图像处理—小波变换

小波变换

一维小波变换

因为存在 L 2 ( R ) = V j 0 ⊕ W j 0 ⊕ W j 0 + 1 ⊕ ⋯ L^{2}(\boldsymbol{R})=V_{j_{0}}\oplus W_{j_{0}}\oplus W_{j_{0}+1}\oplus\cdots L2(R)=Vj0Wj0Wj0+1,所以存在 f ( x ) f(x) f(x)可以在子空间 V j 0 V_{j_0} Vj0中用尺度函数展开和在子空间 W j 0 W j 0 + 1 , ⋯ W_{j_0}W_{j_{0+1}},\cdots Wj0Wj0+1,中用某些数量的小波函数展开来表示。即

f ( x ) = ∑ k c j 0 ( k ) φ j 0 , k ( x ) + ∑ j = j 0 ∞ ∑ k d j ( k ) ψ j , k ( x ) f(x)=\sum_{k}c_{j_0}(k)\varphi_{j_0,k}(x)+\sum_{j=j_{0}}^{\infty}\sum_{k}d_{j}(k)\psi_{j,k}(x) f(x)=kcj0(k)φj0,k(x)+j=j0kdj(k)ψj,k(x)
其中 j 0 j_0 j0 是任意的开始尺度, c j 0 ( k ) c_{j_0}(k) cj0(k)通常称为近似和或尺度系数, d j ( k ) d_j(k) dj(k)称为细节和或小波系数。

由于双正交的性质可得
c j 0 ( k ) = ⟨ f ( x ) , φ j 0 , k ( x ) ⟩ = ∫ f ( x ) φ j 0 , k ( x ) d x d j ( k ) = ⟨ f ( x ) , ψ j , k ( x ) ⟩ = ∫ f ( x ) ψ j , k ( x ) d x c_{j_0}(k)=\Big\langle f(x),\varphi_{j_0,k}(x)\Big\rangle=\int f(x)\varphi_{j_0,k}(x)\mathrm{d}x\\ d_{j}(k)=\Big\langle f(x),\psi_{j,k}(x)\Big\rangle=\int f(x)\psi_{j,k}(x)\mathrm{d}x cj0(k)=f(x),φj0,k(x)=f(x)φj0,k(x)dxdj(k)=f(x),ψj,k(x)=f(x)ψj,k(x)dx
转换成离散形式可得
W φ ( j 0 , k ) = 1 M ∑ n f ( n ) φ j 0 , k ( n ) W ψ ( j , k ) = 1 M ∑ n f ( n ) ψ j , k ( n ) , j ≥ j 0 \begin{aligned} W_{\varphi}(j_{0},k)&=\frac{1}{\sqrt{M}}\sum_{n}f(n)\varphi_{j_{0},k}(n)\\ W_{\psi}(j,k)&=\frac{1}{\sqrt{M}}\sum_{n}f(n)\psi_{j,k}(n),\quad j\geq j_{0} \end{aligned} Wφ(j0,k)Wψ(j,k)=M 1nf(n)φj0,k(n)=M 1nf(n)ψj,k(n),jj0
其中 φ j 0 , k ( n ) \varphi_{j_0,k}(n) φj0,k(n) ψ j , k ( n ) \psi_{j,k}(n) ψj,k(n)是基函数 φ j 0 , k ( x ) \varphi_{j_0,k}(x) φj0,k(x) ψ j , k ( x ) \psi_{j,k}(x) ψj,k(x) 的取样形式。

由此可得
f ( n ) = 1 M ∑ k W φ ( j 0 , k ) φ j 0 , k ( n ) + 1 M ∑ j = j 0 ∞ ∑ k W ψ ( j , k ) ψ j , k ( n ) f(n)=\frac{1}{\sqrt{M}}\sum_{k}W_{\varphi}(j_{0},k)\varphi_{j_{0},k}(n)+\frac{1}{\sqrt{M}}\sum_{j=j_{0}}^{\infty}\sum_{k}W_{\psi}(j,k)\psi_{j,k}(n) f(n)=M 1kWφ(j0,k)φj0,k(n)+M 1j=j0kWψ(j,k)ψj,k(n)
通常 j 0 = 0 j_0=0 j0=0 M M M为2 的幂(即 M = 2 j ) M=2^{j}) M=2j)

