数字图像处理-空间域图像增强-爆肝18小时用通俗语言进行超详细的总结

目录

灰度变换

直方图(Histogram)

直方图均衡

直方图匹配(规定化)

空间滤波

低通滤波器

高通滤波器
​​​​​​​


本文章讲解数字图像处理空间域图像增强,大部分内容来源于课堂笔记中

灰度变换

图像增强:对图像进行处理,使其更适合于某种特定的应用,有空间域图像增强和变换域图像增强

空间域图像增强是在图像的像素级别进行操作的一种方法。它直接对图像的原始像素值进行处理,常见的空间域增强技术包括直方图均衡化、滤波(如均值滤波、中值滤波)、边缘检测、锐化等

变换域图像增强是在图像变换后进行增强操作的一种技术,它使用数学变换将图像转换到一个不同的域,然后在这个域中对图像进行操作,常见的变换域增强技术包括傅里叶变换、小波变换等,这种处理通常涉及更复杂的数学原理和计算

灰度变换是图像处理中一种常见的操作,其目的是通过对图像的灰度级进行变换,改变图像的对比度、亮度或者强调图像的某些特征。这种变换通常在图像的每个像素上进行,根据像素的原始灰度值应用一个变换函数,得到新的灰度值

通常,灰度变换的一般形式可以表示为:

g(x,y)=T[f(x,y)]

其中,g(x, y)是变换后的图像灰度值,f(x, y)是原始图像的灰度值,T是变换函数

若将邻域大小限制为1*1(上图的邻域为3*3),则简化为:

s=T(r)

r、s分别是f(x,y)、g(x,y)在任意点(x,y)的灰度级

下面介绍一些常见的灰度变换函数

1.图像反转变换

s=-r

效果:灰度图像---“黑白颠倒”  彩色图像---补色

用途:适用于增强图像中暗色区域的灰色细节部分

2.对数变换

s=clog(1+r),c\, \, \, is\, \, \, constant\, \, \, and\, \, \, r\, \, \, is\, \, \, not\, \, \, negative

效果:把窄范围的低灰度级映射到宽范围的灰度级,把宽范围的高灰度级映射到窄范围的高灰度级

应用:压缩图像的动态范围,显示图像的傅里叶频谱图等

3.反对数变换

s=c/log(1+r),c\, \, \, is\, \, \, constant\, \, \, and\, \, \, r\, \, \, is\, \, \, not\, \, \, negative

效果:把宽范围的低灰度级映射到窄范围的灰度级,把窄范围的高灰度级映射到宽范围的高灰度级

4.幂次(伽马)变换

s=cr^{\gamma },c\, \, \, and\, \, \, r\, \, \, are\, \, \,not\, \, \, negative

效果:

\gamma <1 扩展暗像素值,压缩亮像素值,提升暗区分辨能力

\gamma >1 压缩暗像素值,扩展亮像素值,提升亮区分别能力

应用:用于各种图像获取、打印和显示等设备的伽马校正

演示:

一般对于航拍图而言,由于是在空中拍,拍的照片都比较亮,导致整体画面不清晰、观感不舒服,所以可以对其使用\gamma值大于1的幂次变换进行调整

import cv2
import numpy as np# 读取图像
gray_image = cv2.imread('overlooking_img.jpg', cv2.IMREAD_GRAYSCALE)# 检查图像是否成功读取
if gray_image is None:print("Error: Could not read the image.")
else:# 伽马值gamma =  1.8# 进行伽马变换gamma_corrected = np.array(255 * (gray_image / 255) ** gamma, dtype='uint8')# 窗口大小window_size = (300, 200)# 创建原始图像窗口并设置大小cv2.namedWindow('Original Image', cv2.WINDOW_NORMAL)cv2.resizeWindow('Original Image', *window_size)cv2.imshow('Original Image', gray_image)# 创建伽马校正图像窗口并设置大小cv2.namedWindow('Gamma Corrected Image', cv2.WINDOW_NORMAL)cv2.resizeWindow('Gamma Corrected Image', *window_size)cv2.imshow('Gamma Corrected Image', gamma_corrected)cv2.waitKey(0)cv2.destroyAllWindows()

