C++哈希表的实现

C++哈希表的实现

  • 一.unordered系列容器的介绍
  • 二.哈希介绍
    • 1.哈希概念
    • 2.哈希函数的常见设计
    • 3.哈希冲突
    • 4.哈希函数的设计原则
  • 三.解决哈希冲突
    • 1.闭散列(开放定址法)
      • 1.线性探测
        • 1.动图演示
        • 2.注意事项
        • 3.代码的注意事项
        • 4.代码实现
    • 2.开散列(哈希桶,拉链法)
      • 1.概念
      • 2.动图演示
      • 3.增容问题
        • 1.拉链法的负载因子
          • 2.说明
    • 3.开散列和闭散列的比较
  • 四.开散列哈希表的实现
    • 1.跟闭散列哈希表相同的部分
    • 2.析构,查找,删除
      • 1.析构
      • 2.查找
      • 3.删除
    • 3.插入
      • 1.不扩容的代码
      • 2.扩容代码
      • 3.插入的完整代码
    • 4.开散列哈希表的完整代码

一.unordered系列容器的介绍

在这里插入图片描述
在这里插入图片描述

二.哈希介绍

1.哈希概念

在这里插入图片描述

2.哈希函数的常见设计

在这里插入图片描述

3.哈希冲突

在这里插入图片描述

4.哈希函数的设计原则

在这里插入图片描述

三.解决哈希冲突

解决哈希冲突两种常见的方法是:闭散列和开散列

1.闭散列(开放定址法)

在这里插入图片描述
因为线性探测跟二次探测很像,所以这里就只实现线性探测了

1.线性探测

1.动图演示

在这里插入图片描述
在这里插入图片描述

2.注意事项

在这里插入图片描述

3.代码的注意事项

1.仿函数的问题:
(1).因为string类型不能进行取模运算,因此给string类型增加一个仿函数
该仿函数可以将string转为整型,整型可以进行取模运算
因此这就相当于二层映射
string -> int -> 哈希表中的下标
(2)
因为这里要考虑到顺序问题,比如"abc",“acb”
或者ASCII码值相等的问题:“aad”,“abc”
所以很多大佬设计了很多字符串哈希算法
各种字符串Hash函数
大家感兴趣的话可以看这篇博客当中的介绍

(3)因为string类型的哈希映射太常用了,
所以这里使用了模板特化,以免每次要存放string时都要指名传入string的哈希函数

这里的哈希函数只返回了整形值,计算下标时一定不要忘了对哈希表大小取模
否则就会有vector的越界错误,直接assert断言暴力报错了

哈希表是Key-Value模型
哈希下标是按照Key来计算的

//仿函数
//整型的hash函数
template<class K>
struct HashFunc
{size_t operator()(const K& key){return (size_t)key;}
};
//模板特化
//string的哈希函数
template<>
struct HashFunc<string>
{size_t operator()(const string& key){// BKDR字符串哈希函数size_t hash = 0;for (auto e : key){hash *= 131;hash += e;}return hash;}
};template<class K, class V, class Hash = HashFunc<K>>
class HashTable
....
4.代码实现
namespace open_address
{enum Status{EMPTY,EXIST,DELETE};template<class K, class V>struct HashData{pair<K, V> _kv;Status _s;         //状态};//仿函数//整型的hash函数template<class K>struct HashFunc{size_t operator()(const K& key){return (size_t)key;}};//模板特化//string的哈希函数template<>struct HashFunc<string>{size_t operator()(const string& key){// BKDR字符串哈希函数size_t hash = 0;for (auto e : key){hash *= 131;hash += e;}return hash;}};template<class K, class V, class Hash = HashFunc<K>>class HashTable{public:HashTable(){_tables.resize(10);}bool Insert(const pair<K, V>& kv){if (Find(kv.first))return false;// 负载因子0.7就扩容if (_n * 10 / _tables.size() == 7){size_t newSize = _tables.size() * 2;HashTable<K, V, Hash> newHT;newHT._tables.resize(newSize);// 遍历旧表for (size_t i = 0; i < _tables.size(); i++){if (_tables[i]._s == EXIST){newHT.Insert(_tables[i]._kv);}}_tables.swap(newHT._tables);}Hash hf;// 线性探测size_t hashi = hf(kv.first) % _tables.size();while (_tables[hashi]._s == EXIST){hashi++;hashi %= _tables.size();}_tables[hashi]._kv = kv;_tables[hashi]._s = EXIST;++_n;return true;}HashData<K, V>* Find(const K& key){Hash hf;size_t hashi = hf(key) % _tables.size();while (_tables[hashi]._s != EMPTY){if (_tables[hashi]._s == EXIST&& _tables[hashi]._kv.first == key){return &_tables[hashi];}hashi++;hashi %= _tables.size();}return NULL;}// 伪删除法bool Erase(const K& key){HashData<K, V>* ret = Find(key);if (ret){ret->_s = DELETE;--_n;return true;}else{return false;}}private:vector<HashData<K, V>> _tables;size_t _n = 0; // 存储的关键字的个数};
}

