二维网格划分 LRU缓存设计

背景

  1. 有大量的二维矩形需要存储
  2. 查看点在哪些矩形中
  3. 给定一个矩形 查看与哪些矩阵相交
  4. 项目背景与图形图像基本无关,只涉及大文件分块读取,所以不用实现游戏行业中的物理引擎

设计思路

  1. 使用空间划分算法:二维栅格将整个空间划分为多个小区域。每个小区域中包含若干个矩形,以方便进行快速的范围查询。所以必须初始化网格大小int gridSize
    数据索引为网格中的位置(x,y),即:给定int xStart, int yStart, int width, int height, 计算给定数据块占整个空间哪些网格

      for (int i = xStart/gridSize; i <= (xStart+width )/gridSize; i++) {for (int j = yStart/gridSize; j <= (yStart + height)/gridSize; j++) {pair<int,int> position(i,j);//这就是计算输入矩阵占整个空间哪些网格DataCacheMap[position] = block;}}
    

注意: 因为本人 网格划分 与 文件划分保持一致,所以不存在一个位置有多个block的情况。
如果以后有这种情况,SrcDataCacheMap的类型要改成 std::unordered_map<pair<int, int>, list<LRULinkedNode*>>

  1. 采用LRU缓存设计:使用双向链表LRULinkedNode,和哈希表存储结构
    i. 双向链表按照被使用的顺序存储了这些键值对,靠近头部的键值对是最近使用的,而靠近尾部的键值对是最久未使用的。
    ii.哈希表即为普通的哈希映射(HashMap),通过缓存数据的键映射到其在双向链表中的位置。

代码

文件分块的数据保存在 block

class block
{
...
// 矩形数据,其他业务数据自行添加int xStart,yStart, width, height;
}

双向链表LRULinkedNode

struct LRULinkedNode {pair<int, int> key; //这里的key是指 数据block在网格中的坐标block* value; //自己的数据LRULinkedNode* prev;LRULinkedNode* next;LRULinkedNode() : key(make_pair(0, 0)), value(nullptr), prev(nullptr), next(nullptr) {}LRULinkedNode(pair<int, int> _key, block* _value) : key(_key), value(_value), prev(nullptr), next(nullptr) {}
};

LRUCache设计
头文件

class LRUCache
{
public:LRUCache(int _capacity,int _gridWidth,int _gridHeight);~LRUCache();void insertBlock(int xStart, int yStart, int width, int height);block* get(pair<int, int> key);
private:std::vector<LRULinkedNode*> findOverlappingRectangles(int xStart, int yStart, int width,int height);void addToHead(LRULinkedNode* node);void removeNode(LRULinkedNode* node);void moveToHead(LRULinkedNode* node);LRULinkedNode* removeTail();private:std::unordered_map<pair<int, int>, LRULinkedNode*> m_SrcDataCacheMap;LRULinkedNode* m_head;LRULinkedNode* m_tail;int m_size;//当前缓存数量int m_capacity; //缓存上线int m_gridWidth; //网格大小 宽int m_gridHeight;//网格大小 高
};

实现

#include "SrcDataCacheManager.h"LRUCache::LRUCache(int _capacity, int _gridWidth, int _gridHeight, int _nZoomIn, int _nZoomOut, int _nNumSubLayer):m_capacity(_capacity), m_gridWidth(_gridWidth), m_gridHeight(_gridHeight), m_size(0)
{// 使用伪头部和伪尾部节点m_head = new LRULinkedNode();m_tail = new LRULinkedNode();m_head->next = m_tail;m_tail->prev = m_head;
}void LRUCache::insertSrcDataBlock(int xStart, int yStart, int width, int height)
{std::vector<LRULinkedNode*> OverlappingBlockVec= findOverlappingRectangles(xStart, yStart, width, height);if (OverlappingBlockVec.size() > 0) //如果存在{for (auto iter : OverlappingBlockVec){moveToHead(iter);//移到头部}}else{block* pBlock = new block;for (int i = xStart / m_gridWidth; i <= (xStart + width) / m_gridWidth; i++){for (int j = yStart / m_gridHeight; j <= (yStart + height) / m_gridHeight; j++){pair<int, int> key(i, j);LRULinkedNode* pNode = new LRULinkedNode(key, pBlock);// 添加进哈希表m_SrcDataCacheMap[key] = pNode;// 添加至双向链表的头部addToHead(pNode);++m_size;if (m_size > m_capacity) {// 如果超出容量,删除双向链表的尾部节点LRULinkedNode* removed = removeTail();// 删除哈希表中对应的项m_SrcDataCacheMap.erase(removed->key);// 防止内存泄漏delete removed;--m_size;}}}}
}std::vector<LRULinkedNode*> LRUCache::findOverlappingRectangles(int xStart, int yStart, int width, int height)
{std::vector<LRULinkedNode*> OverlappingBlockVec;//如果在插入时,查看数据是否已经缓存,此时插入的数据和已经缓存的数据和gridSize大小一致, 只会返回1个块或者0个for (int i = xStart / m_gridWidth; i <= (xStart + width) / m_gridWidth; i++){for (int j = yStart / m_gridHeight; j <= (yStart + height) / m_gridHeight; j++){pair<int, int> key(i,j);if (m_SrcDataCacheMap.count(key) > 0){OverlappingBlockVec.push_back(m_SrcDataCacheMap[key]);}}}return OverlappingBlockVec;
}block* LRUCache::get(pair<int, int> key)
{if (!m_SrcDataCacheMap.count(key)) {return nullptr;}// 如果 key 存在,先通过哈希表定位,再移到头部LRULinkedNode* node = m_SrcDataCacheMap[key];moveToHead(node);return node->value;
}void LRUCache::addToHead(LRULinkedNode* node) {node->prev = m_head;node->next = m_head->next;m_head->next->prev = node;m_head->next = node;
}void LRUCache::removeNode(LRULinkedNode* node) 
{if (node->prev){node->prev->next = node->next; }if (node->next){node->next->prev = node->prev;}}void LRUCache::moveToHead(LRULinkedNode* node) {removeNode(node);addToHead(node);
}LRULinkedNode* LRUCache::removeTail() {LRULinkedNode* node = m_tail->prev;removeNode(node);return node;
}

