管理类联考——数学——真题篇——按题型分类——充分性判断题——蒙猜A/B

老规矩,看目录,平均3-5题

文章目录

  • A/B
    • 2023
      • 真题(2023-19)-A-选项特点:两个等号;-纯蒙猜-哪个长选哪个【不要用这招,因为两个选项,总会有一个长的,那不就大多都是A/B,但其实每年平均3-5题】;
      • 真题(2023-22)-A选项特点:两个等号;-不要强行当成“取值范围”和“包含关系”
      • 真题(2023-25)-B-选项特点:两个大于号;不要强行当成“取值范围”和“包含关系”
    • 2022
      • 真题(2022-17)-A-选项有取值范围⇒分三种情况⇒取值范围有交集选C⇒取值范围共边界但反向选A⇒取值范围不相邻,相加非全集选D
      • 真题(2022-19)-B-
      • 真题(2022-22)-B-选项特点:两个等号;看着像可以联立,所以其实光看,是看不出是否要联立的
    • 2021
      • 真题(2021-20)-A-无法判断条件是否需要联立;若用“一字之差”,也无法判断那个信息不完全
      • 真题(2021-22)-A-选项特点:两个等号;-不要强行包含关系了-容易判断不需要联立,选A/B/D/E;
    • 2020
      • 真题(2020-16)-选项有取值范围⇒分三种情况⇒取值范围有交集选C⇒取值范围共边界但反向选A⇒取值范围不相邻,相加非全集选D!!!错了
      • 真题(2020-23)A-选项有取值范围⇒分三种情况⇒取值范围有交集选C⇒取值范围共边界但反向选A⇒取值范围不相邻,相加非全集选D,但是错了!!!
      • 真题(2020-24)-A-选项特点:两个等号;-先分析选项是否需要联合⇒不需要(这里不好判断是否需要)⇒单一型⇒选项间的关系⇒有包含关系⇒选范围小的,选B!!!错了
      • 真题(2020-25)-A-无法判断是否需要联立;-选项是两个等式,特值法
    • 2019
      • 真题(2019-18)A--选项有取值范围⇒分三种情况⇒取值范围有交集选C⇒取值范围共边界但反向选A⇒取值范围不相邻,相加非全集选D
      • 真题(2019-21)-B-边长关系推面积,选B
      • 真题(2019-24)-A-选项有取值范围⇒分三种情况⇒取值范围有交集选C⇒取值范围共边界但反向选A⇒取值范围不相邻,相加非全集选D
      • 真题(2019-25)-A-先分析选项是否需要联合⇒不需要⇒单一型⇒选项间的关系⇒有包含关系,选范围小的,选A;-A-一字之差-两个条件相似程度较高,选信息量少的
    • 2018
      • 真题(2018-16)-A-选项特点:两个小于号-先分析选项是否需要联合⇒不需要(看不出)⇒单一型⇒选项间的关系⇒无共边界反向范围,无包含关系⇒尝试特值法1;两个等号使用特值法;
      • 真题(2018-17)-B-选项特点:两个等号-要素列表法plus-特殊套路-所有圆半径,球半径,均设为需要通过勾股定理求解;即要确定两个要素,需要两个关系;
      • 真题(2018-24)-A-选项特点:两个大于号
    • 2017
      • 真题(2017-17)-A-选项特点:两个等号;
      • 真题(2017-19)-B-选项特点:两个大于号;
      • 真题(2017-21)-B-选项特点:两个等号;要素列表法plus-特殊套路-所有圆半径,球半径,均设为需要通过勾股定理求解;即要确定两个要素,需要两个关系;
      • 真题(2017-22)-A
      • 真题(2017-25)-A-容易误判选C,因为【一个不等号,一个等号,选C】
    • 2016
      • 真题(2016-16)-B-要素列表法-固有关系-知三推四-总体分为甲乙两部分:①甲部分均值;②乙部分均值;③总体均值;④甲乙三间比例。这四个量中知道三个可求得第四个;-B-数据分析-平均值-加权平均值
      • 真题(2016-18)-A-选项特点:两个等号;
      • 真题(2016-21)-A-要素列表法plus-特殊套路-一次与二次-大前提一元等式+一次条件 vs 二次条件 ⟹ 选一次条件;-A-数据分析-平均值与方差-方差是有平方,解出两个根,不能确定;容易误判联立,毕竟均值和方差看着就是一起的。
      • 真题(2016-23)-B-选项特点:两个等号;要素列表法plus-特殊套路-一次与二次-大前提一元等式+一次条件 vs 二次条件 ⟹ 选一次条件;两个等号用特值法
      • 真题(2016-24)-A-要素列表法plus-特殊套路-一次与二次-大前提一元等式+一次条件 vs 二次条件 ⟹ 选一次条件;
    • 2015
      • 真题(2015-17)-A;-选项特点:两个大于等于号;
      • 真题(2015-18)-B;两个等号用特值法,但是这题用不了
      • 真题(2015-19)-B-选项特点:两个等号;
      • 真题(2015-21)-B-两个大于号;
    • 2014
      • 真题(2014-16)-A
      • 真题(2014-17)-B-特值体系法-三、无解/恒成立型特值;-选项有取值范围⇒分三种情况⇒取值范围有交集选C⇒取值范围共边界但反向选A⇒取值范围不相邻,相加非全集选D,但是错了!!!!!
      • 真题(2014-19)-A-选项特点:两个等号;要素列表法plus-特殊套路-一次与二次-条件偶次+结论奇次⟹不充分;
      • 真题(2014-20)-A-选项特点:两个等号;
      • 真题(2014-21)-A-容易误判C,因为【一个定量,一个定性】
      • 真题(2014-25)-A-两个大于号
    • 2013

