第五讲观测值中与卫星、接收机有关的误差 第六讲观测值中与信号传播路径有关的误差以及电离层、对流层相关模型 | GNSS(RTK)课程学习笔记day3

说明:以下笔记来自计算机视觉life吴桐老师课程:从零掌握GNSS、RTK定位[链接],从零掌握RTKLIB[链接]。非原创!且笔记仅供自身与大家学习使用,无利益目的。


第五讲 观测值中与卫星、接收机有关的误差

在这里插入图片描述

卫星轨道误差

由卫星星历所给出的卫星轨道与卫星的实际轨道之差称为卫星轨道误差。从人造卫星轨道理论知:已知卫星轨道即可计算卫星在空间中的位置及运动速度;反之,已知卫星位置和运动速度也可得出卫星轨道,即:

由卫星星历所给出的卫星在空间的位置和运动速度与卫星的实际位置及运动速度之差称为卫星轨道误差

GNSS卫星的广播星历是由全球定位系统的地面控制部分所确定和提供的,经GNSS卫星向全球所有用户公开播发的一种预报星历,其精度较差,一般广播星历轨道的精度在米级

卫星钟/接收机钟误差

由卫星星历所给出的卫星钟与标准时间之差称为卫星钟误差

接收机钟面时与标准时间之差称为接收机钟误差

天线相位中心误差

卫星天线和接收机天线的天线相位中心既不是一个物理点,也不是一个稳定的点,对任一天线,天线相位中心都会 随着来自卫星信号方向的变化而变化

观测值测量的是卫星瞬时天线相位与接收机瞬时天线相位中心之间的距离

天线相位中心偏差概念

瞬时天线相位中心:天线的相位中心会随着信号频率、方位角、高度角等变化,在给定信号频率、方位角、高度角的情况下所确定的天线相位中心称为瞬时天线相位中心

平均天线相位中心:由于天线相位中心会随着频率、方位角、高度角甚至天线罩变化,通常不同条件下的天线相位中心位置取平均值作为平均天线相位中心

天线相位中心误差由两部分组成,一部分是相对于天线物理参考点(ARP)的平均相位中心误差(PCO),另一部分是与高度角和方位角有关的瞬时相位中心变化(PCV)

在这里插入图片描述
在这里插入图片描述

天线相位中心偏差修正

对于卫星或者接收机天线相位偏差修正,我们可以通过IGS发布的atx文件,一般只有在精密单点定位中我们需要考虑卫星和接收机的天线相位中心修正。在RTK中,一般可以不修正天线相位中心变化
在这里插入图片描述

相对论效应

根据狭义相对论和广义相对论,卫星钟的频率将受到其运动速度和引力位的影响

其具体的综合影响为
△ t = − 2 R ⃗ ⋅ V ⃗ c 2 {△t} = - {{2{\rm{\vec R}} \cdot {\rm{\vec V}}} \over {{{\rm{c}}^2}}} t=c22R V
其中, R ⃗ {\vec R} R 为卫星瞬时位置向量, V ⃗ {\vec V} V 为卫星瞬时速度向量,c为光速。 △ t {△t} t为卫星钟修正量,单位为秒

潮汐修正

地球固体潮

固体潮是指摄动天体(月球、太阳)对弹性地球的引力作用,引起地球表面周期性涨落的现象

固体地球潮汐引起的测站周期性位移与测站所处的纬度有关,在高程方向可达30cm,在水平方向可达5cm

固体地球潮则能通过相对简单的地球模型精确计算出来

海洋负荷潮

海洋负荷潮是指在海潮期间由于海水质量重新分布所引起的海床和海岸形变,在海水重量作用下,地壳会发生弹性形变,称为海洋负荷潮

海潮改正比固体潮小一个量级,对精密单点定位单历元解的影响可达5cm,单天静态定位结果的影响可达mm级,当测站与海岸线的距离大于1000km时,海潮的影响可忽略不计。与固体潮影响一样,在精密单点定位中,海潮的影响必须利用模型改正