而对于哈尔小波,离散的尺度和小波函数与 M × M M\times M M×M哈尔矩阵的行相对应,其中最小尺度为0,最大尺度为 j − 1 j-1 j1

快速小波变换

对于图像的多分辨率变换
φ ( x ) = ∑ n h φ ( n ) 2 φ ( 2 x − n ) \varphi(x)=\sum_{n}h_{\varphi}(n)\sqrt{2}\varphi(2x-n) φ(x)=nhφ(n)2 φ(2xn)
并进行尺度化与平移操作,可得
φ ( 2 j x − k ) = ∑ n h φ ( n ) 2 φ ( 2 ( 2 j x − k ) − n ) = ∑ m h φ ( n ) 2 φ ( 2 j + 1 x − 2 k − n ) \begin{aligned} \varphi(2^{j}x-k) &=\sum_{n}h_{\varphi}(n)\sqrt{2}\varphi\left(2(2^{j}x-k)-n\right)\\ &=\sum_{m}h_{\varphi}(n)\sqrt{2}\varphi(2^{j+1}x-2k-n) \end{aligned} φ(2jxk)=nhφ(n)2 φ(2(2jxk)n)=mhφ(n)2 φ(2j+1x2kn)
m = 2 k + n m=2k+n m=2k+n,可得
φ ( 2 j x − k ) = ∑ n h φ ( n ) 2 φ ( 2 ( 2 j x − k ) − n ) = ∑ m h φ ( n ) 2 φ ( 2 j + 1 x − 2 k − n ) = ∑ m h φ ( m − 2 k ) 2 φ ( 2 j + 1 x − m ) \begin{aligned} \begin{aligned} \varphi(2^{j}x-k) & =\sum_{n}h_{\varphi}(n)\sqrt{2}\varphi\left(2(2^{j}x-k)-n\right)\\ &=\sum_{m}h_{\varphi}(n)\sqrt{2}\varphi(2^{j+1}x-2k-n) \\ &=\sum_{m}h_{\varphi}(m-2k)\sqrt{2}\varphi(2^{j+1}x-m) \end{aligned} \end{aligned} φ(2jxk)=nhφ(n)2 φ(2(2jxk)n)=mhφ(n)2 φ(2j+1x2kn)=mhφ(m2k)2 φ(2j+1xm)
同理对于小波函数存在
ψ ( 2 j x − k ) = ∑ m h ψ ( m − 2 k ) 2 φ ( 2 j + 1 x − m ) \psi(2^{j}x-k)=\sum_{m}h_{\psi}(m-2k)\sqrt{2}\varphi(2^{j+1}x-m) ψ(2jxk)=mhψ(m2k)2 φ(2j+1xm)
其中将 ψ j , k ( x ) = 2 j / 2 ψ ( 2 j x − k ) \psi_{j,k}(x)=2^{j/2}\psi(2^{j}x-k) ψj,k(x)=2j/2ψ(2jxk)代入 d j ( k ) = ⟨ f ( x ) , ψ j , k ( x ) ⟩ = ∫ f ( x ) ψ j , k ( x ) d x d_{j}(k)=\Big\langle f(x),\psi_{j,k}(x)\Big\rangle=\int f(x)\psi_{j,k}(x)\mathrm{d}x dj(k)=f(x),ψj,k(x)=f(x)ψj,k(x)dx可得
d j ( k ) = ∫ f ( x ) 2 j / 2 ψ ( 2 j x − k ) d x d_{j}(k)=\int f(x)2^{j/2}\psi(2^{j}x-k)\mathrm{d}x dj(k)=f(x)2j/2ψ(2jxk)dx
又因为 ψ ( 2 j x − k ) = ∑ m h ψ ( m − 2 k ) 2 φ ( 2 j + 1 x − m ) \psi(2^{j}x-k)=\sum_{m}h_{\psi}(m-2k)\sqrt{2}\varphi(2^{j+1}x-m) ψ(2jxk)=mhψ(m2k)2 φ(2j+1xm)

