(四)pytorch图像识别实战之用resnet18实现花朵分类(代码+详细注解)

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

文章目录

  • 前言
  • 一、关于这个实战的一些知识点
    • Q1:图像识别实战常用模块解读
    • Q2:数据增强
    • Q3:迁移学习
    • Q4:平均全局池化
    • Q5:设置哪些层需要训练时的模型保存,filename='best.pt'
  • 数据集
  • 具体的实现代码
    • 1.导入用到的模块
    • 2.数据读取与预处理操作
    • 3.加载模型,初始化参数
    • 修改模型输出层
    • 设置哪些层需要训练
    • 优化器设置
    • 训练模块
    • 开始训练
    • 加载训练好的模型
    • 测试
    • 得到概率最大的分类
    • 展示预测结果


前言

深度学习pytorch系列第四篇,之前更了FC,NN,cNN,这一篇是用resnet18实现花朵分类,依然是重在理解。


一、关于这个实战的一些知识点

Q1:图像识别实战常用模块解读

数据预处理
数据增强:torchvision中transforms模块自带功能,比较实用
数据预处理:torchvision中transforms中已经实现好了,直接调用即可
DataLoader模块直接读取batch数据
网络模块设置
1、加载预训练模型,torchvision中有很多经典网络架构,调用起来十分方便,并且可以用人家训练好的权重参数来继续训练,也就是所谓的迁移学习
2、需要注意的是别人训练好的任务跟我们的可不是完全一样,需要把最后的head层改一改,一般也就是最后的全连接层,改成自己的任务
3、训练时可以全部重头训练,也可以只训练最后咱们任务的层,因为前几层都是做特征提取的,本质任务目标是一致的
网络模型保存与测试
模型保存的时候可以带有选择性,例如在验证集中如果当前效果好则保存
读取模型进行实际测试

Q2:数据增强

数据增强:数据不够时,通过数据增强,更高效的利用数据,平移,翻转,放大等方法让数据具有更多的多样性

Q3:迁移学习

迁移学习:让模型从0开始及其困难,站在巨人肩膀上学习
在做好的模型上进行微调,从零初始化参数学习效果差,可以模型,权重参数用人家的,用到我们自己的数据,进行初始化
即使数据集不一样,只要是任务目的是类似的,就可以用
在预训练模型的基础上进行微调,所以预训练模型的选择比较重要
微调:怎么微调,微调多少东西
dataset分为:大、中、小
数据量少的情况:冻住,不改东西
数据量中的情况:冻住一点,可以改一些东西
数据量大的情况:可以只用模型参数进行初始化,可以大改,也可以不改
不管数据量大小,输出层都不能冻起来,输出层要根据自己的任务来设计
模型参数要不要更新
有时候用人家模型,就一直用了,更不更新咱们可以自己定

Q4:平均全局池化

在这里做一个小总结:
目前接触到的将特征图转成向量的方法
①reshape
reshape操作:总的大小是不变的,提供一个维度后,后边的维度自动计算
例如x = x.view(x.size(0), -1)
当前的x指的是特征图,大小为:6477,x.size:64,也就是要从三维转成两维,总的大小不变,就变为6449这样,
-1可以简单的看成一 个占位符号
从而达到变换维度的作用,开始是64
77,转成batchsize特征个数,比如64*49
②平均全局池化
AdaptiveAvgPool2d:平均全局池化,output_size=(1, 1),特征图平均池化成一个值,然后拼接这些特征值
得到一个向量,这里是得到一个512维的向量,这种是通用的方法,reshape哪种方法不太常用,因为需要固定size的大小

Q5:设置哪些层需要训练时的模型保存,filename=‘best.pt’

在这里插入图片描述

由于模型会随着epoch的进行存在上边图中的现象,不是epoch越多,训练结果越好,本次分类训练中,我们保存当前这些epoch中训练结果做好的参数用于之后的验证和测试