极潮

地球的自转轴会在20平方米的范围内漂移(极移),引起地壳的弹性响应,从而导致地球表面测站位置发生变化,这一现象称为极潮。极潮影响在垂向可达2.5cm,在水平方向上变形可达0.7cm,因而在高精度数据处理中应进行模型修正。采用IERS提供的极潮改正模型,在输入测站经纬度后可以计算得到极潮改正值

天线相位缠绕

相位缠绕(Phase Wind-Up)是发射端与接收端之间的相对运动导致的载波相位变化。对于GPS系统来说,因为GPS卫星发送的是右旋圆极化(RHCP:Right Hand Circularly Polarized)信号,在这种情况下,接收机或卫星天线的旋转会导致载波相位发生改变,这个值可能达到一个载波周期,我们把这种现象叫做相位缠绕

接收机端由于载体/接收机的运动导致的旋转/相位缠绕被接收机钟差吸收掉,因此,在PPP中不予考虑,只考虑卫星端的相位缠绕

所幸相位缠绕只影响载波相位测量,是不影响码相位测量,在非精密定位中可以忽略其影响,对差分定位来说其影响一般也可以忽略,尤其是短基线的时候。然而对于精密单点定位,其影响不可忽略,可能会达到分米级


第六讲 观测值中与信号传播路径有关的误差以及电离层、对流层相关模型

电离层误差及其修正

电离层误差

在太阳紫外线、X射线、γ射线和高能粒子等的作用下,电离层中的中性气体分子被电离,产生大量的电子和正离子,从而形成了一个电离区域,高度在60-1000km

当电磁波穿过充满电子的电离层,它的传播速度和方向会发生改变,由此造成GNSS测量中的电离层延时误差

电离层是一种弥散性介质,即不同频率的电磁波在电离层中有着不同的传播速度,电离层延时I与信号频率f之间的具体关系可表达为:
I = I P = − I ψ = 40.28 T E C f 2 {\rm{I}} = {{\rm{I}}_{\rm{P}}} = - {{\rm{I}}_\psi } = 40.28{{{\rm{TEC}}} \over {{{\rm{f}}^2}}} I=IP=Iψ=40.28f2TEC
式中 I P {I_P} IP I φ {I_φ} Iφ分别表示伪距和载波相位测量中的以米为单位的电离层延时,TEC代表在信号传播途径上的横截面为1m这样一个管状通道空间内所包含的电子数总量(TEC)
T E C = ∫ N e d s {\rm{TEC = }}\int {{{\rm{N}}_{\rm{e}}}{\rm{ds}}} TEC=Neds
N e {N_e} Ne为电子密度,即单位体积中所含的电子数

电离层公式表明了电离层所具有的码相位-载波相位反向特性,即电离层对伪距测量值P与载波相位测量值φ分别造成大小相等、方向相反的延时误差

电离层延时I的大小 一般为几米左右,但当太阳黑子活动增强时,电离层中的电子密度会升高,这使得电离层延时也随之增加,其值可达十几米,甚至几十米,因而GNSS通常不能忽略电离层延时对GNSS测量和定位的影响,事实上,电离层延时是GNSS测量中的最大误差之一

电离层经验改正模型

表面电离层中的电子密度、离子密度、电子温度、离子温度、离子成分和总电子含量等参数的时空变化规律的一些数学公式称为电离层模型。常用的计算总电子含量的模型有本特(Bent)模型、国际参考电离层(IRI)模型、Klobuchar模型(克罗布歇模型)、GIM模型等

Bent和IRI模型根据全球各电离层观测站长期积累的大量观测资料拟合出来的模型和经验公式,被电离层研究和无线电通信领域的用户广泛使用。但模型相对复杂,一些参数难以获得,所以卫星导航用户一般不使用此类模型

Klobuchar模型

GPS导航电文中播发该模型的参数供单频用户改正电离层,该模型将晚间的电离层时延视为常数,取值5ns,把白天的时延看成是余弦函数中正的部分

输入参数分别为8个模型参数 α i , β i ( i = 1 , 2 , 3 , 4 ) {α_i, β_i(i=1,2,3,4)} αi,βi(i=1,2,3,4),GPS天线的大地纬度φ和大地经度λ,GPS观测时间T,以及观测卫星的方位角A和高度角E

