以重新做一下。 比如&#xff1a;以下这个使用场景&#xff1a;零售门店陈列&#xff1b; 还有&#xff0c;数字化仓储系统&#xff0c;3D数字化供应链系统&#xff0c;3D数字化的生产系统&a…

redis常见数据类型

目录 1.基本全局命令 2.数据结构和内部编码 3.单线程架构 1.基本全局命令 Redis有5种数据结构,但它们都是键值对种的值&#xff0c;对于键来说有一些通用的命令。 KEYS 返回所有满足样式(pattern) 的key。支持如下统配样式。 h?llo 匹配 hello, hallo和hxllo h*llo匹配h…

基于SpringBoot实现的前后端分离书店项目,功能:注册登录、浏览商品、热门商品、购物车、购买、地址管理、密码管理等

一、项目简介 本项目主要基于SpringBoot、Mybatis-plus、MySQL、Redis实现的书店管理系统。 本系统是前后端分离的&#xff0c;分别由三个子项目构成&#xff1a;java服务端、用户浏览与购买的前端、管理员管理商品的前端 环境 java 1.8mysql8.0redisvue2.x 管理员子系统功…

Ubuntu 常用命令之 ps 命令用法介绍

&#x1f4d1;Linux/Ubuntu 常用命令归类整理 ps命令是Linux下的一个非常重要的命令&#xff0c;它用于查看系统中的进程状态。ps是Process Status的缩写&#xff0c;可以显示系统中当前运行的进程的状态。 以下是一些常用的参数 a&#xff1a;显示所有进程&#xff08;包括…

string的库函数reserve、resize

系列文章 http://t.csdnimg.cn/u80hL 目录 系列文章[TOC](目录) 一、reserve——请求容量的变化二、resize——操作对象使用的空间 一、reserve——请求容量的变化 改变对象的capacity——他会请求开辟和缩小对象所占的空间&#xff0c;reserve只能操作对象未使用的空间&…

单例模式实现

⭐ 作者&#xff1a;小胡_不糊涂 &#x1f331; 作者主页&#xff1a;小胡_不糊涂的个人主页 &#x1f4c0; 收录专栏&#xff1a;JavaEE &#x1f496; 持续更文&#xff0c;关注博主少走弯路&#xff0c;谢谢大家支持 &#x1f496; 单例模式 1. 什么是单例模式2. 饿汉模式3.…