5. 分段线性变换

将灰度级划归不同范围,每个范围采用不同的线性变换

优点:变换形式可根据需要任意合成

缺点:需用户输入

主要形式:1.对比度拉伸2.灰度级分层(灰度切割)3.比特平面分层(位图切割)

直方图(Histogram)

直方图表示具有不同灰度级的像素个数的条形图,把图像的灰度看作一个随机变量,则直方图是描述该随机变量的概率分布的一个近似

如上图所示,左边是普通的直方图、右边的是归一化的直方图

仅仅观察一个图像的直方图就可以看出这个图像的特点,比如说如果直方图的组成成分集中在灰度级低低的一侧,那么就是暗图像,如果直方图窄而且集中在灰度级的中间,那么就是低对比度图像等等

直方图均衡

如果想要增加像素灰度值的动态范围,从而增强图像对比度,可以使用直方图均衡,直方图均衡会使用灰度变换进行灰度修正,使得变换后的图像的直方图的灰度值分布均匀

那么,现在我们就需要找到一个灰度变换函数s=T(r)(注意:这个函数一定是个单调递增函数),将每一个r映射为s,满足:s服从均匀分布

由于r和s的定义域和值域均为[0, L - 1],则可以得到s的概率分布函数:

p_{s}\left ( s \right )=1/\left ( L-1 \right )

再由概率密度函数的基本性质可得:

p_{s}\left ( s \right )ds=p_{r}\left ( r \right )dr

所以有:

ds=p_{r}\left ( r \right )dr/\left ( p_{s}\left ( s \right ) \right )=\left ( L-1 \right )p_{r\left ( r \right )}dr

两边同时做积分,有:

s=T(r)=(L-1)\int_{0}^{r}p_{r}(w)dw

对于M行N列的数字图像,灰度级出现的概率近似为:

p_{r}(r_{k})=n_{k}/(MN),k=0,1,2,...K-1

代入,可以得到灰度变换函数的离散形式

s_{k}=T(r_{k})=(L-1)\sum_{j=0}^{k}p_{j}(r_{j})=(L-1)/(MN)\sum_{j=0}^{k}n_{j},k=0,1,2,...,K-1

总结:直方图均衡化处理的核心是:非线性拉伸,它可以增强图像的对比度但不改变图像内容,但在均衡过程中,原来频数较小的灰度级会被归入很少几个或一个灰度级内造成细节损失,还需要注意的是高对比度图像经直方图均衡化后,质量可能变差

直方图匹配(规定化)

修改一幅图像的直方图,使得它与另一幅图像的直方图相似,从而突出感兴趣的灰度范围,使图像质量改善就是直方图的匹配,如下图所示

上图来源于csdn博主:薯仔的土小豆 《【数字图像处理】直方图规定化(含实现代码)》感谢大佬!

那么我们如何达到上述的效果呢?很简单

假设:r、z分别表示输入图像和输出图像(或者说规定匹配的那个图像)的灰度级

第一步,我们先让r做均衡化,得到s=T(r)    有小数要四舍五入

第二步,我们让z也做均衡化,得到s'=G(z)  有小数要四舍五入

由于直方图匹配不应该改变原始图像内容,所以s=s'

那么我们推出:

z=G^{-1}(s)=G^{-1}(T(r))

第三步,找映射关系,我用下面这个图讲解该如何去找:

比如对于输入图像的一个灰度值r1,我们先得到s1,然后再根据s1=s2得到s2,那么这个s2的横坐标就是输出图像的灰度值z1

空间滤波

使用空间域模板进行的图像处理,称为空域滤波。模板本身被称为空域滤波器
输出图像中的每一点为输入图像中某个相关区域像素集的映射

空间滤波的基础过程:

用上述“空间域模板”在待滤波图像上移动,从蓝到红到绿,依次生成输入值14、13、14

如果说图像f是M*N,滤波器w是m*n,其中m=2a+1,n=2b+1,g(x,y)是图像f经过滤波器w之后在点(x,y)的输出图像,w(s,t)是w在点(s,t)的系数,f(x,y)是原图像在(x,y)上的像素值则易得:

g(x,y)=\sum_{s=-a}^{a}\sum_{t=-b}^{b}w(s,t)f(x+s,y+t)

上式实际上是一个相关操作,还有一个操作叫做卷积,和相关非常相似,但略有不同

下面通过一个例子,直观展示两者的区别:

那么,卷积和相关相比,其优势在哪里?卷积的操作符合交换律、结合律、分配律,而相关仅仅符合分配律

低通滤波器

低通滤波器又称平滑滤波器,它可以去除图像中一些不重要的细节,比如噪声,还可以平滑图像

低通滤波器分为线性滤波器和非线性滤波器,下面细说

线性滤波器主要指均值滤波器,其一般形式如下,分为盒装滤波和加权均值滤波

其中n=a+b+c+...+h+i

如果为盒装滤波,则a=b=c=...=h=i 

如果为加权均值滤波,则a~i至少有两个值不同

非线性滤波器又称统计排序滤波器,一般分为三种:中值滤波器、最大值滤波器、最小值滤波器,这三种滤波器非常好理解,以最大值滤波器为例,输出像素就是原像素滤波范围内所有像素的最大像素值

中值滤波器可以消除孤立的亮点或暗点、有效去除椒盐噪声,同时较均值滤波器而言,更好地保留边的锐度和图像的细节

高通滤波器

高通滤波器又称锐化滤波器,它可以突出图像的细节,在超声探测成像中,可以通过锐化改善分别率低、边缘模糊等问题,同时也可以恢复过度钝化、曝光不足的图像

先简单介绍一下图像中的高频信息和低频信息,低频是指灰度变化比较小的像素区域(图像内容),高频是指灰度变化比较大的像素区域(变化或者内部纹理),而高通滤波器就是要削弱低频信息,突出高频信息,这与上述低通滤波器恰恰相反

高通滤波器当中常见的两种形式是一阶微分和二阶微分

那么,先介绍一下这两种微分的数学形式

一阶微分

\frac{\partial f}{\partial x}=f(x+1)-f(x)

二阶微分

\frac{\partial^2 f}{\partial x^2}=f(x+1)+f(x-1)-2f(x)

使用二阶微分锐化图像一般用拉普拉斯算子,其定义式如下:

\bigtriangledown ^{2}f=\frac{\partial^2 f}{\partial x^2}+\frac{\partial^2f }{\partial y^2}=f(x+1,y)+f(x-1,y)+f(x,y+1)+f(x,y-1)-4f(x,y)

其中第二个等号后面是代入上述二阶微分算式后求得的偏导结果

根据拉普拉斯算子的定义,容易得到拉普拉斯算子的标准滤波模板

如果对上述的模板进行扩展,使得其能够处理对角线的四个像素,可以得到如下模板:

最后是上面两种模板的另一种形式

下面是使用上述两种模板进行锐化的实例,可以发现:经有对角分量的掩膜处理后的图像,比基本掩膜处理后的图像更加锐化

使用一阶微分锐化图像一般用梯度,其定义式如下:

\bigtriangledown f=[(z_{6}-z_{5})^{2}+(z_{8}-z_{5})^{2}]^{1/2}

用上述的式子很难形成滤波的模板,所以我们采取的方式是用绝对值替换

\bigtriangledown f=[G_{x}^{2}+G_{y}^{2}]^{1/2}\approx |G_x|+|G_y|

形成了下面常用的三种算子

1.Roberts交叉梯度算子

\bigtriangledown f\approx |z_9-z_5|+|z_8-z_6|

2.Prewitt梯度算子

\bigtriangledown f\approx |(z_7+z_8+z_9)-(z_1+z_2+z_3)|+|(z_3+z_6+z_9)-(z_1+z_4+z_7)|

3.Sobel梯度算子

\bigtriangledown f\approx |(z_7+2z_8+z_9)-(z_1+2z_2+z_3)|+|(z_3+2z_6+z_9)-(z_1+2z_4+z_7)|