可将电离层延迟影响改正60%,为GPS单频用户所广泛采用,我国的北斗二代系统也播发了Klobuchar模型参数,在中国境内,其电离层延迟修正精度可在70%以上

GIM模型

IGS发布事后的电离层产品,并以IONEX格式存储,可从各IGS数据中心下载,可将电离层延迟影响修正80%以上

电离层双频组合模型

从电离层误差的计算公式,卫星信号所受到的电离层延迟是信号频率f的平方成反比的。如果卫星能同时用两种频率来发射信号,那么这两种不同频率的信号将沿着同一路径到达接收机。GNSS卫星之所以要用两种不同的频率来发射信号,其主要目的也在于此

假设伪距仅受电离层影响
P = ρ + I p P=ρ+I_p P=ρ+Ip
其中P是伪距观测值,ρ为卫星与接收机之间的真实距离, I p {I_p} Ip为伪距地电离层延迟

已知 I p = 40.28 T E C f 2 = A f 2 {I_p=40.28{TEC\over f^2}={A \over f^2}} Ip=40.28f2TEC=f2A其中A=40.28*TEC

那么无电离层组合的伪距观测值 P 3 = m P 1 + n P 2 {P_3=mP_1+nP_2} P3=mP1+nP2,其中 P 1 {P_1} P1 P 1 {P_1} P1分别为第一顿点和第二顿点的伪距观测值,m和n分别是其组合系数
P 3 = ( m + n ) ρ + m I p 1 + n I p 2 = ( m + n ) ρ + A ( m f 1 2 ) + n f 2 2 ) P_3=(m+n)ρ+mI_{p1}+nI_{p2}=(m+n)ρ+A({m \over f_1^2)}+{n \over f_2^2}) P3=(m+n)ρ+mIp1+nIp2=(m+n)ρ+A(f12)m+f22n)
有以下方程
在这里插入图片描述


在这里插入图片描述

P 3 = f 1 2 f 1 2 − f 2 2 P 1 − f 2 2 f 1 2 − f 2 2 P 2 P_3={f_1^2 \over f_1^2-f_2^2}P_1-{f_2^2 \over f_1^2-f_2^2}P_2 P3=f12f22f12P1f12f22f22P2

即无电离层组合观测值,但是仅消去了电离层一阶项的影响

对流层误差及其改正

对流层定义为高度在50km以下未被电离的中性大气层,与电离层不同,对频率30GHz以下的电磁波信号,对流层基本是非色散介质,即信号折射与信号频率无关

无法用双频改正的方法来消除对流层延迟,只能通过求出信号传播路径上各处的大气折射系数,然后进行积分来计算对流层延迟改正,在天顶方向上的延迟量约为2m,并且随着站星视线**天顶距(在同一竖直面内视线与竖直线之间的夹角称为天顶距)**地增加而增大

对于卫星高度角仅有几度的卫星,GPS信号的电离层延迟可以达到数米,一般来讲,对流层延迟与温度、气压、湿度以及GPS天线的位置有关

对流层一般分为干分量和湿分量

  • 一部分为遵循理想气体定律的干分量,在海平面位置,它所引起的天顶延迟约为2.4m,静力延迟分量可以由在接收机天线出测定的气压精确计算出来
  • 另一部分为变化复杂的湿分量,它引起的天顶延迟约为0.4m,由于水汽时空变化的复杂性,这使得难以精确计算湿延迟分量

常用的对流层经验模型有:Saastamoinen、Hopfield、Black模型等

Saastamoinen模型

模型中,可以使用气压、温度、湿度的实测值,或者使用由标准大气模型得到的值
δ t r o p = 0.002277 cos ⁡ z [ P + ( 1255 T + 0.05 ) e − B tan ⁡ 2 z ] + δ R {\delta _{trop}} = {{0.002277} \over {\cos z}}[P + ({{1255} \over T} + 0.05)e - B{\tan ^2}z] + \delta R δtrop=cosz0.002277[P+(T1255+0.05)eBtan2z]+δR
z为卫星天顶距;H为测站高;P为大气压;T为测站温度;e为水汽压;δR为改正项;B为改正项