数据集

如果你想复现的话,把代码按数据粘贴就能跑,
然后我用的文件放到链接里,需要的下载
链接:数据集
提取码:vkgj

具体的实现代码

1.导入用到的模块

import os
import matplotlib.pyplot as plt
import numpy as np
import torch
from torch import nn
import torch.optim as optim
import torchvision
#pip install torchvision
from torchvision import transforms, models, datasets
#https://pytorch.org/docs/stable/torchvision/index.html
import imageio
import time
import warnings
warnings.filterwarnings("ignore")
import random
import sys
import copy
import json
from PIL import Image
import torch
from torchvision import models

2.数据读取与预处理操作

#读取数据
data_dir = './flower_data/'
train_dir = data_dir + '/train'
valid_dir = data_dir + '/valid'

制作数据源:
data_transforms中指定了所有图像预处理操作
ImageFolder假设所有的文件按文件夹保存好,每个文件夹下面存贮同一类别的图片,文件夹的名字为分类的名字

data_transforms = {'train': transforms.Compose([
#     Compose:按顺序进行组合        transforms.Resize([96, 96]),
#             不管原数据的大小,规定用于训练的图片的大小,Resize根据实际来#以下6行代码是数据增强的过程,数据不够时,通过数据增强,更高效的利用数据,平移,翻转,放大等方法让数据具有更多的多样性transforms.RandomRotation(45),#随机旋转,-45到45度之间随机选transforms.CenterCrop(64),#从中心开始裁剪
#            从96*96 随机裁剪64*64也有无数种可能性transforms.RandomHorizontalFlip(p=0.5),#随机水平翻转 选择一个概率概率transforms.RandomVerticalFlip(p=0.5),#随机垂直翻转
#             p=0.5指的是每张图像有50%的裁剪可能性transforms.ColorJitter(brightness=0.2, contrast=0.1, saturation=0.1, hue=0.1),#参数1为亮度,参数2为对比度,参数3为饱和度,参数4为色相
#         #参数1为亮度,参数2为对比度,参数3为饱和度,参数4为色相,不是重点,考虑极端光线条件transforms.RandomGrayscale(p=0.025),#概率转换成灰度率,3通道就是R=G=Btransforms.ToTensor(),
#            转成pytorch专用格式 transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])#均值,标准差
#             标准化 参数来源是大数据集的参数,由于有三个颜色通道,R,G,B,所以有三个μ和σ
#             标准化(x-μ)/σ]),'valid': 
#     验证集不需要再进行图像加强的过程,用原有的数据进行验证即可transforms.Compose([transforms.Resize([64, 64]),
#             数据大小要和训练集一样大transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
#         验证集和测试集标准化采用的均值,标准差要一致    ]),
}
batch_size = 128
# batchsize比较大,是因为图片是64*64的比较小
# 通过文件夹来获取数据和标签
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'valid']}
# for x in ['train', 'valid']文件夹名字
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True) for x in ['train', 'valid']}
#  shuffle=True 表示在每个迭代中是否对数据进行打乱,  
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'valid']}
class_names = image_datasets['train'].classes
# class_names顺序是1,10,100,101,102,先预测1开头的,再预测2开头的

在这里插入图片描述

读取每个分类的名字

with open('cat_to_name.json', 'r') as f:cat_to_name = json.load(f)
#     json文件,每个分类的名字

在这里插入图片描述

3.加载模型,初始化参数

针对模型下载,我在代码运行的时候报错【RuntimeError:PytorchStreamReader failed reading zip archive: failed finding central directory】,有这个错误的,可以查看问题解决

# 加载models中提供的模型,并且直接用训练的好权重当做初始化参数
# 第一次执行需要下载,可能会比较慢
model_name = 'resnet'  #可选的比较多 ['resnet', 'alexnet', 'vgg', 'squeezenet', 'densenet', 'inception']
#是否用人家训练好的特征来做
feature_extract = True #都用人家特征,先不更新
# 特征提取,用人家的方法,把所有层都冻住,只保留输出层
# 是否用GPU训练
train_on_gpu = torch.cuda.is_available()if not train_on_gpu:print('CUDA is not available.  Training on CPU ...')
else:print('CUDA is available!  Training on GPU ...')device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