注意
【C++】std::pair 作为 std::unordered_map 的 key

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/23542.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

七、Spring 面向切面编程(AOP)学习总结

文章目录 一、初识面向切面编程&#xff08;AOP&#xff09;1.1 什么是 AOP1.2 AOP的应用场景1.3 Aop 在 Spring 中的作用1.3.1 Aop 的核心概念 1.4 使用 Spring 实现 AOP1.4.1 方式一&#xff1a;使用 Spring API 接口实现 AOP 【主要是SpringAPI接口实现】1.4.2 方式二&#…

4-golang爬虫下载的代码

golang爬虫下载的代码&#xff1a; 下载程序的借鉴内容&#xff1a; 这个是关于gbk&#xff0c;utf8等相互转换的包 github.com/axgle/mahonia" 一、标准下载代码 package downloaderimport ("log""net/http""io""github.com/axgle/…

掌握主动权:职场中如何主动寻找并拓宽工作领域

引言 在现代职场的竞争环境中&#xff0c;主动性是一种重要的优势。对于企业而言&#xff0c;员工的主动性是其成功的关键因素之一。而对于个人职业发展来说&#xff0c;主动性能帮助我们把握更多的机会&#xff0c;提升我们的职业能力。因此&#xff0c;学会在职场中主动寻找…

mybatisJava对象、list和json转换

1. 参考mybatis-plus mybatis Java对象、list和json转换 网上好多不靠谱&#xff0c;参考mybatis-plus中TableField&#xff0c;mybatis中自定义实现 这样不需要对象中属性字符串接收&#xff0c;保存到表中&#xff0c;都是转义字符&#xff0c;使用时还要手动转换为对象或者…

车载总线系列——J1939三

我是穿拖鞋的汉子&#xff0c;魔都中坚持长期主义的汽车电子工程师。 老规矩&#xff0c;分享一段喜欢的文字&#xff0c;避免自己成为高知识低文化的工程师&#xff1a; 没有人关注你。也无需有人关注你。你必须承认自己的价值&#xff0c;你不能站在他人的角度来反对自己。人…

Golang之路---04 并发编程——信道/通道

信道/通道 如果说 goroutine 是 Go语言程序的并发体的话&#xff0c;那么 channel&#xff08;信道&#xff09; 就是 它们之间的通信机制。channel&#xff0c;是一个可以让一个 goroutine 与另一个 goroutine 传输信息的通道&#xff0c;我把他叫做信道&#xff0c;也有人将…

PLC4X踩坑记录

plc4x引起的oom 使用Jprofiler查看dump文件 由上可以看出有大量的NioEventLoop对象没有释放 PlcConnection#close 设备断连重连后导致的oom&#xff0c;看源码close方法主要是channel通道关闭。 修改NettyChannelFactory源码 plc4x设计思想是一个设备一个连接&#xff0c;…

k8s ingress获取客户端客户端真实IP

背景 在Kubernetes中&#xff0c;获取客户端真实IP地址是一个常见需求。这是因为在负载均衡架构中&#xff0c;原始请求的源IP地址会被替换成负载均衡器的IP地址。 获取客户端真实IP的需求背景包括以下几点&#xff1a; 安全性&#xff1a;基于客户端IP进行访问控制和认证授…