所以存在
d j ( k ) = ∫ f ( x ) 2 j / 2 [ ∑ m h ψ ( m − 2 k ) 2 φ ( 2 j + 1 x − m ) ] d x = ∑ m h ψ ( m − 2 k ) [ ∫ f ( x ) 2 ( j + 1 ) / 2 φ ( 2 j + 1 x − m ) d x ] = ∑ m h ψ ( m − 2 k ) c j + 1 ( m ) \begin{aligned} d_{j}(k) &=\int f(x)2^{j/2}\biggl[\sum_{m}h_{\psi}(m-2k)\sqrt{2}\varphi(2^{j+1}x-m)\biggr]\mathrm{d}x\\ &=\sum_{m}h_{\psi}(m-2k)\biggl[\int f(x)2^{(j+1)/2}\varphi(2^{j+1}x-m)\mathrm{d}x\biggr]\\ &=\sum_{m}h_{\psi}(m-2k)c_{j+1}(m) \end{aligned} dj(k)=f(x)2j/2[mhψ(m2k)2 φ(2j+1xm)]dx=mhψ(m2k)[f(x)2(j+1)/2φ(2j+1xm)dx]=mhψ(m2k)cj+1(m)
同理可得
c j ( k ) = ∑ m h φ ( m − 2 k ) c j + 1 ( m ) c_{j}(k)=\sum_{m}h_{\varphi}(m-2k)c_{j+1}(m) cj(k)=mhφ(m2k)cj+1(m)

W ψ ( j , k ) = ∑ m h ψ ( m − 2 k ) W φ ( j + 1 , m ) W φ ( j , k ) = ∑ m h φ ( m − 2 k ) W φ ( j + 1 , m ) \begin{aligned}W_{\psi}(j,k)&=\sum_{m}h_{\psi}(m-2k)W_{\varphi}(j+1,m)\\ W_{\varphi}(j,k)&=\sum_{m}h_{\varphi}(m-2k)W_{\varphi}(j+1,m)\end{aligned} Wψ(j,k)Wφ(j,k)=mhψ(m2k)Wφ(j+1,m)=mhφ(m2k)Wφ(j+1,m)
上式揭示了相邻尺度直接的离散小波变换(DWT)系数之间的关系,可以认为是 W φ ( j + 1 , m ) , W ψ ( j + 1 , m ) W_{\varphi}(j+1,m),W_{\psi}(j+1,m) Wφ(j+1,m),Wψ(j+1,m)分别与 h φ ( − n ) , h ψ ( − n ) h_{\varphi}(-n),h_{\psi}(-n) hφ(n),hψ(n)进行卷积操作并下采样得到的,于是可以写成
W ψ ( j , k ) = h ψ ( − n ) ⋆ W ϕ ( j + 1 , n ) ∣ n = 2 k , k ⩾ 0 W φ ( j , k ) = h φ ( − n ) ⋆ W φ ( j + 1 , n ) ∣ n = 2 k , k ⩾ 0 W_{\psi}(j,k)=h_{\psi}(-n)\star W_{\phi}(j+1,n)\Big|_{n=2k,k\geqslant0}\\\\W_{\varphi}(j,k)=h_{\varphi}(-n)\star W_{\varphi}(j+1,n)\Big|_{n=2k,k\geqslant0} Wψ(j,k)=hψ(n)Wϕ(j+1,n) n=2k,k0Wφ(j,k)=hφ(n)Wφ(j+1,n) n=2k,k0
即如下图所示的结构