设置参数需要梯度,起初反向更新的参数设置为False,不计算梯度,参数就不更新,使用原模型的参数进行训练

def set_parameter_requires_grad(model, feature_extracting):
#     model:resnet
#     feature_extracting:trueif feature_extracting:for param in model.parameters():
#             遍历模型中的每一个参数param.requires_grad = False
#     反向更新的参数设置为False,,不计算梯度,参数就不更新
model_ft = models.resnet18()#18层的能快点,条件好点的也可以选152
print(model_ft)

打印resnet18的网络结构

在这里插入图片描述
标准化的数据进行卷积训练(conv2d)后,会发生变化,所以要再进行标准化,
网络的最后一层是
在这里插入图片描述
平均池化后接了一个全连接层,目的是将特征转换成分类
最后一行,可以看出原模型是1000分类,要改成自己的任务目标
之前的操作是将一个特征图reshape成一个长条,然后进行全连接操作,预测分类
AdaptiveAvgPool2d:平均全局池化,output_size=(1, 1),特征图平均池化成一个值,然后拼接这些特征值
得到一个向量,这里是得到一个512维的向量,这种是通用的方法,reshape哪种方法不太常用,因为需要固定大小

修改模型输出层

#  把模型输出层改成自己的
def initialize_model(model_name, num_classes, feature_extract, use_pretrained=True):model_ft = models.resnet18(pretrained=use_pretrained)#     model_ft模型的名字#     pretrained=use_pretrained,用人家的参数进行初始化set_parameter_requires_grad(model_ft, feature_extract)#    读取参数,但是都不更新了num_ftrs = model_ft.fc.in_features#     num_ftrs 全连接层的上一层数据,这里就是512model_ft.fc = nn.Linear(num_ftrs, num_classes)  # 类别数自己根据自己任务来#     num_classes=102# 重新定义fc层 ,覆盖原有的fc层       ,自己定义的fc是使用反向传播的input_size = 64  # 输入大小根据自己配置来return model_ft, input_size

设置哪些层需要训练

model_ft, input_size = initialize_model(model_name, 102, feature_extract, use_pretrained=True)#GPU还是CPU计算
model_ft = model_ft.to(device)# 模型保存,名字自己起
filename='best.pt'
# 保存网络结构图,和模型里边所有的权重参数保存到本地# 是否训练所有层
params_to_update = model_ft.parameters()print("Params to learn:")
# 如果 feature_extract 为 True,则只打印需要更新的参数;否则,打印所有需要更新的参数。
if feature_extract:params_to_update = []for name,param in model_ft.named_parameters():if param.requires_grad == True:
#             需要的话再往里边传数据params_to_update.append(param)print("\t",name)
else:for name,param in model_ft.named_parameters():if param.requires_grad == True:print("\t",name)

可以打印一下当前的网络模型

print(model_ft)

在这里插入图片描述
其他的没有变化,只有最后一层的全连接层,改成了我们自己的任务102分类

优化器设置

# 优化器设置
optimizer_ft = optim.Adam(params_to_update, lr=1e-2)#要训练啥参数,你来定
scheduler = optim.lr_scheduler.StepLR(optimizer_ft, step_size=10, gamma=0.1)
# 学习率衰减,随着epoch的进行,结果会越来越好,降低学习率,使结果更精确
# 以固定的间隔(每10个epoch)将学习率缩小为当前值的10%。这是为了在训练过程中逐渐减小学习率,以帮助模型在训练后期更好地收敛。
criterion = nn.CrossEntropyLoss()
# 交叉熵损失函数