选A或B选项(只有一个条件充分,另一个不充分)
考试中10道题里最多5道,一般是4道,如果两条件复杂程度有明显差异时,可以使用以下技巧快速解答。
原则1:当两条件矛盾时(占近一半)由于A和B的选项可能要远远高于E,所以大家在做题时应该选择一个比较容易的条件下手,如果能成立,再去验证另一个选项,如果不成立,另一个条件成立的可能性很大。
原则2:当两条件有包含关系时,优先选择范围小的(A、B),做题时应先选择范围较大的先做,若范围较大的条件充分,则选D,若范围较大的不充分,则小范围成立的可能性非常大。
原则3:某一个条件对题干无作用,选另一个有作用的条件为充分。

纯蒙猜
原则1:印刷的长度明显不同时,选复杂的选项(简言之,哪个长选那个)
原则2:印刷长度相当时。包含考点相对较难、公式相对复杂、方法较难、运算量大的项更充分。
原则3:两条件是数值形式,数值复杂的优先充分;表现为:负大于正;不易整除大于易整除;绝对值大于不含绝对值;含根号大于不含根号;对数函数复杂程度大于指数函数复杂程度大于幂函数复杂程度。
原则4:一个为相对量的百分比,另一个为绝对量的数值,优先选百分比。

包含性选项秒杀-准确率80%-A/B
(1)条件2包含于条件1,选A或D,80%选A,20%选D。
(2)条件1包含于条件2,选B或D,80%选B,20%选D。

A/B型蒙猜
“条件题”:A/B型秒杀——【】
1.一字之差:即两个条件相似程度较高
例:条件(1): a n = 2 n − 1 ( n = 1 , 2 , . . . ) a_n=2n-1(n=1,2,...) an=2n1(n=1,2,...);条件(2): a n = 2 n ( n = 1 , 2 , . . . ) a_n=2n(n=1,2,...) an=2n(n=1,2,...)
一字之差拓展:一个条件信息不完全,选另一个;即虽然一字之差,但条件信息不完成;一个信息量大,一个信息量少,选择不言而喻。
例1:题干给出结论大于0.8,选B;
条件(1):0.81;条件(2):0.9;
有形如(=某数字)的等式约束范围限制的,选数小的。
例1:题干给出 a + b + c + d a+b+c+d a+b+c+d的最大值,选B。
条件(1): a b c d = 2700 abcd=2700 abcd=2700;条件(2): a d c d = 2000 adcd=2000 adcd=2000
例1:题干求 a , b , c a,b,c a,b,c的乘积,选A。
条件(1): a + b + 16 ; a+b+16; a+b+16条件(2): a + b + c = 20 a+b+c=20 a+b+c=20
2.共边界反向范围型
反向范围型:在这里插入图片描述
例1:题干求范围;选A;
条件(1): − 3 1 < k < 0 ; -\frac{\sqrt{3}}{1}<k<0; 13 k0条件(2): 0 < k < 2 2 0<k<\frac{\sqrt{2}}{2} 0k22

3.“暗”包含型范围 ⟹ \Longrightarrow 选大的
例:条件(1)与条件(2)是包含的; ⟹ \Longrightarrow 选项A包含B;则选包含多的。

4.面积比+边长比:即边长关系推面积时,往往选B;

5.几何中要确定一个要素
例:题干要确定一个要(无)X的值;即其一定与条件中的一个强相关;A or B

【总结:
“条件题”中A/B型秒杀:
(1)每个条件单独就够用(一眼看不大可能联合)
(2)两个条件不大可能都对;
分类如下:
1.一字之差:一个条件信息不完全,选另一个;
2.共边界反向范围型;
3.面积比+边长比;
4.几何中要确定一个要素;
5.“暗”包含型范围 ⟹ \Longrightarrow 选大的;】

A/B

2023

真题(2023-19)-A-选项特点:两个等号;-纯蒙猜-哪个长选哪个【不要用这招,因为两个选项,总会有一个长的,那不就大多都是A/B,但其实每年平均3-5题】;

-几何-解析几何-最值
在这里插入图片描述
在这里插入图片描述

真题(2023-22)-A选项特点:两个等号;-不要强行当成“取值范围”和“包含关系”

-算术-质数-2,3,5,7,11,13,17,19,23,29-穷举法
在这里插入图片描述

在这里插入图片描述

真题(2023-25)-B-选项特点:两个大于号;不要强行当成“取值范围”和“包含关系”

-数据分析-概率-已知事件的概率求概率⟹ 独立事件概型⟹ 乘法计算概率

在这里插入图片描述
在这里插入图片描述

2022

真题(2022-17)-A-选项有取值范围⇒分三种情况⇒取值范围有交集选C⇒取值范围共边界但反向选A⇒取值范围不相邻,相加非全集选D

-算术-绝对值-绝对值号和未知数-线性和差-线性差最值:相减最大和最小,大小互减取最值,互为相反两边跑,后者居上描画好(“后者居上描画好”:是指在减号后面的绝对值的零点处取最大值,图像是楼梯的上层,由此可以描点画出图像。)
17.设实数𝑥𝑥满足 ∣ x − 2 ∣ − ∣ x − 3 ∣ = a |x-2|-|x-3|=a x2∣x3∣=a,则能确定𝑥的值。
(1) 0 < a ≤ 1 2 0<a≤\frac{1}{2} 0<a21
(2) 1 2 < a ≤ 1 \frac{1}{2}<a≤1 21<a1
在这里插入图片描述

真题(2022-19)-B-

-数列-等比数列
19.在△ 𝐴𝐵𝐶 中,𝐷 为 𝐵𝐶 边上的点, 𝐵𝐷 、 𝐴𝐵 、 𝐵𝐶 成等比数列,则 ∠𝐵𝐴𝐶 = 90°
(1)𝐵𝐷 = 𝐷𝐶 .
(2) 𝐴𝐷 ⊥ 𝐵𝐶.
在这里插入图片描述