image-20231217143919224

同时可以经过多次迭代分解,如下图是二级分解的结构

image-20231217144032369

二维小波变换

为了将小波变换扩展到适应二维的图像,由此定义,存在尺度函数
φ ( x , y ) = φ ( x ) φ ( y ) \varphi(x,y)=\varphi(x)\varphi(y) φ(x,y)=φ(x)φ(y)
以及三个对方向敏感的小波函数
ψ H ( x , y ) = ψ ( x ) φ ( y ) ψ V ( x , y ) = φ ( x ) ψ ( y ) ψ D ( x , y ) = ψ ( x ) ψ ( y ) \begin{aligned} &\psi^{H}(x,y)=\psi(x)\varphi(y) \\ &\psi^{V}(x,y)=\varphi(x)\psi(y) \\ &\psi^{D}(x,y) =\psi(x)\psi(y) \end{aligned} ψH(x,y)=ψ(x)φ(y)ψV(x,y)=φ(x)ψ(y)ψD(x,y)=ψ(x)ψ(y)
以上三个小波函数分别对应图像沿着列方向的变换、图像沿着行方向的变换、图像沿着对角线方向的变换

并存在
φ j , m , n ( x , y ) = 2 j / 2 φ ( 2 j x − m , 2 j y − n ) ψ j , m , n i ( x , y ) = 2 j / 2 ψ i ( 2 j x − m , 2 j y − n ) , i = { H , V , D } \begin{array}{c}{{\varphi_{j,m,n}(x,y)=2^{j/2}\varphi(2^{j}x-m,2^{j}y-n)}}\\{{\psi_{j,m,n}^{i}(x,y)=2^{j/2}\psi^{i}(2^{j}x-m,2^{j}y-n),i=\bigl\{H,V,D\bigr\}}}\\\end{array} φj,m,n(x,y)=2j/2φ(2jxm,2jyn)ψj,m,ni(x,y)=2j/2ψi(2jxm,2jyn),i={H,V,D}
并可以推导出离散形式的小波变换
W φ ( j 0 , m , n ) = 1 M N ∑ x = 0 M − 1 ∑ y = 0 N − 1 f ( x , y ) φ j 0 , m , n ( x , y ) W ψ i ( j , m , n ) = 1 M N ∑ x = 0 M − 1 ∑ y = 0 N − 1 f ( x , y ) ψ j , m , n i ( x , y ) , i = { H , V , D } \begin{aligned} W_{\varphi}(j_{0},m,n)&=\frac{1}{\sqrt{MN}}\sum_{x=0}^{M-1}\sum_{y=0}^{N-1}f(x,y)\varphi_{j_{0},m,n}(x,y)\\\\ W_{\psi}^{i}(j,m,n)&=\frac{1}{\sqrt{MN}}\sum_{x=0}^{M-1}\sum_{y=0}^{N-1}f(x,y)\psi_{j,m,n}^{i}(x,y),i=\{H,V,D\}\end{aligned} Wφ(j0,m,n)Wψi(j,m,n)=MN 1x=0M1y=0N1f(x,y)φj0,m,n(x,y)=MN 1x=0M1y=0N1f(x,y)ψj,m,ni(x,y),i={H,V,D}
其中 j 0 j_0 j0表示任意的开始尺度, W φ ( j 0 , m , n ) W_{\varphi}(j_{0},m,n) Wφ(j0,m,n)表示在尺度为 j 0 j_0 j0时的近似, W ψ i ( j , m , n ) , i = { H , V , D } W_{\psi}^{i}(j,m,n),i=\{H,V,D\} Wψi(j,m,n),i={H,V,D}表示对尺度为 j 0 j_0 j0时的水平、垂直与对角线方向的细节

