智能优化算法应用:基于黑寡妇算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于黑寡妇算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于黑寡妇算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.黑寡妇算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用黑寡妇算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.黑寡妇算法

黑寡妇算法原理请参考:https://blog.csdn.net/u011835903/article/details/120438171
黑寡妇算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

黑寡妇算法参数如下:

%% 设定黑寡妇优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明黑寡妇算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/234198.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LeetCode刷题--- 子集

个人主页:元清加油_【C】,【C语言】,【数据结构与算法】-CSDN博客 个人专栏 力扣递归算法题【 http://t.csdnimg.cn/yUl2I 】【C】 【 http://t.csdnimg.cn/6AbpV 】数据结构与算法【 http://t.csdnimg.cn/hKh2l 】 前言:这个专栏主要讲…

【BEV感知】BEVFormer 融合多视角图形的空间特征和时序特征 ECCV 2022

前言 本文分享BEV感知方案中,具有代表性的方法:BEVFormer。 它基于Deformable Attention,实现了一种融合多视角相机空间特征和时序特征的端到端框架,适用于多种自动驾驶感知任务。 主要由3个关键模块组成: BEV Que…

【源码】基于SpringBoot+thymeleaf实现的快递之家管理系统

系统介绍 基于SpringBootthymeleaf实现的快递之家管理系统是为学校打造的高效的快递管理系统,系统分为管理员、注册用户两类角色,一共是分为三大菜单项,分别是我的物流、个人管理、后台管理,管理员拥有全部菜单,注册用…

【大数据实训】python石油大数据可视化(八)

2014到2020年石油加工产品产量数据处理分析 一、任务描述 石油是工业的命脉。 一直到2020年,我国原油产量基本处于平稳的状态,大部分原油来自国外进口;中国原油加工产量在华东、东北地区占比较大,华南地区相对较少。原油的加工企业…

打破枯燥工作日,用Python统计键盘和鼠标点击次数,钉钉告诉你今天摸鱼了多少次!

1 前言 是否曾想过,在一天的工作中,你到底点击了键盘多少次,或者鼠标点击了多少下? 是否好奇每天工作的时候,自己究竟有多努力? 本文将带你使用 Python,利用 pynput 监听键盘和鼠标事件&…

关于SSL证书常见的那些误区,你“中”了吗

随着数据安全的重要性越来越凸显,使用SSL证书以实现网站HTTPS加密保护及身份的可信认证成为各政企网站的广泛选择。然而很多网站运营者对于SSL证书的理解仍然存在一些误区,为了能让大家对SSL证书有更为清晰的认识,下面小锐就带大家一起来了解…

Django(一)

1.web框架底层 1.1 网络通信 注意:局域网 个人一般写程序,想要让别人访问:阿里云、腾讯云。 去云平台租服务器(含公网IP)程序放在云服务器 先以局域网为例 我的电脑【服务端】 import socket# 1.监听本机的IP和…

drf知识--01

前后端开发模式 在开发Web应用中,有两种应用模式: 前后端混合开发: bbs 项目--renderajax 1、全栈开发--前端html后端都是一个人写 2、前端人员:写空页面,没有模板语法,只要html,c…

FA2016ASA (MHz范围晶体单元,内置热敏电阻) 汽车

FA2016ASA是爱普生推出的一款内置热敏电阻、频率范围为38.4MHz的晶振,确保数据的准确传输,同时有效避免频谱干扰的出现。可以在-40C to 125C 的温度内稳定工作。在汽车内部空间有限的情况下,FA2016ASA以其小型超薄的外形尺寸2.0 1.6 0.68mm…

职场规划和职业发展

有人说,做任何事情都要有规划,在职场中人要有规划,公司也要有规划。职场上没有人是你生命中的例外,如果你没有规划,那么就说明你根本不知道自己要什么。只有做好规划,才能让你在职场中获得更好的发展。在职…

RocketMQ从入门到精通

1.MQ概述 1.1 RocketMQ简介 RocketMQ 是阿里开源的分布式消息中间件,跟其它中间件相比,RocketMQ 的特点是纯JAVA实现,是一套提供了消息生产,存储,消费全过程API的软件系统。 1.2 MQ用途 限流削峰 MQ可以将系统的超量请…

Java第二十章课堂总结

如果一次只完成一件事情,很容易实现。但现实生活中,很多事情都是同时进行的。Java中为了模拟这种状态,引入了线程机制。简单地说,当程序同时完成多件事情时,就是所谓的多线程。多线程应用相当广泛,使用多线…

【bug日记】如何切换jdk版本,如何解决java和javac版本不一致

背景 今天在安装jenkins后,使用java运行war包的时候,提示jdk1.8版本太低,需要提高版本,所以就需要切换jdk版本 解决 在用户变量中,首先更改了JAVA_HOME的地址为17的目录,发现javac的版本改为17了&#x…

Jmeter的接口测试详细步骤并实现业务闭环

一、首先是了解Jmeter接口测试用到的组件 1、测试计划:Jmeter的起点和容器2、线程组:代表一定的虚拟用户3、取样器:发送请求的最小单元4、逻辑控制器:控制组件的执行顺序5、前置处理器:在请求之前的操作6、后置处理器…

服务宕机、线上环境内存溢出OOM分析思路

前言 平时工作中,肯定会遇到哪个产品经理突然来找,说服务器又挂了,怎么又用不了啦!类似的紧急情况,遇到这种情况不要慌,我提供以下几点紧急补救思路。 1)重启大法保命 2)确认是否新…

5分钟上手浏览器插件测试——Eolink Apikit

Eolink Apikit 研发管理和自动化测试产品中,提供了多种发起 API 测试的方式: 服务器测试:通过 Eolink Apikit 官方远程服务器发送请求,不需要安装任何插件,但是无法访问本地服务器(localhost)、内网、局域网。插件测试…

年终汇报这么写,升值加薪必有你!

#01 你这么能干, 老板知道吗? — 打工人最怕什么? 最怕你忙前忙后,干活一大堆,气出一身结节,锅还没少背,最后升职加薪没有你,出国旅游不带你;更怕你日常996&#xf…

同义词替换器降低论文重复率的最新技术动态

大家好,今天来聊聊同义词替换器降低论文重复率的最新技术动态,希望能给大家提供一点参考。 以下是针对论文重复率高的情况,提供一些修改建议和技巧,可以借助此类工具: 标题:同义词替换器降低论文重复率的最…

从旺店通·企业版到金蝶云星空通过接口配置打通数据

从旺店通企业版到金蝶云星空通过接口配置打通数据 对接系统:旺店通企业版 旺店通是北京掌上先机网络科技有限公司旗下品牌,国内的零售云服务提供商,基于云计算SaaS服务模式,以体系化解决方案,助力零售企业数字化智能化…

基于SSM的视康眼镜网店销售系统

末尾获取源码 开发语言:Java Java开发工具:JDK1.8 后端框架:SSM 前端:Vue 数据库:MySQL5.7和Navicat管理工具结合 服务器:Tomcat8.5 开发软件:IDEA / Eclipse 是否Maven项目:是 目录…