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/239091.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用Python将OSS文件免费下载到本地:第一步 列举OSS文件

大家好,我是水滴~~ 本文将介绍了使用的知识点、以及列举OSS文件的代码、并对该代码进行详细解析、最后给出部署方案,希望能对你有所帮助! 《Python入门核心技术》专栏总目录・点这里 系列文章 使用Python将OSS文件免费下载到本地:项目分析和准备工作使用Python将OSS文件免…

【网络安全】学习Web安全必须知道的一本书

【文末送书】今天推荐一本网络安全领域优质书籍。 目录 正文实战案例1&#xff1a;使用Docker搭建LAMP环境实战案例2&#xff1a;使用Docker搭建LAMP环境文末送书 正文 学习Web安全离不开Web&#xff0c;那么&#xff0c;需要先来学习网站的搭建。搭建网站是每一个Web安全学习…

为什么SSL证书是必备之物?

SSL证书的首要任务是保障用户和网站之间的数据传输安全。未加密的数据传输容易受到中间人攻击&#xff0c;使敏感信息暴露于风险之中。SSL通过加密数据&#xff0c;有效地抵御了这些潜在的威胁&#xff0c;确保用户的隐私得到充分保护。 采用SSL证书的网站在浏览器地址栏中通常…

如何进行USB丢弃攻击?

USB丢弃攻击&#xff0c;类似于一场表演艺术&#xff0c;您需要构建一个引人入胜的故事&#xff0c;激发目标的好奇心&#xff0c;让他们忽略基本的安全意识&#xff0c;插入您精心准备的USB设备! 本文章仅限娱乐&#xff0c;请勿模仿或进行违法活动&#xff01; 一、选择放置…

Java版企业电子招投标系统源代码,支持二次开发,采用Spring cloud微服务架构

招投标管理系统是一个集门户管理、立项管理、采购项目管理、采购公告管理、考核管理、报表管理、评审管理、企业管理、采购管理和系统管理于一体的综合性应用平台。它适用于招标代理、政府采购、企业采购和工程交易等业务的企业&#xff0c;旨在提高项目管理的效率和质量。该系…

Http---HTTP响应报文

1. HTTP响应报文分析 HTTP 响应报文效果图: 响应报文说明: --- 响应行/状态行 --- HTTP/1.1 200 OK # HTTP协议版本 状态码 状态描述 --- 响应头 --- Server: Tengine # 服务器名称 Content-Type: text/html; charsetUTF-8 # 内容类型 Transfer-Encoding: chunked # 发送给客…

【Qt之Quick模块】5. QML基本类型及示例用法

QML格式 QML基本类型 在 QML 中&#xff0c;有以下基本类型&#xff1a; int&#xff1a;整数类型。 Rectangle {function myFunction() {// 输出 debug 信息console.log("11 " (11));}Component.onCompleted: {myFunction();} }结果&#xff1a; 2. real&…

FreeRTOS之队列集操作(实践)

多个任务在在同一队列中传递的同一种数据类型&#xff0c;而队列集能够在任务之间传递不同的数据类型。 配置流程&#xff1a;&#xff08;更详细流程参考正点原子的教程&#xff09; 1、启用队列集将configUSE_QUEUE_SETA置1&#xff09; 2、创建队列集 3、创建队列或信号…

SpringBoot对接支付宝完成扫码支付

文章目录 1、支付方式选择2、交互流程3、对接准备1&#xff09;加密解密 签名验签2&#xff09;沙箱环境3&#xff09;内网穿透 4、二维码5、下单6、异步通知回调7、查询支付结果8、退款9、通用版SDK 需求&#xff1a;系统A对接支付宝&#xff0c;实现支持用户扫码支付 1、支…

成为一名FPGA工程师:面试题与经验分享

在现代科技领域&#xff0c;随着数字电子技术的迅猛发展&#xff0c;FPGA&#xff08;可编程逻辑器件&#xff09;工程师成为了备受瞩目的职业之一。FPGA工程师不仅需要掌握硬件设计的基本原理&#xff0c;还需要具备良好的编程能力和解决问题的实践经验。面对如此竞争激烈的行…