2.开散列(哈希桶,拉链法)

上面的闭散列并不好用,因此我们重点介绍和实现开散列方法

1.概念

在这里插入图片描述

2.动图演示

插入之前:
在这里插入图片描述
插入过程:
在这里插入图片描述
插入之后:
在这里插入图片描述

3.增容问题

1.拉链法的负载因子

在这里插入图片描述
注意:扩容时因为要将下标重新映射所以扩容会使一个桶当中的数据被打散到不同的桶当中,使得这种极端情况很难发生

2.说明

1.对于这里的哈希桶我们采用单链表
2.为了后续使用开散列的哈希桶封装unordered_set和unordered_map,我们不使用STL库中的forward_list(C++11新增容器:单链表),而是自己手撕单链表
3.因为这里的单链表是我们自己实现的,所以要写析构函数,不能使用编译器默认生成的析构函数
4.为了提高效率,哈希表增容时我们直接转移节点,并不会去进行节点的深拷贝,那样太浪费空间了
5.开散列的哈希表无非就是一个指针数组而已,所以大家不要有任何的害怕
AVL树和红黑树我们都能实现,哈希表怕什么…

3.开散列和闭散列的比较

在这里插入图片描述

四.开散列哈希表的实现

1.跟闭散列哈希表相同的部分

namespace wzs
{//HashFunc<int>template<class K>//整型的哈希函数struct HashFunc{size_t operator()(const K& key){return (size_t)key;}};//HashFunc<string>//string的哈希函数template<>struct HashFunc<string>{size_t operator()(const string& key){// BKDRsize_t hash = 0;for (auto e : key){hash *= 131;hash += e;}return hash;}};template<class K, class V>struct HashNode{HashNode* _next;pair<K, V> _kv;HashNode(const pair<K, V>& kv):_kv(kv), _next(nullptr){}};template<class K, class V, class Hash = HashFunc<K>>class HashTable{typedef HashNode<K, V> Node;public:HashTable(){_tables.resize(10);}~HashTable();bool Insert(const pair<K, V>& kv);Node* Find(const K& key);bool Erase(const K& key);private://哈希表是一个指针数组vector<Node*> _tables;size_t _n = 0;Hash hash;};
}

2.析构,查找,删除

1.析构

析构就是遍历哈希表,把每个单链表都销毁即可

~HashTable()
{for (int i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while (cur){Node* next = cur->_next;delete cur;cur = next;}_tables[i] = nullptr;}
}

2.查找

1.根据哈希函数计算出下标,找到对应的哈希桶
2.遍历哈希桶,找数据即可
3.找到则返回该节点,找不到返回空指针

Node* Find(const K& key)
{int hashi = hash(key) % _tables.size();Node* cur = _tables[hashi];while (cur){if (cur->_kv.first == key){return cur;}cur = cur->_next;}return nullptr;
}

3.删除

删除就是找到该节点,让该节点的前驱指向该节点的后继,然后delete该节点
注意:
如果该节点是该哈希桶的头节点,直接让该哈希桶的头节点成为该节点的后继,然后delete该节点即可

bool Erase(const K& key)
{int hashi = hash(key) % _tables.size();Node* cur = _tables[hashi], * prev = nullptr;while (cur){if (cur->_kv.first == key){if (cur == _tables[hashi]){_tables[hashi] = cur->_next;}else{prev->_next = cur->_next;}return true;}prev = cur;cur = cur->_next;}return false;
}

3.插入

因为我们的哈希表不支持存放重复值,所以插入时
1.先查找在不在,如果在,返回false表示插入失败
2.不在,判断是否需要扩容,如果需要,则进行扩容
3.插入时,先根据哈希函数计算出对应的下标,然后找到该哈希桶头插即可