真题(2022-22)-B-选项特点:两个等号;看着像可以联立,所以其实光看,是看不出是否要联立的

-代数-分式-升降幂法
22.已知𝑥为正实数,则能确定𝑥− 1 x \frac{1}{x} x1的值
(1)已知 x + 1 x {\sqrt{x}}+\frac{1}{\sqrt{x}} x +x 1的值
(2)已知 x 2 − 1 x 2 x^2-\frac{1}{x^2} x2x21的值
在这里插入图片描述

2021

真题(2021-20)-A-无法判断条件是否需要联立;若用“一字之差”,也无法判断那个信息不完全

-几何-解析几何-位置-线圆位置-相切-点到直线的距离公式: l : a x + b y + c = 0 l:ax+by+c=0 l:ax+by+c=0,点( x 0 , y 0 x_0,y_0 x0,y0)到 l l l的距离为 d = ∣ a x 0 + b y 0 + c ∣ a 2 + b 2 d=\frac{|ax_0+by_0+c|}{\sqrt{a^2+b^2}} d=a2+b2 ax0+by0+c
20.设a为实数,圆C: x 2 + y 2 = a x + a y x^2+y^2=ax+ay x2+y2=ax+ay,则能确定圆C的方程。
(1)直线 x + y = 1 x +y=1 x+y=1与圆C相切。
(2)直线 x − y = 1 x-y =1 xy=1与圆C相切。

在这里插入图片描述

真题(2021-22)-A-选项特点:两个等号;-不要强行包含关系了-容易判断不需要联立,选A/B/D/E;

-应用题-出现了两个及以上未知量,而数量关系却少于未知量的个数-不定方程-整数不定方程-先根据题目转化为ax+by=c形式的不定方程,然后结合整除、倍数和奇偶特征分析讨论求解
22.某人购买了果汁、牛奶、咖啡三种物品,已知果汁每瓶12元,牛奶每瓶15元,咖啡每盒35元,则能确定所买各种物品的数量。
(1)总花费为104元。
(2)总花费为215元。
在这里插入图片描述

2020

真题(2020-16)-选项有取值范围⇒分三种情况⇒取值范围有交集选C⇒取值范围共边界但反向选A⇒取值范围不相邻,相加非全集选D!!!错了

-几何-平面几何-三角形-心
16、在△ABC 中,∠B= 6 0 0 60^0 600,则 c / a > 2 c/a>2 c/a2
(1) ∠ C < 9 0 0 ∠C<90^0 C900
(2) ∠ C > 9 0 0 ∠C>90^0 C900
在这里插入图片描述

在这里插入图片描述

真题(2020-23)A-选项有取值范围⇒分三种情况⇒取值范围有交集选C⇒取值范围共边界但反向选A⇒取值范围不相邻,相加非全集选D,但是错了!!!

特值法体系-两项特值与三项特值;
-A-代数-方程-一元二次方程-根的分布
23、设函数 f ( x ) = ( a x − 1 ) ( x − 4 ) f(x)=(ax-1)(x-4) f(x)=(ax1)(x4),则在 x = 4 左侧附近有 f ( x ) < 0 f(x)<0 f(x)0
(1) a > 1 4 a>\frac{1}{4} a41
(2) a < 4 a<4 a4
在这里插入图片描述

在这里插入图片描述在这里插入图片描述

真题(2020-24)-A-选项特点:两个等号;-先分析选项是否需要联合⇒不需要(这里不好判断是否需要)⇒单一型⇒选项间的关系⇒有包含关系⇒选范围小的,选B!!!错了

-代数-不等式-均值不等式
24、设a, b 是正实数,则 1 a 1\over{a} a1+ 1 b 1\over{b} b1存在最小值。
(1)已知ab的值。
(2)已知a,b是方程 x 2 − ( a + b ) x + 2 = 0 x^2-(a+b)x+2=0 x2(a+b)x+2=0的两个不同实根。

在这里插入图片描述
在这里插入图片描述

真题(2020-25)-A-无法判断是否需要联立;-选项是两个等式,特值法

-优先验证不充分-验证不充分-难度降低-举反例-方法:定性判断-举反例:ad乘积固定,求两数和最大,得:a,b两数差别很大;-A-代数-不等式-均值不等式
25、设a, b, c, d 是正实数,则 a + b ≤ 2 ( b + c ) \sqrt{a}+\sqrt{b}≤\sqrt{2(b+c)} a +b 2(b+c)
(1) a + d = b + c a + d = b + c a+d=b+c
(2) a d = b c ad = bc ad=bc

在这里插入图片描述
在这里插入图片描述

2019

真题(2019-18)A–选项有取值范围⇒分三种情况⇒取值范围有交集选C⇒取值范围共边界但反向选A⇒取值范围不相邻,相加非全集选D

-几何-解析几何
18、直线 y = k x y =kx y=kx 与圆 x 2 + y 2 − 4 x + 3 = 0 x^{2}+ y^2−4x+3 =0 x2+y24x+3=0 有两个交点
(1) − 3 3 < k < 0 -{\sqrt{3}\over3}<k<0 33 k0
(2) 0 < k < 2 2 0<k<{\sqrt{2}\over2} 0k22