信息学奥赛一本通——1155:回文三位数

文章目录 题目【题目描述】【输入】【输出】【输入样例】【输出样例】 AC代码 题目 【题目描述】 如果一个数从左边读和从右边读都是同一个数&#xff0c;就称为回文数。例如 6886 6886 6886就是一个回文数&#xff0c;求出所有的既是回文数又是素数的三位数。 【输入】 (无…

PyTorch中nn-XXX与F-XXX的区别

nn.XXX与F.XXX PyTorch中torch.nn**&#xff08;以下简写为nn&#xff09;中的模块和torch.nn.functional&#xff08;以下简写为F&#xff09;**中的模块都提供了常用的神经网络操作&#xff0c;包括激活函数、损失函数、池化操作等。它们的主要区别如下&#xff1a; nn中的…

工厂模式(C++)

定义 定义一个用于创建对象的接口&#xff0c;让子类决定实例化哪一个类。Factory Method使得一个类的实例化延迟(目的:解耦&#xff0c;手段:虚函数)到子类。 应用场景 在软件系统中&#xff0c;经常面临着创建对象的工作;由于需求的变化&#xff0c;需要创建的对象的具体类…

Spring Boot、Spring Cloud、Spring Alibaba 版本对照关系及稳定兼容版本

Spring Boot、Spring Cloud、Spring Alibaba 版本对照关系及稳定兼容版本 引言 在 Java 生态系统中&#xff0c;Spring Boot、Spring Cloud 和 Spring Alibaba 是非常流行的框架&#xff0c;它们提供了丰富的功能和优雅的解决方案。然而&#xff0c;随着不断的发展和更新&…

Ubuntu中解/压缩命令

一、zip文件 #解压 unzip filename.zip #压缩 zip filename.zip dirname # 递归处理&#xff0c;将指定目录下的所有文件和子目录一并压缩 zip -r filename.zip dirname 二、tar文件 # 解压 tar xvf FileName.tar # 压缩&#xff0c;将DirName和其下所有文件(夹)打包非压…

【ARM Coresight 系列文章 2.3 - Coresight 寄存器】

文章目录 Coresight 寄存器介绍1.1 ITCTRL&#xff0c;integration mode control register1.2 CLAIM寄存器1.3 DEVAFF(Device Affinity Registers)1.4 LSR and LAR1.5 AUTHSTATUS(Authentication Status Register) Coresight 寄存器介绍 Coresight 对于每个 coresight 组件&am…

架构训练营学习笔记:5-3接口高可用

序 架构决定系统质量上限&#xff0c;代码决定系统质量下限&#xff0c;本节课串一下常见应对措施的框架&#xff0c;细节不太多&#xff0c;侧重对于技术本质有深入了解。 接口高可用整体框架 雪崩效应&#xff1a;请求量超过系统处理能力后导致系统性能螺旋快速下降 链式…

各种排序333

冒泡排序 n方 public static void BubbleSort(int[] arr) {int n = arr.Length;for (int i = 0; i < n - 1; i++){for (int j = 0; j < n - i - 1; j++){if (arr[j] > arr[j + 1]){int temp = arr[j];arr[j] = arr[j + 1];arr[j + 1] = temp;}}} }选择排序 n方 publ…

Git分布式版本控制工具(详细笔记)

1.设置用户信息 git config -- global user.name"itcast" git config -- global user.email"helloitcast.cn" (邮箱没有什么用&#xff0c;我这里就简单写了) 2.查看配置信息 git config -- global user.name git config -- global user.email 3.为…

考研C语言进阶题库——更新11-15题

目录 11一辆以固定速度行驶的汽车&#xff0c;司机在上午10点看到里程表上的读数是一个对称数(即这个数从左向右读和从右向左读是完全一样的)&#xff0c;为95859。两小时后里程表上出现了一个新的对称数。问该车的速度是多少&#xff1f;新的对称 12求小鸡的数量 13坤坤翁母…

DNS入门学习:DNS缓存的原理和作用(中科三方)

在实际业务场景中&#xff0c;DNS解析过程并不总是严格遵循从根域名服务器、顶级域名服务器再到权威域名服务器的一级级查询过程&#xff0c;这只是一个标准状态。为了节省全球查询的时间&#xff0c;同时减轻各级服务器的解析压力&#xff0c;DNS系统中引入了缓存机制。本文中…

Linux运维工程师面试常用知识点总结

Linux运维工程师面试常用知识点总结 一、Linux基础命令部分1.查看某进程所打开的所有文件2.添加一条静态路由3.打包一个目录下文件,除了该目录下某个文件4.提取本地网卡ip地址5.如何在某个文本的每行前面添加#字符6.centos7系统调优7.查询Linux的默认网关8.查找某个文件9.列出…