j 0 = 0 , M = N = 2 j j_0=0,M=N=2^j j0=0,M=N=2j时,存在离散小波逆变换
f ( x , y ) = 1 M N ∑ m ∑ n W φ ( j 0 , m , n ) φ j 0 , m , n ( x , y ) + 1 M N ∑ i = H . V . D ∑ j = j 0 ∞ ∑ m ∑ n W ψ i ( j , m , n ) ψ j , m , n i ( x , y ) \begin{aligned} f(x,y)& =\frac{1}{\sqrt{MN}}\sum_{m}\sum_{n}W_{\varphi}(j_{0},m,n)\varphi_{j_{0},m,n}(x,y) \\ &+\frac{1}{\sqrt{MN}}\sum_{i=H.V.D}\sum_{j=j_{0}}^{\infty}\sum_{m}\sum_{n}W_{\psi}^{i}(j,m,n)\psi_{j,m,n}^{i}(x,y) \end{aligned} f(x,y)=MN 1mnWφ(j0,m,n)φj0,m,n(x,y)+MN 1i=H.V.Dj=j0mnWψi(j,m,n)ψj,m,ni(x,y)
同理可以得到

小波分解过程如图所示

image-20231220100830699

小波逆变换过程如图所示

image-20231220101000465

其小波分解的结果如图所示

image-20231220101104129

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/237980.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ffmpeg 打印视频帧的数量

命令: 可以使用 ffprobe 工具: ffprobe -v error -count_frames -select_streams v:0 -show_entries streamnb_read_frames -of defaultnokey1:noprint_wrappers1 input.ts上面命令含义为: -v error:设置输出日志级别为 error&…

springboot使用Validated实现参数校验

做为后端开发人员,一定有前端传的数据是可能会出错的警惕性,否则程序就可能会出错,比如常遇到的空指针异常,所以为了程序运行的健壮性,我们必须对每一个参数进行合法校验,就能避免很多不必要的错误&#xf…

【高效开发工具系列】eclipse部署web项目

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

el-select绑定值的坑

碰到一个问题,选择框的数据是后端传过来的,下拉框的数据也是后端传过来的,但是打开下拉框时,发现数据没有高亮。 最后发现,只要选择框v-model给的值和option的value绑定的值一致,就可以高亮。 大多数情况下…

机器学习——分类评价指标

【说明】文章内容来自《机器学习——基于sklearn》,用于学习记录。若有争议联系删除。 1、评价指标 对于模型的评价往往会使用损失函数和评价指标,两者的本质是一致的。一般情况下,损失函数应用于训练过程,而评价指标应用于测试过…

【Xcode】解决Unable to process request - PLA Update available

出现场景 IOS更新app时,使用Xcode上传新版本的包时,提示无法上传。 Unable to process request -PLA update available you currently dont have access to this membership resource. To resolve this issue ,agree to the latest program license a…

Flutter ExpansionPanelList 去除展开后的间隔距离,及属性

可展开列表中,展开后条目有一个间距,可以 使用materialGapSize: 0,来去掉 // child: ExpansionPanelList(//expandedHeaderPadding: EdgeInsets.zero,//头部顶部间隔// materialGapSize: 15,//展开后的间距// animationDuration: const …

实在智能成功完成近2亿元C轮融资,全面迎接2024年Agent智能体应用元年

在这个最冷的季节,杭州实在智能科技有限公司(以下简称“实在智能”)依然表现火爆,近日,实在智能成功完成C轮融资近2亿元人民币,由金泰富资本和安吉智慧谷共同领投、安吉两山国创跟投。 在此轮融资以前&…

61权限提升-RedisPostgre令牌窃取进程注入

主要讲解redis数据库和postgresql数据库,然后还要两个windows的提权方式令牌窃取和进程注入。 postgresql是基于两个cve的漏洞,redis的提权方式第一种是利用任务执行的反弹shell,第二个是写一个ssh-keygen的公钥使用私钥登录,这是…

测试:DFX DFS

DFX DFX(Design for X)指的是一种设计方法,它关注于产品的非功能性属性,旨在提高产品的整体竞争力和生命周期价值。这里的“X”代表产品生命周期中的某个环节或特性,例如供应、安装、维护等,也可以是影响产…