训练模块

def train_model(model, dataloaders, criterion, optimizer, num_epochs=25,filename='best.pt'):
# model, dataloaders, criterion, optimizer, num_epochs=25,filename='best.pt'
# resnet ,dataloaders,loss,Adam,epoch,模型存储文件#咱们要算时间的since = time.time()#记录acc最好的那一次best_acc = 0
#     最后的epoch结果的准确率比中间epoch准确率的结果差也是有可能的#模型也得放到你的CPU或者GPUmodel.to(device)#训练过程中打印一堆损失和指标val_acc_history = []train_acc_history = []train_losses = []valid_losses = []#学习率LRs = [optimizer.param_groups[0]['lr']]
#     optimizer.param_groups[0]是个字典结构,pytorch指定的#最好的那次模型,后续会变的,先初始化best_model_wts = copy.deepcopy(model.state_dict())#一个个epoch来遍历for epoch in range(num_epochs):print('Epoch {}/{}'.format(epoch, num_epochs - 1))print('-' * 10)# 训练和验证for phase in ['train', 'valid']:if phase == 'train':model.train()  # 训练else:model.eval()   # 验证running_loss = 0.0running_corrects = 0# 把数据都取个遍for inputs, labels in dataloaders[phase]:inputs = inputs.to(device)#放到你的CPU或GPUlabels = labels.to(device)# 清零optimizer.zero_grad()# 只有训练的时候计算和更新梯度outputs = model(inputs)
#                 outputs:batch*102loss = criterion(outputs, labels)_, preds = torch.max(outputs, 1)# 训练阶段更新权重if phase == 'train':loss.backward()optimizer.step()# 计算损失(先进行累加)running_loss += loss.item() * inputs.size(0)#0表示batch那个维度running_corrects += torch.sum(preds == labels.data)#预测结果最大的和真实值是否一致#             (除以数据集总数,得到平均的)epoch_loss = running_loss / len(dataloaders[phase].dataset)#算平均epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)time_elapsed = time.time() - since#一个epoch我浪费了多少时间print('Time elapsed {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))# 训练阶段和验证阶段都要进行前向传播,但是训练阶段还要进行参数更新,而验证阶段不需要# 得到最好那次的模型if phase == 'valid' and epoch_acc > best_acc:best_acc = epoch_accbest_model_wts = copy.deepcopy(model.state_dict())state = {'state_dict': model.state_dict(),#字典里key就是各层的名字,值就是训练好的权重'best_acc': best_acc,'optimizer' : optimizer.state_dict(),}torch.save(state, filename)if phase == 'valid':val_acc_history.append(epoch_acc)valid_losses.append(epoch_loss)#scheduler.step(epoch_loss)#学习率衰减if phase == 'train':train_acc_history.append(epoch_acc)train_losses.append(epoch_loss)print('Optimizer learning rate : {:.7f}'.format(optimizer.param_groups[0]['lr']))LRs.append(optimizer.param_groups[0]['lr'])print()scheduler.step()#学习率衰减time_elapsed = time.time() - sinceprint('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))print('Best val Acc: {:4f}'.format(best_acc))# 训练完后用最好的一次当做模型最终的结果,等着一会测试model.load_state_dict(best_model_wts)return model, val_acc_history, train_acc_history, valid_losses, train_losses, LRs 

开始训练

只训练输出层

model_ft, val_acc_history, train_acc_history, valid_losses, train_losses, LRs  = train_model(model_ft, dataloaders, criterion, optimizer_ft, num_epochs=20)

再继续训练所有层

for param in model_ft.parameters():param.requires_grad = True# 再继续训练所有的参数,学习率调小一点
optimizer = optim.Adam(model_ft.parameters(), lr=1e-3)
scheduler = optim.lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)# 损失函数
criterion = nn.CrossEntropyLoss()
# 加载之前训练好的权重参数checkpoint = torch.load(filename)
best_acc = checkpoint['best_acc']
model_ft.load_state_dict(checkpoint['state_dict'])
model_ft, val_acc_history, train_acc_history, valid_losses, train_losses, LRs  = train_model(model_ft, dataloaders, criterion, optimizer, num_epochs=10,)

加载训练好的模型

model_ft, input_size = initialize_model(model_name, 102, feature_extract, use_pretrained=True)# GPU模式
model_ft = model_ft.to(device)# 保存文件的名字
filename='best.pt'# 加载模型
checkpoint = torch.load(filename)
best_acc = checkpoint['best_acc']
model_ft.load_state_dict(checkpoint['state_dict'])

测试

这里使用验证数据进行测试

# 得到一个batch的测试数据
dataiter = iter(dataloaders['valid'])
images, labels = dataiter.next()model_ft.eval()if train_on_gpu:output = model_ft(images.cuda())
else:output = model_ft(images)

得到概率最大的分类

_, preds_tensor = torch.max(output, 1)preds = np.squeeze(preds_tensor.numpy()) if not train_on_gpu else np.squeeze(preds_tensor.cpu().numpy())
preds