在这里插入图片描述
在这里插入图片描述

真题(2019-21)-B-边长关系推面积,选B

-几何-平面几何
21、如图,已知正方形 ABCD 面积,O 为 BC 上一点,P 为 AO 的中点,Q 为 DO 上一点,则能确定三角形 PQD 的面积。

在这里插入图片描述

(1)O 为 BC 的三等分点
(2)Q 为 DO 的三等分点

在这里插入图片描述
在这里插入图片描述

真题(2019-24)-A-选项有取值范围⇒分三种情况⇒取值范围有交集选C⇒取值范围共边界但反向选A⇒取值范围不相邻,相加非全集选D

-几何-解析几何
24、设三角区域D由直线 x + 8 y − 56 = 0 , x − 6 y + 42 = 0 x+8y-56=0,x-6y+42=0 x+8y56=0,x6y+42=0 k x − y + 8 − 6 k = 0 ( k < 0 ) kx-y+8-6k=0(k<0) kxy+86k=0(k0)围成,则对任意的 ( x , y ) (x,y) (x,y) l g ( x 2 + y 2 ) ≤ 2 lg(x^2+y^2)≤2 lg(x2+y2)2

(1) k ∈ ( − ∞ , − 1 ] k∈(-∞,-1] k(,1]
(2) k ∈ [ − 1 , − 1 8 ) k∈[-1,-{1\over8}) k[1,81)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

真题(2019-25)-A-先分析选项是否需要联合⇒不需要⇒单一型⇒选项间的关系⇒有包含关系,选范围小的,选A;-A-一字之差-两个条件相似程度较高,选信息量少的

-数列-等差数列
25、设数列{ a n a_n an}的前n项和为 S n S_n Sn,则{ a n a_n an}等差
(1) S n = n 2 + 2 n , n = 1 , 2 , 3 S_n=n^2+2n,n=1,2,3 Sn=n2+2n,n=1,2,3
(2) S n = n 2 + 2 n + 1 , n = 1 , 2 , 3 S_n=n^2+2n+1,n=1,2,3 Sn=n2+2n+1,n=1,2,3

在这里插入图片描述

在这里插入图片描述

2018

真题(2018-16)-A-选项特点:两个小于号-先分析选项是否需要联合⇒不需要(看不出)⇒单一型⇒选项间的关系⇒无共边界反向范围,无包含关系⇒尝试特值法1;两个等号使用特值法;

-代数-不等式-均值不等式
16.设 x, y 为实数,则 ∣ x + y ∣ ≤ 2 |x+y|≤2 x+y2
(1) x 2 + y 2 ≤ 2 x^2+y^2≤2 x2+y22
(2) x y ≤ 1 xy≤1 xy1
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

真题(2018-17)-B-选项特点:两个等号-要素列表法plus-特殊套路-所有圆半径,球半径,均设为需要通过勾股定理求解;即要确定两个要素,需要两个关系;

-B-数列-等差数列-求和公式: S n = n ( a 1 + a n ) 2 = n a n + 1 2 ( n 为偶数时,可虚拟小数) = n a 1 + n ( n − 1 ) 2 d = d 2 n 2 + ( a 1 − d 2 ) n S_n=\frac{n(a_1+a_n)}{2}=na_{\frac{n+1}{2}}(n为偶数时,可虚拟小数)=na_1+\frac{n(n-1)}{2}d=\frac{d}{2}n^2+(a_1-\frac{d}{2})n Sn=2n(a1+an)=na2n+1n为偶数时,可虚拟小数)=na1+2n(n1)d=2dn2+(a12d)n
17.{ a n a_n an}等差数列,则能确定 a 1 + a 2 + . . . + a 9 a_1+a_2+...+a_9 a1+a2+...+a9的值。
(1)已知 a 1 a_1 a1的值。
(2)已知 a 5 a_5 a5的值。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

真题(2018-24)-A-选项特点:两个大于号

-几何-解析几何-位置-线圆位置-转换为圆心点到直线距离公式

24.设a, b 实数,则圆 x 2 + y 2 = 2 y x^2+y^2=2y x2+y2=2y与直线 x + a y = b x+ay=b x+ay=b不相交。
(1) ∣ a − b ∣ > 1 + a 2 |a-b|>\sqrt{1+a^2} ab1+a2
(2) ∣ a + b ∣ > 1 + a 2 |a+b|>\sqrt{1+a^2} a+b1+a2
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2017

真题(2017-17)-A-选项特点:两个等号;

-几何-解析几何-圆的方程
17.圆 x 2 + y 2 − a x − b y + c = 0 x^2+y^2-ax-by+c=0 x2+y2axby+c=0与 x 轴相切,则能确定c 的值。
(1)已知a 的值
(2)已知b 的值
在这里插入图片描述
在这里插入图片描述

真题(2017-19)-B-选项特点:两个大于号;

-方程-一元二次方程-根的判别式
19.直线 y = a x + b y=ax+b y=ax+b与抛物线 y = x 2 y=x^2 y=x2 有两个交点.

(1) a 2 > 4 b a^2>4b a24b
(2) b >0
在这里插入图片描述
在这里插入图片描述

真题(2017-21)-B-选项特点:两个等号;要素列表法plus-特殊套路-所有圆半径,球半径,均设为需要通过勾股定理求解;即要确定两个要素,需要两个关系;

-B-几何-立体几何
21.如图,一个铁球沉入水池中,则能确定铁球的体积。
(1)已知铁球露出水面的高度。
(2)已知水深及铁球与水面交线的周长。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

真题(2017-22)-A

-代数-函数-一元二次函数-最值
22.设a, b 是两个不相等的实数,则函数 f ( x ) = x 2 + 2 a x + b f(x)=x^2+2ax+b f(x)=x2+2ax+b 的最小值小于零。
(1)1, a, b成等差数列。
(2)1, a, b成等比数列。
在这里插入图片描述
在这里插入图片描述

真题(2017-25)-A-容易误判选C,因为【一个不等号,一个等号,选C】

-算术-绝对值
25.已知a, b, c 为三个实数,则min{ ∣ a − b ∣ , ∣ b − c ∣ , ∣ a − c ∣ |a-b|,|b-c|,|a-c| ab,bc,ac} ≤ 5 .
(1) ∣ a ∣ ≤ 5 , ∣ b ∣ ≤ 5 , ∣ c ∣ ≤ 5 |a|≤5,|b|≤5,|c|≤5 a5,b5,c5
(2) a + b + c = 15 a + b + c = 15 a+b+c=15
在这里插入图片描述
在这里插入图片描述