1.不扩容的代码

bool Insert(const pair<K, V>& kv)
{//先查找在不在//如果在,返回false,插入失败if (Find(kv.first)){return false;}//扩容....//1.利用哈希函数计算需要插入到那个桶里面int hashi = hash(kv.first) % _tables.size();//头插Node* newnode = new Node(kv);newnode->_next = _tables[hashi];_tables[hashi] = newnode;++_n;return true;
}

2.扩容代码

1.开辟新的哈希表
2.将新哈希表的容量扩为2倍(一定要做,因为转移数据时需要根据新表的大小映射下标)
3.转移数据时
(1).遍历旧表取节点
(2).利用哈希函数计算该节点在新表中的下标
(3).头插该节点
4.转移完数据后不要忘记把旧表中的哈希桶的节点置空,否则会出现野指针问题

bool Insert(const pair<K, V>& kv)
{//扩容if (_n == _tables.size()){//开辟新的哈希表HashTable newtable;int newcapacity = _tables.size() * 2;//扩2倍newtable._tables.resize(newcapacity);//转移数据for (int i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while (cur){Node* next = cur->_next;int hashi = hash(cur->_kv.first) % newtable._tables.size();cur->_next = newtable._tables[hashi];newtable._tables[hashi] = cur;cur = next;}//防止出现野指针导致重复析构..._tables[i] = nullptr;}}
}

3.插入的完整代码

bool Insert(const pair<K, V>& kv)
{//先查找在不在//如果在,返回false,插入失败if (Find(kv.first)){return false;}//扩容if (_n == _tables.size()){//开辟新的哈希表HashTable newtable;int newcapacity = _tables.size() * 2;//扩2倍newtable._tables.resize(newcapacity);//转移数据for (int i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while (cur){Node* next = cur->_next;int hashi = hash(cur->_kv.first) % newtable._tables.size();cur->_next = newtable._tables[hashi];newtable._tables[hashi] = cur;cur = next;}//防止出现野指针导致重复析构..._tables[i] = nullptr;}//交换两个vector,从而做到交换两个哈希表//通过学习vector的模拟实现,我们知道vector进行交换时只交换first,finish,end_of_storage_tables.swap(newtable._tables);}//1.利用哈希函数计算需要插入到那个桶里面int hashi = hash(kv.first) % _tables.size();//头插Node* newnode = new Node(kv);newnode->_next = _tables[hashi];_tables[hashi] = newnode;++_n;return true;
}

4.开散列哈希表的完整代码

namespace wzs
{//HashFunc<int>template<class K>//整型的哈希函数struct HashFunc{size_t operator()(const K& key){return (size_t)key;}};//HashFunc<string>//string的哈希函数template<>struct HashFunc<string>{size_t operator()(const string& key){// BKDRsize_t hash = 0;for (auto e : key){hash *= 131;hash += e;}return hash;}};template<class K, class V>struct HashNode{HashNode* _next;pair<K, V> _kv;HashNode(const pair<K, V>& kv):_kv(kv), _next(nullptr){}};template<class K, class V, class Hash = HashFunc<K>>class HashTable{typedef HashNode<K, V> Node;public:HashTable(){_tables.resize(10);}~HashTable(){for (int i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while (cur){Node* next = cur->_next;delete cur;cur = next;}_tables[i] = nullptr;}}bool Insert(const pair<K, V>& kv){//先查找在不在//如果在,返回false,插入失败if (Find(kv.first)){return false;}//扩容if (_n == _tables.size()){//开辟新的哈希表HashTable newtable;int newcapacity = _tables.size() * 2;//扩2倍newtable._tables.resize(newcapacity);//转移数据for (int i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while (cur){Node* next = cur->_next;int hashi = hash(cur->_kv.first) % newtable._tables.size();cur->_next = newtable._tables[hashi];newtable._tables[hashi] = cur;cur = next;}//防止出现野指针导致重复析构..._tables[i] = nullptr;}//交换两个vector,从而做到交换两个哈希表//通过学习vector的模拟实现,我们知道vector进行交换时只交换first,finish,end_of_storage_tables.swap(newtable._tables);}//1.利用哈希函数计算需要插入到那个桶里面int hashi = hash(kv.first) % _tables.size();//头插Node* newnode = new Node(kv);newnode->_next = _tables[hashi];_tables[hashi] = newnode;++_n;return true;}Node* Find(const K& key){int hashi = hash(key) % _tables.size();Node* cur = _tables[hashi];while (cur){if (cur->_kv.first == key){return cur;}cur = cur->_next;}return nullptr;}bool Erase(const K& key){int hashi = hash(key) % _tables.size();Node* cur = _tables[hashi], * prev = nullptr;while (cur){if (cur->_kv.first == key){if (cur == _tables[hashi]){_tables[hashi] = cur->_next;}else{prev->_next = cur->_next;}return true;}prev = cur;cur = cur->_next;}return false;}private://哈希表是一个指针数组vector<Node*> _tables;size_t _n = 0;Hash hash;};
}