展示预测结果

def im_convert(tensor):""" 展示数据"""image = tensor.to("cpu").clone().detach()image = image.numpy().squeeze()image = image.transpose(1, 2, 0)image = image * np.array((0.229, 0.224, 0.225)) + np.array((0.485, 0.456, 0.406))image = image.clip(0, 1)return image
fig=plt.figure(figsize=(20, 20))
columns =4
rows = 2for idx in range (columns*rows):ax = fig.add_subplot(rows, columns, idx+1, xticks=[], yticks=[])plt.imshow(im_convert(images[idx]))ax.set_title("{} ({})".format(cat_to_name[str(preds[idx])], cat_to_name[str(labels[idx].item())]),color=("green" if cat_to_name[str(preds[idx])]==cat_to_name[str(labels[idx].item())] else "red"))
plt.show()

最后的测试结果,标红的是预测错误的
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/234714.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

大一C语言查缺补漏1 12.2

学习方向非C语言方向,但是专业是。。 仅供参考,,祝大家期末考试顺利。 对于二维数组定义,要给出明确的定义 eg:double a [21][4] int a [ ][3] {1,2,3,4,5,6} 不可以是:int a [ ][3]; 在c…

Unity3d C#利用Editor编辑器拓展实现配置UI背景样式一键设置UI背景样式功能(含源码)

前言 在开发UI滚动列表的时候,经常会有每项的背景图不统一的情况,会间隔重复的情况居多。这种情况下,手动去设置间隔一行的背景图或者颜色是比较麻烦的。在此背景下,笔者尝试写个小工具,在搭建UI时配置一下循环背景的…

《数据结构、算法与应用C++语言描述》- 最小赢者树模板的C++实现

赢者树 完整可编译运行代码见:Github::Data-Structures-Algorithms-and-Applications/_30winnerTree 比赛规则 假定有 n 个选手参加一次网球比赛。比赛规则是“突然死亡法”(sudden-death mode):一名选手只要输掉一场球,就被淘汰。一对一对…

fill-in-the-middle(FIM) 实现与简单应用

1 背景 传统训练的 GPT 模型只能根据前文内容预测后文内容,但有些应用比如代码生成器,需要我们给出上文和下文,使模型可以预测中间的内容,传统训练的 GPT 就不能完成这类任务。 传统训练的 GPT 只能根据上文预测下文 使用 FIM…

vue-element安装富文本编辑器vue-quill-editor教程

在vue ui面板中安装vue-quill-editor依赖 命令安装 npm install vue-quill-editor --save # or yarn add vue-quill-editor 使用方法 在main.js导入富文本编辑器 import VueQuillEditor from vue-quill-editor import quill/dist/quill.core.css // import styles import…

技术博客:市面上加密混淆软件的比较和推荐

技术博客:市面上加密混淆软件的比较和推荐 引言 市面上有许多加密混淆软件可供开发者使用,但哪些软件是最好用的?哪些软件受到开发者的喜爱?本文将根据一次在CSDN上的投票结果,为大家介绍几款在程序员中普及度较高的…

CEC2013(python):五种算法(ABC、PSO、CSO、OOA、DBO)求解CEC2013(python代码)

一、五种算法简介 1、人工蜂群算法 (Artificial Bee Colony Algorithm, ABC) 2、粒子群优化算法PSO 3、鸡群优化算法CSO 4、鱼鹰优化算法OOA 5、蜣螂优化算法DBO 二、5种算法求解CEC2013 (1)CEC2013简介 参考文献&#xff…

WINDOWS(WIN11)通过IP添加网络打印机

点击添加设备 点击手动添加 使用IP地址或主机名添加打印机 选择TCP/IP设备,输入打印机地址 如果有正确驱动就安装,没有就取消。 通过手动设置添加本地打印机或网络打印机 使用现有的端口 根据打印机IP,选择标准端口。 成功! 到…

机器学习笔记:支持向量机回归SVR

1 主要思想 主要思路类似于机器学习笔记:支持向量机SVM_支撑向量学习-CSDN博客 和SVM的区别主要有 解法和SVM区别不大,也是KKT 2 和线性回归的区别 对SVR,如果f(x)和y之间的差距小于阈值ε【也即落在两条间隔带之间】,则不计算…