2016

真题(2016-16)-B-要素列表法-固有关系-知三推四-总体分为甲乙两部分:①甲部分均值;②乙部分均值;③总体均值;④甲乙三间比例。这四个量中知道三个可求得第四个;-B-数据分析-平均值-加权平均值

16.已知某公司男员工的平均年龄和女员工的平均年龄,则能确定该公司员工的平均年龄。
(1)已知该公司员工的人数。
(2)已知该公司男、女员工的人数之比。

在这里插入图片描述
在这里插入图片描述

真题(2016-18)-A-选项特点:两个等号;

-方程-出现了两个及以上未知量,而数量关系却少于未知量的个数-整数不定方程-先根据题目转化为ax+by=c形式的不定方程,然后结合整除、倍数和奇偶特征分析讨论求解
18.利用长度为a和b的两种管材能连接成长度为37的管道(单位:米)
(1)a = 3,b = 5
(2)a = 4,b = 6
在这里插入图片描述

真题(2016-21)-A-要素列表法plus-特殊套路-一次与二次-大前提一元等式+一次条件 vs 二次条件 ⟹ 选一次条件;-A-数据分析-平均值与方差-方差是有平方,解出两个根,不能确定;容易误判联立,毕竟均值和方差看着就是一起的。

21.设两组数据 S 1 S_1 S1:3、4、5、6、7和 S 2 S_2 S2:4、5、6、7、a,则能确定a的值。
(1) S 1 S_1 S1 S 2 S_2 S2的均值相等。
(2) S 1 S_1 S1 S 2 S_2 S2的方差相等。
在这里插入图片描述

真题(2016-23)-B-选项特点:两个等号;要素列表法plus-特殊套路-一次与二次-大前提一元等式+一次条件 vs 二次条件 ⟹ 选一次条件;两个等号用特值法

B-代数-整式-立方公式-和与差的立方: a 3 ± b 3 = ( a ± b ) ( a 2 ∓ a b + b 2 ) a^3±b^3=(a±b)(a^2∓ab+b^2) a3±b3=(a±b)(a2ab+b2);-代数-不等式-均值不等式
23.设 x, y 是实数,则可以确定 x 3 + y 3 x^3+y^3 x3+y3的最小值
(1) x y = 1 xy=1 xy=1
(2) x + y = 2 x+y=2 x+y=2
在这里插入图片描述

在这里插入图片描述
与立方有关的公式
和与差的立方 a 3 ± b 3 = ( a ± b ) ( a 2 ∓ a b + b 2 ) a^3±b^3=(a±b)(a^2∓ab+b^2) a3±b3=(a±b)(a2ab+b2)
立方和 a 3 + b 3 = ( a + b ) ( a 2 − a b + b 2 ) a^3+b^3=(a+b)(a^2-ab+b^2) a3+b3=(a+b)(a2ab+b2)—— x 3 + 1 = ( x + 1 ) ( x 2 − x + 1 ) x^3+1=(x+1)(x^2-x+1) x3+1=(x+1)(x2x+1)——【三次和=一次和与二次和乘积,其中二次和要减一次积,三次喝=一次喝,二次喝见一刺激;二次核检一次记;三次核检=一次核检乘以二次核减见一次记;三次去喝酒=一次喝酒×二次喝酒被记录一次】
立方差 a 3 − b 3 = ( a − b ) ( a 2 + a b + b 2 ) a^3-b^3=(a-b)(a^2+ab+b^2) a3b3=(ab)(a2+ab+b2)—— x 3 − 1 = ( x − 1 ) ( x 2 + x + 1 ) x^3-1=(x-1)(x^2+x+1) x31=(x1)(x2+x+1)
③拓展: x n − y n = ( x − y ) ( x n − 1 + x n − 2 y + x n − 3 y 2 + . . . + y n − 1 ) x^n-y^n=(x-y)(x^{n-1}+x^{n-2}y+x^{n-3}y^2+...+y^{n-1}) xnyn=(xy)(xn1+xn2y+xn3y2+...+yn1)
完全立方 ( a ± b ) 3 = a 3 ± 3 a 2 b + 3 a b 2 ± b 3 (a±b)^3=a^3±3a^2b+3ab^2±b^3 (a±b)3=a3±3a2b+3ab2±b3——【每项都有3】
和立方 ( a + b ) 3 = a 3 + b 3 + 3 a 2 b + 3 a b 2 = a 3 + b 3 + 3 a b ( a + b ) (a+b)^3=a^3+b^3+3a^2b+3ab^2=a^3+b^3+3ab(a+b) (a+b)3=a3+b3+3a2b+3ab2=a3+b3+3ab(a+b)——【和立方比立方和多3倍乘积乘和】——【和立方=立方和+3倍乘积乘和】——【和的三次=三次和+三鸡和】
差立方 ( a − b ) 3 = a 3 − b 3 − 3 a 2 b + 3 a b 2 = a 3 − b 3 − 3 a b ( a − b ) (a-b)^3=a^3-b^3-3a^2b+3ab^2=a^3-b^3-3ab(a-b) (ab)3=a3b33a2b+3ab2=a3b33ab(ab)——【差立方比立方差少3倍乘积乘差】——【差立方=立方差-3倍乘积乘差】

真题(2016-24)-A-要素列表法plus-特殊套路-一次与二次-大前提一元等式+一次条件 vs 二次条件 ⟹ 选一次条件;