[SWPUCTF 2021 新生赛]Do_you_know_http已

打开环境 它说用WLLM浏览器打开,使用BP抓包,发送到重发器 修改User-Agent 下一步,访问a.php 这儿他说添加一个本地地址,它给了一个183.224.40.160,我用了发现没用,然后重新添加一个地址:X-Forwa…

QListView的setResizeMode,setViewMode,setFlow

参考: qt的QListwiget设置横向的排列_qlistwidget 横排-CSDN博客 希望实现类似的效果: 感觉关键是搞清楚这三句: list.setViewMode(QListView::IconMode);list.setFlow(QListView::LeftToRight);list.setResizeMode(QListView::Adjust); …

mysql自增序列 关于mysql线程安全 独享内存 溢出 分析

1 MySQL锁概述 锁是计算机协调多个进程或线程并发访问某一资源的机制。如何保证数据并发访问的一致性、有效性是所有数据库必须解决的一个问题,锁冲突也是影响数据库并发访问性能的一个重要因素。 相对其他数据库而言,MySQL的锁机制比较简单&#xff0c…

记录 | ubuntu tmux的安装配置

ubuntu安装: sudo apt install tmux 修改配置文件: vim ~/.tmux.conf unbind C-b ---> 解绑默认前缀键 set-option -g prefix C-Space ---> 将前缀键设置为 ctrl空格bind [ split-window -h …

nginx 离线安装 https反向代理

这里写自定义目录标题 安装步骤1.安装nginx所需依赖1.1 安装gcc和gcc-c1.1.1下载依赖包1.1.2 上传依赖包1.1.3安装依赖 1.2 安装pcre1.2.1 下载pcre1.2.2 上传解压安装包1.2.3 编译安装 1.3 下载安装zlib1.3.1 下载zlib1.3.2 上传解压安装包1.3.3 编译安装 1.4 下载安装openssl…

mysql 23-3day 数据库授权(DCL)

目录 创建一个用户 并授权(grant)设置最大连接数客户端链接服务器创建用户删除用户修改用户修改密码root修改自己密码授予 mysql 权限收回权限收回权限刷新一下授权表mydql 知识点确保 mysql 用户为普通用户删除空口令账号安全建议 创建一个用户 并授权&…

STM32G4x FLASH 读写配置结构体(LL库下使用)

主要工作就是把HAL的超时用LL库延时替代,保留了中断擦写模式、轮询等待擦写,我已经验证了部分。 笔者用的芯片为STM32G473CBT6 128KB Flash,开环环境为CUBEMXMDK5.32,因为G4已经没有标准库了,笔者还是习惯使用标准库的…

企业招股书API,轻松获取公司招股书信息

前言 随着互联网的普及和信息技术的不断发展,获取公司招股书信息变得越来越便捷。企业招股书API作为一种新型的技术手段,为投资者提供了更加高效、准确、全面的招股书信息。本文将介绍企业招股书API的功能和优势,帮助投资者轻松获取公司招股…

c++ opencv中unsigned char *、Mat、Qimage互相转换

unsigned char * 转Mat unsinged char * data img.data; Mat mat (h,w,cv_8UC3,data,0);void * 转Qimage uchar * bit (uchar*)pRknnInputData; QImage image QImage(bit, 2048,1536, QImage::Format_RGB888);qimage转Mat QImage image QImage (MODEL_INPUT_WIDTH_SIZE,MODE…

什么是多边形网格以及如何编辑它?

在线工具推荐: 3D数字孪生场景编辑器 - GLTF/GLB材质纹理编辑器 - 3D模型在线转换 - Three.js AI自动纹理开发包 - YOLO 虚幻合成数据生成器 - 三维模型预览图生成器 - 3D模型语义搜索引擎 介绍 多边形网格是 3D 建模中经常使用的一个词,它的含义…