多路径效应

在GPS测量中,经测站周围各种介质如地表、建筑物等一次或多次反射的卫星信号,如果进入接收机天线,将与直接来自卫星的信号产生干涉,从而使观测值偏离真值,产生的误差称为多路径误差

在这里插入图片描述

削弱多路径效应的方法:

  • 选择合适的站址,天线安置尽量避开强反射物(如水面、山坡、高层建筑物)
  • 选择合适的GPS接收机及天线,选用防多路径效应的天线(如扼流圈天线等)
  • 适当延长观测时间

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/234416.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Kafka-Kafka核心参数详解

Kafka的HighLevel API使用是非常简单的,所以梳理模型时也要尽量简单化,主线清晰,细节慢慢扩展。 Kafka提供了两套客户端API,HighLevel API和LowLevel API。 HighLevel API封装了kafka的运行细节,使用起来比较简单&…

jQuery实现轮播图代码

简述 一个简单的jQuery轮播图代码,首先,定义了一个slideshow-container的div容器,其中包含了所有轮播图幻灯片。每个幻灯片都包含一个mySlides的类名,并且使用CSS将其隐藏。然后,使用JavaScript代码来控制幻灯片的显示和隐藏。在showSlides()函数中,遍历所有幻灯片并将它…

【项目管理】redmine

Redmine是用Ruby开发的基于web的项目管理软件,是用ROR框架开发的一套跨平台项目管理系统,据说是源于Basecamp的ror版而来,支持多种数据库,有不少自己独特的功能,例如提供wiki、新闻台等,还可以集成其他版本…

Flutter实现丝滑的滑动删除、移动排序等-Dismissible控件详解

文章目录 Dismissible 简介使用场景常用属性基本用法举例注意事项 Dismissible 简介 Dismissible 是 Flutter 中用于实现可滑动删除或拖拽操作的一个有用的小部件。主要用于在用户对列表项或任何其他可滑动的元素执行删除或拖动操作时,提供一种简便的实现方式。 使…

大数据处理与分析-Spark

导论 (基于Hadoop的MapReduce的优缺点) MapReduce是一个分布式运算程序的编程框架,是用户开发“基于Hadoop的数据分析应用”的核心框架 MapReduce是一种用于处理大规模数据集的编程模型和计算框架。它将数据处理过程分为两个主要阶段:Map阶…

(2021|EMNLP,CLIP,CLIPScore,RefCLIPScore)CLIPScore:图像标题的无参考评估指标

CLIPScore: A Reference-free Evaluation Metric for Image Captioning 公z号:EDPJ(添加 VX:CV_EDPJ 或直接进 Q 交流群:922230617 获取资料) 目录 0. 摘要 1. 简介 2. 相关工作 3. CLIPScore 4. 标题评估基准 …

yolov5障碍物识别-雪糕筒识别(代码+教程)

简介 这是一个检测交通锥并识别颜色的项目。我使用 yolov5 来训练和检测视锥细胞。此外,我使用 k 均值来确定主色,以对锥体颜色进行分类。目前,支持的颜色为红色、黄色、绿色和蓝色。其他颜色被归类为未知。 数据集和注释 我使用了一个自收…

Open5GSUeRANSim3:VirtualBOX VM使用static IP并和host互通

本文档参考 https://blog.csdn.net/shuaihj/article/details/127589833 https://www.cnblogs.com/manongqingcong/articles/16659150.html https://blog.csdn.net/justlpf/article/details/132977047 VM默认使用的是自动分配的IP,每个VM的ip都是10.0.2.15。后续为了…

12.19_黑马数据结构与算法笔记Java

目录 203 排序算法 选择排序 204 排序算法 堆排序 205 排序算法 插入排序 206 排序算法 希尔排序 207 排序算法 归并排序 自顶至下 208 排序算法 归并排序 自下至上 209 排序算法 归并加插入 210 排序算法 单边快排 211 排序算法 双边快排 212 排序算法 快排 随机基准…