-A-代数-数列-递推公式-直接计算法
24.已知数列 a 1 , a 2 , a 3 , . . . , a 10 a_1,a_2,a_3,...,a_{10} a1,a2,a3,...,a10,则 a 1 − a 2 + a 3 − . . . + a 9 − a 10 ≥ 0 a_1-a_2+a_3-...+a_9-a_{10}≥0 a1a2+a3...+a9a100
(1) a n ≥ a n + 1 , n = 1 , 2 , . . . , 9 a_n≥a_{n+1},n=1,2,...,9 anan+1,n=1,2,...,9
(2) a n 2 ≥ a n + 1 2 , n = 1 , 2 , . . . , 9 a_n^2≥a_{n+1}^2,n=1,2,...,9 an2an+12,n=1,2,...,9
在这里插入图片描述

2015

真题(2015-17)-A;-选项特点:两个大于等于号;

-代数-不等式
17.已知a, b 为实数,则 a ≥ 2 a ≥ 2 a2 b ≥ 2 b ≥ 2 b2
(1) a + b ≥ 4 a + b ≥ 4 a+b4
(2) a b ≥ 4 ab ≥ 4 ab4
在这里插入图片描述
在这里插入图片描述

真题(2015-18)-B;两个等号用特值法,但是这题用不了

-代数-整式分式
18. 已知 p, q 为非零实数. 则能确定 p q ( p − 1 ) \frac{p}{q(p-1)} q(p1)p的值.
(1) p + q = 1 p+q=1 p+q=1
(2) 1 p + 1 q = 1 \frac{1}{p}+\frac{1}{q}=1 p1+q1=1
在这里插入图片描述
在这里插入图片描述

真题(2015-19)-B-选项特点:两个等号;

-数据分析-概率-已知元素的数量求概率⟹ 古典概型⟹ 两个排列组合相除计算概率或穷举法⟹ 分母是C运算,分子数量少用穷举,数量多用C运算
19. 信封中装有10 张奖券,只有1张有奖从信封中同时抽取2 张奖券,中奖的概率为 P ;从信封中每次抽取1张奖券后放回,如此重复抽取n 次,中奖的概率为Q ,则 P < Q P<Q PQ
(1) n = 2 n=2 n=2
(2) n = 3 n=3 n=3
在这里插入图片描述
在这里插入图片描述
不联立条件秒杀:条件(1)和条件(2)不能联立,选数值大的。如n=2,n=3,选n=3。
包含选项+定性判断秒杀:第一步:定性判断:题干“重复抽取n次,每抽取1张后放回”,得:Q与n正相关,递增关系。结论“P<Q”,得:Q越大越好,得:n越大越好。属于包含型选项题,数值越大越充分,由条件得:条件(1)包含于条件(2),选B或D,80%选B,20%选D。
在这里插入图片描述

真题(2015-21)-B-两个大于号;

-实数
21.已知 M = ( a 1 + a 2 + . . . + a n − 1 ) ( a 2 + a 3 + . . . + a n ) M=(a_1+a_2+...+a_{n-1})(a_2+a_3+...+a_n) M=(a1+a2+...+an1)(a2+a3+...+an) N = ( a 1 + a 2 + . . . + a n ) ( a 2 + a 3 + . . . + a n − 1 ) N=(a_1+a_2+...+a_n)(a_2+a_3+...+a_{n-1}) N=(a1+a2+...+an)(a2+a3+...+an1),则M>N。
(1) a 1 > 0 a_1>0 a10
(2) a 1 a n > 0 a_1a_n>0 a1an0
在这里插入图片描述

在这里插入图片描述

2014

真题(2014-16)-A

-方程
16.已知曲线 l l l y = a + b x − 6 x 2 + x 3 y=a+bx-6x^2+x^3 y=a+bx6x2+x3,则 ( a + b − 5 ) ( a − b − 5 ) = 0 (a+b-5)(a-b-5)=0 (a+b5)(ab5)=0 .
(1)曲线 l l l过点 ( 1 , 0 ) (1,0) 1,0
(2)曲线 l l l过点 ( − 1 , 0 ) (-1,0) 1,0

在这里插入图片描述
在这里插入图片描述

真题(2014-17)-B-特值体系法-三、无解/恒成立型特值;-选项有取值范围⇒分三种情况⇒取值范围有交集选C⇒取值范围共边界但反向选A⇒取值范围不相邻,相加非全集选D,但是错了!!!!!

-B-代数-不等式-绝对值不等式;-代数-一元二次不等式-恒成立
17.不等式 ∣ x 2 + 2 x + a ∣ ≤ 1 |x^2+2x+a|≤1 x2+2x+a1的解集为空集。
(1) a < 1 a<1 a1
(2) a > 2 a>2 a2
在这里插入图片描述

在这里插入图片描述
方法二:见“ x 2 x^2 x2”首选配平方。 ∣ x 2 + 2 x + 1 + a − 1 ∣ ≤ 1 |x^2+2x+1+a-1|≤1 x2+2x+1+a1∣1,得: ∣ ( x + 1 ) 2 + ∣ a − 1 ∣ ∣ > 1 |(x+1)^2+|a-1||>1 (x+1)2+a1∣∣1,得: ( x + 1 ) 2 ≥ 0 (x+1)^2≥0 (x+1)20 a − 1 > 1 a-1>1 a11得: a − 1 > 1 a-1>1 a11,得: a > 2 a>2 a2
在这里插入图片描述

真题(2014-19)-A-选项特点:两个等号;要素列表法plus-特殊套路-一次与二次-条件偶次+结论奇次⟹不充分;

-代数-分式;-代数-整式-立方公式-和与差的立方: a 3 ± b 3 = ( a ± b ) ( a 2 ∓ a b + b 2 ) a^3±b^3=(a±b)(a^2∓ab+b^2) a3±b3=(a±b)(a2ab+b2)
19.设 x 是非零实数,则 x 3 + 1 x 3 = 18 x^3+\frac{1}{x^3}=18 x3+x31=18
(1) x + 1 x = 3 x+\frac{1}{x}=3 x+x1=3
(2) x 2 + 1 x 2 = 7 x^2+\frac{1}{x^2}=7 x2+x21=7
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