模拟组建网络的过程

DNS是域名系统,作用是将域名解析成ip地址 要求 1.使用172.16.0.0网段组建网络 2.使用3台pc,可以配置DHCP服务自动分配ip 3.添加两个网站服务器 第一台是www.taobao.com 第二台www.jd.com 他们可以通过DNS服务器为客户解析域名 172开头的是B类ip地…

标准库中的string类(上)——“C++”

各位CSDN的uu们好呀,好久没有更新小雅兰的C专栏的知识啦,接下来一段时间,小雅兰就又会开始更新C这方面的知识点啦,以及期末复习的一些知识点,下面,让我们进入西嘎嘎string的世界吧!!…

【论文简述】High-frequency Stereo Matching Network(CVPR 2023)

一、论文简述 1. 第一作者:Haoliang Zhao 2. 发表年份:2023 3. 发表期刊:CVPR 4. 关键词:立体匹配、MVS、深度学习、高频信息、LSTM 5. 探索动机:(1)当涉及到估计的视差图的更精细的特征时,大多数当前…

Java反序列化工具ysoserial使用

ysoserial是一款用于生成 利用不安全的Java对象反序列化 的有效负载的概念验证工具。 项目地址 https://github.com/frohoff/ysoserial主要有两种使用方式,一种是运行ysoserial.jar 中的主类函数,另一种是运行ysoserial中的exploit 类,二者…

未来十年,人工智能就业方向及前景如何?

人工智能(AI)是一个快速发展的领域,对于未来的就业方向和前景有着巨大的影响。以下是一些可能的发展趋势和就业前景: 1、增长趋势:人工智能正在全球范围内经历巨大的增长,预计在未来十年内将继续保持这一趋…

一个正则快速找到在ES中使用profile的时产生慢查询的分片

在es中使用profile分析慢查询的时候,往往因为分片过多,或者因为查询条件太复杂,分析的结果几十万行。在kibana上点半天,也找不到一个耗时长的分片。 kibana上可以通过正则来匹配。其实我们只需要匹配到耗时大于10秒的请求。 检索语…

0x42 树状数组

0x42 树状数组 若一个正整数 x x x的二进制表示为 a k − 1 a k − 2 . . . a 2 a 1 a 0 a_{k-1}a_{k-2}...a_2a_1a_0 ak−1​ak−2​...a2​a1​a0​,其中等于1的位是 { a i 1 , a i 2 , . . . , a i m } \{a_{i_1},a_{i_2},...,a_{i_{m}}\} {ai1​​,ai2​​,...…

鸿蒙原生应用再添新丁!喜马拉雅入局鸿蒙

鸿蒙原生应用再添新丁!喜马拉雅入局鸿蒙 来自 HarmonyOS 微博12月20日消息, #喜马拉雅正式完成鸿蒙原生应用版本适配#,作为音频业巨头的喜马拉雅 ,将基于#HarmonyOS NEXT#创造更丰富、更智慧的全场景“声音宇宙”!#鸿…

Python 正则表达式入门:轻松掌握字符串匹配的艺术

Python 正则表达式入门:轻松掌握字符串匹配的艺术 引言:什么是正则表达式?基础知识:正则表达式的语法和规则Python中的正则表达式:re模块的使用实战应用:常见的正则表达式案例最佳实践与常见错误结语&#…

格密码:LWE设计公钥密码系统

目录 一. LWE公私钥对 二. 怎么加密? 三. 怎么解密? 四. 正确性分析 五. 安全性 在格密码中,LWE(Learning With Errors)问题非常重要,本文章将介绍一些基于LWE设计的公钥密码方案,并详细讨论这些方案是如何运行的…

oracle怎样才算开启了内存大页?

oracle怎样才算开启了内存大页? 关键核查下面三点: 1./etc/sysctl.conf vm.nr_hugepages16384这是给了32G,计划sga给30G,一般需多分配2-4G sysctl -p生效 看cat /proc/meminfo|grep Huge啥结果? 这种明显是配了…