ITIL® 4 Foundation​,12月23日即将开课~想了解点击查看

ITIL 4 Foundation即将开课~ 想报名的必须提前预约啦 👇👇👇 培训地点: 远程直播:线上平台学习 开课时间: 周末班:12月23日、24日; 什么是ITIL? 信息技术基础架构…

将Abp默认事件总线改造为分布式事件总线

文章目录 原理创建分布式事件总线实现自动订阅和事件转发 使用启动Redis服务配置传递Abp默认事件传递自定义事件 项目地址 原理 本地事件总线是通过Ioc容器来实现的。 IEventBus接口定义了事件总线的基本功能,如注册事件、取消注册事件、触发事件等。 Abp.Events…

LTD256次升级 |一分钟创建小程序官网 • 官网内容可在小程序分享

1、 商品关联表单支持上传图片; 2、 「我的咨询」新增快捷添加入口; 3、 极速官微新增官网内容分享页面;优化创建流程; 4、 极速官微支持编辑方式添加文章与产品; 5、 极速官微新增数据枢纽入口与网站设置页面&#xf…

(9)Linux Git的介绍以及缓冲区

💭 前言 本章我们先对缓冲区的概念进行一个详细的探究,之后会带着大家一步步去编写一个简陋的 "进度条" 小程序。最后我们来介绍一下 Git,着重讲解一下 Git 三板斧,一般只要掌握三板斧就基本够用了。 缓冲区&#xff…

邮政快递单号查询入口,标记需要的单号记录

批量查询邮政快递单号的物流信息,对需要的单号记录进行标记。 所需工具: 一个【快递批量查询高手】软件 邮政快递单号若干 操作步骤: 步骤1:运行【快递批量查询高手】软件,并登录 步骤2:点击主界面左上角…

一文教你提高写代码效率,程序员别错过!

首先,每个程序员都是会利用工具的人,也有自己囊里私藏的好物。独乐乐不如众乐乐,今天笔者整理了 3 个辅助我们写代码的黑科技,仅供参考。如果你有更好的工具,欢迎评论区分享。 1、Google/Stackoverflow——搜索解决方…

Guideline 2.3.2 - Performance - Accurate Metadata问题如何解决

当您的应用程序在苹果应用商城审核过程中被拒绝时,苹果会向您发送一封邮件,其中提供了关于拒绝原因的详细信息。本文将指导您如何正确处理Guideline 2.3.2 - Performance - Accurate Metadata问题,并提供解决方案,以确保您的应用程…

RK3568 android11 调试mipi摄像头 gc2093

一,摄像头简介 GC2093是一个高质量的1080P CMOS图像传感器,用于安全相机产品、数码相机产品和手机相机应用程序。包含了一个1920H x 1080V像素阵列、片上10位ADC和图像信号处理器。高性能和低功耗功能的全面集成使GC2093最适合设计,减少了实…

安全运营之安全加固和运维

安全运营是一个将技术、流程和人有机结合的复杂系统工程,通过对已有安全产品、工具和服务产出的数据进行有效的分析,持续输出价值,解决安全问题,以确保网络安全为最终目标。 安全加固和运维是网络安全运营中的两个重要方面。 安全…

【Proteus仿真】【Arduino单片机】视力保护仪

文章目录 一、功能简介二、软件设计三、实验现象联系作者 一、功能简介 本项目使用Proteus8仿真Arduino单片机控制器,使LCD1602液晶,DS18B20温度传感器、按键、蜂鸣器、继电器开关、HC05蓝牙模块等。 主要功能: 系统运行后,LCD16…

js键盘事件keydown事件,防止重复触发,组合键的配合使用

js键盘事件keydown事件,防止重复触发 键盘事件类型主要有三种: keydown 、keypress(不建议使用,部分浏览器已放弃)和 keyup 。 添加普通键盘keydown事件 // 监听键盘按下事件document.addEventListener(keydown, function(event) {// 输出按…