以上就是C++哈希表的实现的全部内容,希望能对大家有所帮助!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/240244.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MyBatis 架构分析

文章目录 三层架构一、基础支撑层1.1 类型转换模块1.2 日志模块1.3 反射工具模块1.4 Binding 模块1.5 数据源模块1.6 缓存模块1.6 解析器模块1.7 事务管理模块 二、核心处理层2.1 配置解析2.2 SQL 解析与 scripting 模块。2.3 MyBatis 中的 scripting 模块就是负责动态生成 SQL…

SpringCloud Alibaba(itheima)

SpringCloud Alibaba 第一章 微服务介绍1.1系统架构演变1.1.1单体应用架构1.1.2垂直应用架构1.1.3分布式架构1.1.4 SOA架构1.1.5微服务架构 1.2微服务架构介绍1.2.1微服务架构的常见问题1.2.2微服务架构的常见概念1.2.3微服务架构的常见解决方案 1.3 SpringCloud Alibaba介绍1.…

用23种设计模式打造一个cocos creator的游戏框架----(二十二)原型模式

1、模式标准 模式名称&#xff1a;原型模式 模式分类&#xff1a;创建型 模式意图&#xff1a;用原型实例指定创建对象的种类&#xff0c;并且通过复制这些原型创建新的对象 结构图&#xff1a; 适用于&#xff1a; 1、当一个系统应该独立于它的产品创建、构成和表示时 2、…

BUUCTF-Crypto合集-WP

获取CTF工具可关注CSJH网络安全团队&#xff0c;回复CTF工具 一眼就解密 下面的字符串解密后便能获得flag&#xff1a;ZmxhZ3tUSEVfRkxBR19PRl9USElTX1NUUklOR30 注意&#xff1a;得到的 flag 请包上 flag{} 提交 大小写字母加数字&#xff0c;而且等于号结尾&#xff0c;bas…

实在智能斩获钛媒体2023全球创新评选科技类「 大模型创新应用奖」

近日&#xff0c;历时三天的钛媒体2023 T-EDGE全球创新大会以“新视野新链接”为主题在北京隆重举办。作为科创领域全新高度的年度盛事&#xff0c;大会吸引了AI各产业链近百位海内外创投人、尖端企业家、商业领袖和国际嘉宾齐聚一堂&#xff0c;围绕新一轮AI革命、智慧数字化、…

Java中使用JTS实现WKB数据写入、转换字符串、读取

场景 Java中使用JTS实现WKT字符串读取转换线、查找LineString的list中距离最近的线、LineString做缓冲区扩展并计算点在缓冲区内的方位角&#xff1a; Java中使用JTS实现WKT字符串读取转换线、查找LineString的list中距离最近的线、LineString做缓冲区扩展并计算点在缓冲区内…

从Maven初级到高级

一.Maven简介 Maven 是 Apache 软件基金会组织维护的一款专门为 Java 项目提供构建和依赖管理支持的工具。 一个 Maven 工程有约定的目录结构&#xff0c;约定的目录结构对于 Maven 实现自动化构建而言是必不可少的一环&#xff0c;就拿自动编译来说&#xff0c;Maven 必须 能…

python调用DALL·E绘画

实现用gpt的api和他对话后&#xff0c;我们试着调用DALLE的api进行绘画 参考文档 OpenAI API 运行代码 from openai import OpenAIclient OpenAI()user_prompt input("请输入您想生成的图片描述: ")response client.images.generate(model"dall-e-3"…

分享70个Java源码总有一个是你想要的

分享70个Java源码总有一个是你想要的 学习知识费力气&#xff0c;收集整理更不易。 知识付费甚欢喜&#xff0c;为咱码农谋福利。 源码下载链接&#xff1a;https://pan.baidu.com/s/1uyWfeUuO_4jRbAEw825qRw?pwd6666 提取码&#xff1a;6666 项目名称 CRUD is ReallyU…

电商数据之巅:挖掘无限价值的蓝海

在数字时代的大潮中&#xff0c;数据已成为新的黄金和石油&#xff0c;尤其在电商领域。电商平台每天都在产生海量的数据&#xff0c;这些数据不仅是对消费者行为的记录&#xff0c;更是隐藏着无限的商机和价值。本文将带你走进电商数据的神奇世界&#xff0c;探寻其无尽可能的…