真题(2014-20)-A-选项特点:两个等号;

-几何-平面几何-圆
20.如图 4 所示,O 是半圆的圆心,C是半圆上的一点,OD⊥AC,则能确定OD 的长。
(1)已知BC的长。
(2)已知AO的长。
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

真题(2014-21)-A-容易误判C,因为【一个定量,一个定性】

-方程-一元二次方程-判别式- △ = b 2 − 4 a c △=b^2-4ac =b24ac
21.方程 x 2 + 2 ( a + b ) x + c 2 = 0 x^2+2(a+b)x+c^2=0 x2+2(a+b)x+c2=0 有实根。
(1) a, b, c 是一个三角形的三边长。
(2)实数a, b, c 成等差数列。
在这里插入图片描述
在这里插入图片描述

真题(2014-25)-A-两个大于号

-几何-解析几何-最值
25.已知 x, y 为实数,则 x 2 + y 2 = 1 x^2+y^2=1 x2+y2=1.
(1) 4 y − 3 x ≥ 5 4y - 3x ≥ 5 4y3x5
(2) ( x − 1 ) 2 + ( y − 1 ) 2 ≥ 5 (x-1)^2+(y-1)^2≥5 (x1)2+(y1)25
在这里插入图片描述

在这里插入图片描述

2013

真题(2013-16)-A-两个等号

-几何-解析几何-面积
16.已知平面区域D1={ ( x , y ) ∣ x 2 + y 2 ≤ 9 {(x,y)|x^2+y^2≤9} (x,y)x2+y29},D2={ ( x , y ) ∣ ( x − x 0 ) 2 + ( y − y 0 ) 2 ≤ 9 {(x,y)|(x-x_0)^2+(y-y_0)^2≤9} (x,y)(xx0)2+(yy0)29},则 D 1 , D 2 D1,D2 D1D2覆盖区域的边界长度为 8 π 8π 8π
(1) x 0 2 + y 0 2 = 9 x_0^2+y_0^2=9 x02+y02=9
(2) x 0 + y 0 = 3 x_0+y_0=3 x0+y0=3
在这里插入图片描述
在这里插入图片描述

真题(2013-18)-B-两个等号

-几何-平面几何-三角形的形状判断
18.△ABC 的边长分别为a, b, c ,则△ABC 为直角三角形。
(1) ( c 2 − a 2 − b 2 ) ( a 2 − b 2 ) = 0 (c^2-a^2-b^2)(a^2-b^2)=0 (c2a2b2)(a2b2)=0
(2)△ABC 的面积为 1 2 a b \frac{1}{2}ab 21ab
在这里插入图片描述

真题(2013-19)-A-特值法体系-两项特值与三项特值;-A-代数-函数-一元二次函数-判别式- △ = b 2 − 4 a c △=b^2-4ac =b24ac

19.已知二次函数 f ( x ) = a x 2 + b x + c f(x)=ax^2+bx+c f(x)=ax2+bx+c,则方程为 f ( x ) = 0 f(x)=0 f(x)=0有两个不同实根。
(1) a + c = 0 a+c=0 a+c=0
(2) a + b + c = 0 a + b + c = 0 a+b+c=0
在这里插入图片描述
在这里插入图片描述

真题(2013-23)-B

-应用题-最值
23.某单位年终奖共发了100万元奖金,奖金金额分别是一等奖1.5万元、二等奖1万元、三等奖0.5万元,则该单位至少有100人。
(1)得二等奖的人数最多。
(2)得三等奖的人数最多。

在这里插入图片描述

真题(2013-24)-A

-数据分析-排列组合-不同元素的分配
24.三个科室的人数分别为6、3和2,因工作需要,每晚需要排3人值班,则在两个月中以便每晚值班人员不完全相同。
(1)值班人员不能来自同一科室。
(2)值班人员来自三个不同科室。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/233692.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

透视数据:数据可视化工具的多重场景应用

数据可视化工具已经成为了许多领域中的重要利器&#xff0c;它们在各种场景下发挥着重要作用。下面我就以可视化从业者的角度简单谈谈数据可视化工具在不同场景下的应用&#xff1a; 企业数据分析与决策支持 在企业层面&#xff0c;数据可视化工具被广泛应用于数据分析和决策…

16 v-model绑定多选框

概述 使用v-model绑定多选框也是一种比较常见的需求&#xff0c;比如一个用户可以绑定多个角色&#xff0c;可以有多个兴趣爱好。 在本节课中&#xff0c;我们来学习一下这两种用法。 基本用法 我们创建src/components/Demo16.vue&#xff0c;在这个组件中&#xff0c;我们…

SpringCloud02

1.在项目中&#xff0c;服务之间的调用是怎么实现的&#xff1f; 1.1基于RestTemplate和LoadBalanced注解&#xff1a; RestTemplate是Spring提供的用于访问RESTful服务的客户端。添加LoadBalanced注解后&#xff0c;RestTemplate会成为一个负载均衡的HTTP客户端&#xff0c;它…

10.鸿蒙应用程序app创建第一个程序Helloworld

鸿蒙应用程序开发app_hap开发环境搭建 1.打开DevEco 2.创建项目 3.选择Empty Ability 4. 选择API6,支持java开发 5.点击Finish 6.启动本地模拟器参考方法 7.启动成功 8.运行程序 9.运行成功 其它文章点击专栏

HarmonyOS:Neural Network Runtime对接AI推理框架开发指导

场景介绍 Neural Network Runtime 作为 AI 推理引擎和加速芯片的桥梁&#xff0c;为 AI 推理引擎提供精简的 Native 接口&#xff0c;满足推理引擎通过加速芯片执行端到端推理的需求。 本文以图 1 展示的 Add 单算子模型为例&#xff0c;介绍 Neural Network Runtime 的开发流…