语音识别之百度语音试用和OpenAiGPT开源Whisper使用

0.前言: 本文作者亲自使用了百度云语音识别,腾讯云,java的SpeechRecognition语言识别包 和OpenAI近期免费开源的语言识别Whisper(真香警告)介绍了常见的语言识别实现原理 1.NLP 自然语言处理(人类语言处理) 你好不同人说出来是不同的信号表示 单位k 16k16000个数字表示 1秒160…

C语言中关于操作符的理解

本篇文章只会列出大家在生活中经常使用的操作符 算术操作符 在算数操作符中常用的有&#xff0c;&#xff0c;-&#xff0c;*&#xff0c;/&#xff0c;% &#xff0c;我们重点讲一讲 / (除) 和 % (模) " / "运算 #include <stdio.h>int main() {int a5/2;fl…

探讨APP自动化测试工具的重要性

随着移动应用市场的蓬勃发展&#xff0c;企业对于保证其移动应用质量和用户体验的需求日益迫切。在这一背景下&#xff0c;APP自动化测试工具正变得越来越重要&#xff0c;成为企业成功的关键组成部分。本文将探讨APP自动化测试工具对企业的重要性&#xff0c;并为您解析其在提…

Spring中你一定要知道的@PostConstruct/@PreDestroy

文章目录 功能源码解析执行 功能 Spring中存在很多回调&#xff0c;但是执行他们的时机都不相同&#xff0c;也许大家用的最多的是InitializingBean.afterPropertiesSet&#xff0c;这个方法的作用如名称一样&#xff0c;是bean初始化后执行的一个回调操作&#xff0c;而PostC…

nodejs+vue+ElementUi家政服务系统c90g5

项目中登录模块用到token家政服务平台有管理员&#xff0c;雇主&#xff0c;雇员三个角色。管理员功能有个人中心&#xff0c;雇主管理&#xff0c;雇员管理&#xff0c;资料认证管理&#xff0c;项目类型管理&#xff0c;服务项目管理&#xff0c;需求信息管理&#xff0c;服务…

C# WPF上位机开发(软件的发布和部署)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 软件编译完成之后&#xff0c;本地测试完之后&#xff0c;一般都要发布和部署到客户的电脑上面。客户电脑的配置未必和开发的电脑是一样的&#xf…

mysql 23day DDL常用约束,数据类型

目录 数据库的四种语言常用约束&#xff08;DDL&#xff09;创建格式PRIMARY KEY&#xff1a;主键约束FOREIGN KEY&#xff1a;外键约束主键外键 联合测试开始测试 NOT NULL&#xff1a;非空约束UNIQUE&#xff1a;唯一约束DEFAULT&#xff1a;默认值约束zerofill 零填充auto_i…

自制数据库空洞率清理工具-C版-01-EasyClean-V1.0(支持南大通用数据库Gbase8a)

目录 一、环境信息 二、简述 三、支持功能 四、空洞率 五、工具流程图 六、安装包下载地址 七、参数介绍 1、命令模板 2、命令样例 3、参数表格 八、安装步骤 1、配置环境变量 2、生效环境变量 3、检验动态链接是否正常 九、运行效果 一、环境信息 名称值CPUInt…

Windows电脑向ipad和iOS系统共享文件夹

Windows电脑向ipad和iOS系统共享文件夹 这个方案不需要下载任何软件&#xff0c;但是要求 iOS 和 Windows 在同一个局域网内。再大的文件都可以在 iOS13 自带的的“文件App”里实时显示&#xff0c;可以直接打开。这个解决方案需要你 Windows 电脑上登陆了微软账号&#xff0c…

原生JavaScript实现 元素全屏与退出全屏效果

之前写过 前端screenfull实现界面全屏展示功能 突然发现自己犯傻了 其实元素js中就有全屏与取消全屏的方式 html代码如下 <!DOCTYPE html> <html> <head><title>全屏实验</title><style></style> </head> <body><d…