Go 泛型发展史与基本介绍

Go 泛型发展史与基本介绍 Go 1.18版本增加了对泛型的支持&#xff0c;泛型也是自 Go 语言开源以来所做的最大改变。 文章目录 Go 泛型发展史与基本介绍一、为什么要加入泛型&#xff1f;二、什么是泛型三、泛型的来源四、为什么需要泛型五、Go 泛型设计的简史六、泛型语法6.1 …

实战篇:一文讲清楚商品分析之返货品画像分析怎么做

01 什么是商品画像&#xff0c;怎样进行分析 “用户画像对于小伙伴们来说并不陌生&#xff0c;那有小伙伴知道商品画像吗&#xff1f;其实它和用户画像一样&#xff0c;可以简单理解成是商品海量数据的标签。”   商品画像的意义在于可以对商品进行精准的定位&#xff0c;让不…

探索人工智能 | 计算机视觉 让计算机打开新灵之窗

前言 计算机视觉是一门研究如何使机器“看”的科学&#xff0c;更进一步的说&#xff0c;就是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉&#xff0c;并进一步做图形处理&#xff0c;使电脑处理成为更适合人眼观察或传送给仪器检测的图像。 文章目录 前言…

重生奇迹mu翅膀合成

在重生奇迹mu中&#xff0c;合成翅膀需要准备好翅膀碎片、宝石、羽毛、强化精华等材料&#xff0c;而其中不同翅膀合成要求的材料和数量略有不同。以下是一般合成翅膀的步骤&#xff1a; 1.首先&#xff0c;需要在背包中准备好所有的合成材料。如果缺少任何一种材料&#xff0…

Node.js安装部署

Node.js安装部署 在 Windows 上安装 Node.js1.使用安装程序2.使用包管理器 Chocolatey 安装 在 macOS 上安装 Node.js1.使用 Homebrew 安装 在 Linux 上安装 Node.js1.使用包管理器安装2.使用 Node.js 官方二进制包 安装完成验证 Node.js 是一个基于 Chrome V8 引擎的 JavaScri…

实验一传统的结构化的软件工程方法、实验二面向对象的软件工程、实验三软件测试

背景&#xff1a; 实验一 传统的结构化的软件工程方法 1实验目的 了解传统的软件工程方法的基本原理&#xff0c;掌握软件生命周期的全过程依次划分为需求分析、总体设计、详细设计、编码、测试、维护等几个重要阶段。每个阶段所要完成的任务以及提交的文档。 2实验内容 …

【LeetCode:2828. 判别首字母缩略词 | 模拟遍历】

&#x1f680; 算法题 &#x1f680; &#x1f332; 算法刷题专栏 | 面试必备算法 | 面试高频算法 &#x1f340; &#x1f332; 越难的东西,越要努力坚持&#xff0c;因为它具有很高的价值&#xff0c;算法就是这样✨ &#x1f332; 作者简介&#xff1a;硕风和炜&#xff0c;…

腾讯云服务器root登录(轻量应用服务器)

Ubuntu 系统如何使用 root 用户登录实例&#xff1f; Ubuntu 系统的默认用户名是 ubuntu&#xff0c;并在安装过程中默认不设置 root 账户和密码。您如有需要&#xff0c;可在设置中开启允许 root 用户登录。具体操作步骤如下&#xff1a; 1. 使用 ubuntu 账户登录轻量应用服…

基于Java+SpringBoot+vue+element疫情物资捐赠分配系统设计和实现

基于JavaSpringBootvueelement疫情物资捐赠分配系统设计和实现 &#x1f345; 作者主页 系统定制开发 &#x1f345; 欢迎点赞 &#x1f44d; 收藏 ⭐留言 &#x1f4dd; &#x1f345; 文末获取源码联系方式 &#x1f4dd; 文章目录 基于JavaSpringBootvueelement疫情物资捐赠…

Blazor 混合开发_MAUI+Vue_WPF+Vue

MAUI&#xff0b;Vue 混合开发 背景混合开发的核心为什么必须使用 wwwroot 文件夹放置 Web 项目文件 创建 MAUI 项目创建 wwwroot 文件夹服务注册创建 _import.razor添加 Main.razor 组件修改 MainPage.xaml 文件 创建 WPF 项目创建 wwwroot 文件夹服务注册创建 _import.razor添…