轻量封装WebGPU渲染系统示例<50>- Json数据描述材质等3D渲染场景信息

本示例中的3d渲染场景由Json数据来描述。 包含3个主要部分: 1. Json描述渲染器的基本信息。 2. Json描述渲染场景的环境信息,包括全局的灯光、阴影、雾等。 3. Json描述构成场景的各个可选人实体&#xff0c;包括几何信息、transform、材质、渲染状态等。 当前示例源码git…

开启创意之旅:免费、开源的噪波贴图(noise texture)生成网站——noisecreater.com详细介绍

在当今数字创意领域&#xff0c;噪波贴图&#xff08;Noise Texture&#xff09;是游戏渲染、游戏开发、美术设计以及影视制作等行业不可或缺的艺术素材之一。为了满足广大创作者的需求&#xff0c;noisecreater.com应运而生&#xff0c;成为一款免费、开源的噪波贴图生成工具。…

保护IP地址免受盗用的有效方法

IP地址是互联网通信的基础&#xff0c;然而&#xff0c;由于其重要性&#xff0c;IP地址的盗用成为一种潜在的网络威胁。本文将深入探讨防止IP地址被盗用的方法&#xff0c;以维护网络的安全性。 第一部分&#xff1a;IP地址盗用的威胁与风险 1.1 IP地址盗用的定义 IP地址盗…

数据可视化---离群值展示

内容导航 类别内容导航机器学习机器学习算法应用场景与评价指标机器学习算法—分类机器学习算法—回归机器学习算法—聚类机器学习算法—异常检测机器学习算法—时间序列数据可视化数据可视化—折线图数据可视化—箱线图数据可视化—柱状图数据可视化—饼图、环形图、雷达图统…

操作系统系列:Unix进程系统调用fork,wait,exec

操作系统系列&#xff1a;Unix进程系统调用 fork系统调用fork()运用的小练习 wait系统调用Zombiesexec 系列系统调用 开发者可以查看创建新进程的系统调用&#xff0c;这个模块会讨论与进程相关的Unix系统调用&#xff0c;下一个模块会讨论Win32 APIs相关的进程。 fork系统调用…

java参数校验

引入依赖 <!--参数效验--><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-validation</artifactId></dependency><!--Length参数效验--><dependency><groupId>org.hib…

【python基础】-- yarn add 添加依赖的各种类型

目录 1、安装 yarn 1.1 使用npm安装 1.2 查看版本 1.3 yarn 淘宝源配置 2、安装命令说明 2.1 yarn add&#xff08;会更新package.json和yarn.lock&#xff09; 2.2 yarn install 2.3 一些操作 2.3.1 发布包 2.3.2 移除一个包 2.3.3 更新一个依赖 2.3.4 运行脚本 …

【设计模式--行为型--备忘录模式】

设计模式--行为型--备忘录模式 备忘录模式定义结构案例实现白箱备忘录模式黑箱备忘录模式 优缺点使用场景 备忘录模式 定义 又叫快照模式&#xff0c;在不破坏封装性的前提下&#xff0c;捕获一个对象的对象的内部状态&#xff0c;并在该对象之外保存这个状态&#xff0c;以便…

Java 自定义注解

Java 自定义注解&#xff0c; 以及interface Target Retention Around Before After ProceedingJoinPoint JoinPoint 等用法 注解应用非常广泛&#xff0c;我们自定义注解能简化开发各种各种业务 一、关键字解释 (1) 定义注解时&#xff0c;关键字 interface 来表示注解类的类…

Spring Boot学习随笔- 实现AOP(JoinPoint、ProceedingJoinPoint、自定义注解类实现切面)

学习视频&#xff1a;【编程不良人】2021年SpringBoot最新最全教程 第十一章、AOP 11.1 为什么要使用AOP 问题 现有业务层开发存在问题 额外功能代码存在大量冗余每个方法都需要书写一遍额外功能代码不利于项目维护 Spring中的AOP AOP&#xff1a;Aspect 切面 Oriented 面向…

竞赛保研 python 机器视觉 车牌识别 - opencv 深度学习 机器学习

1 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 基于python 机器视觉 的车牌识别系统 &#x1f947;学长这里给一个题目综合评分(每项满分5分) 难度系数&#xff1a;3分工作量&#xff1a;3分创新点&#xff1a;3分 &#x1f9ff; 更多资…

【Python 基础】-- 在 mac OS 中安装 多个 python 版本

目录 1、需求 2、实现 2.1 安装 pyenv 2.2 安装 pyenv-virtualenv 2.3 配置环境变量 2.4 创建 python 3.9.9 的环境 2.5 激活环境&#xff0c;在当前项目目录中使用&#xff0c;即执行 python 1、需求 由于项目所依赖的 python 版本有多个&#xff0c;需要在不同的 pyth…

主从reactor多线程实现

现场模型图片&#xff0c;从网上找的 出于学习的目的实现的&#xff0c;如有不对的地方欢迎留言知道&#xff0c;简单实现了http的请求&#xff0c;可通过postman进行访问 启动项目&#xff1a; 返回数据示例 postman请求 附上源码&#xff0c;有问题直接看源码吧

智能优化算法应用:基于闪电连接过程算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于闪电连接过程算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于闪电连接过程算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.闪电连接过程算法4.实验参数设定…

Flink实时电商数仓(二)

GitLab的用户创建和推送 在root用户-密码界面重新设置密码添加Leader用户和自己使用的用户使用root用户创建相应的群组使用Leader用户创建对应的项目设置分支配置为“初始推送后完全保护”设置.gitignore文件&#xff0c;项目配置文件等其他非通用代码无需提交安装gitlab proj…