回归预测 | MATLAB实现NGO-SCN北方苍鹰算法优化随机配置网络的数据回归预测 (多指标,多图)

回归预测 | MATLAB实现NGO-SCN北方苍鹰算法优化随机配置网络的数据回归预测 (多指标,多图)

目录

    • 回归预测 | MATLAB实现NGO-SCN北方苍鹰算法优化随机配置网络的数据回归预测 (多指标,多图)
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

1
2

基本介绍

1.回归预测 | MATLAB实现NGO-SCN北方苍鹰算法优化随机配置网络的数据回归预测 (多指标,多图)。出图包括迭代曲线图、预测效果图等等。
2.matlab 版本要求2020b及以上版本 程序已调试好可以直接运行(数据直接在Excel中替换)
采用优化算法对随机配置网络SCN的尺度因子Lambdas和正则化系数r进行优化,以北方苍鹰优化算法为例.
3.直接替换Excel数据即可用,注释清晰,适合新手小白[火]
4.附赠示例数据,直接运行main文件一键出图[灯泡]评价指标包括:R2、MAE、MSE、MAPE、RMSE等,图很多.

程序设计

  • 完整源码和数据获取方式:私信回复MATLAB实现NGO-SCN北方苍鹰算法优化随机配置网络的数据回归预测 (多指标,多图)
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res = xlsread('data.xlsx');%%  划分训练集和测试集
temp = randperm(103);P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test);%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);%%  相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/233027.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

HarmonyOS(十五)——状态管理之@Prop装饰器(父子单向同步)

上一篇文章我们认识了状态管理的State装饰器(组件内状态),接下来我们学习另外一个状态管理装饰器Prop装饰器。 Prop装饰的变量可以和父组件建立单向的同步关系。Prop装饰的变量是可变的,但是变化不会同步回其父组件。 说明&#…

10分钟微调专属于自己的大模型

本文主要介绍使用魔搭社区轻量级训练推理工具SWIFT,进行大模型自我认知微调,帮助初阶炼丹师快速微调出专属于自己的大模型。 SWIFT(Scalable lightWeight Infrastructure for Fine-Tuning)是魔搭ModelScope开源社区推出的一套完整…

大数据背景下的教育培训流动机构分析探究代码

针对大数据背景下教育培训流动机构的分析探究,首先需要搜集相关数据,例如学生信息、课程信息、培训机构信息等,然后通过数据分析和可视化工具进行探索性分析和建模。以下是一个简化的示例,展示如何使用Python的Pandas和Matplotlib…

C++snprintf和stringstream,一篇就够啦!

文章目录 前言snprintf()sstreamstr()的使用clear()的使用 对于stringstream的疑惑 前言 最近写了一个Github的CJson解析器,这是其中遇到的一个问题,在查询大量资料之后编写了这篇文章。 snprintf() 这个函数位于头文件cstdio中,我们先来看…

泰坦陨落2找不到msvcr120文件的修复方法,分享多种解决方法

在玩泰坦陨落2这款游戏时,有些玩家可能会遇到找不到msvcr120.dll文件的问题。这个问题可能是由于游戏缺少必要的运行库导致的。下面我将分享一些解决这个问题的方法,希望对大家有所帮助。 一、问题分析 msvcr120.dll是Microsoft Visual C Redistributab…

MATLAB - 使用 MPC Designer 线性化 Simulink 模型

系列文章目录 前言 本主题介绍如何使用 MPC Designer 对 Simulink 模型进行线性化。为此,请从包含 MPC 控制器块的 Simulink 模型打开该应用程序。本例中使用 CSTR_ClosedLoop 模型。 open_system(CSTR_ClosedLoop) 在模型窗口中,双击 MPC 控制器模块。…

Vue中英文翻译小结

背景:时局艰难,后端开发被强制写了vue,这不有个需求是中英文翻译,特此记录下,该怎么个翻译法子。 先引入全局的路由国际化文件,zh.js 和 en.js 1.关于插值表达Button里面 {{ $t(reinsop.common.back) }} …

LazyIDA源码阅读

LazyIDA是一款IDA插件,项目地址GitHub - L4ys/LazyIDA: Make your IDA Lazy! 外部引用 from __future__ import division from __future__ import print_function from struct import unpack import idaapi import idautils import idcfrom PyQt5.Qt import QAppli…

【函数调用需要哪些开销,内联函数又做了什么?】

系列文章目录 欢迎大家订阅我的《计算机底层原理》、《自顶向下看Java》专栏,我会持续为大家输出优质内容,能够帮助到各位就是对我最大的鼓励! 目录 系列文章目录 前言 一、函数调用需要哪些开销 1.压栈于弹栈开销: 2.寄存器保存于…

JJJ:组合数据类型2

文章目录 字典的创建和删除 p50字典的创建方式 字典元素的访问及遍历 p51字典操作的相关方法 p52字典生成式集合的创建与删除 p54集合的操作符 p55集合的操作方法、集合的遍历 p56列表、元组、字典、集合的区别 Python 3.11新特性结构模型匹配字典合并运算符 |同步迭代 字典的创…

element-ui 抽屉里面嵌套弹窗

当我们在element-ui 的Drawer 抽屉里面嵌套弹窗时,有时会出现关闭弹窗后,抽屉依然被遮罩层挡着的情况,解决方法是 在 Drawer 里面写 :append-to-body"true" 和 :close-on-click-modal"false",在弹窗里面写 :a…

vue中的事件修饰符、表单双向数据绑定和计算属性

目录 一、事件修饰符 二、表单双向数据绑定 模拟双向数据绑定(双向数据绑定底层原理) 三、计算属性 计算属性和methods方法区别? 计算属性和watch区别? 一、事件修饰符 stop 阻止事件冒泡 prevent 阻止事件默认行为 ca…

Java常见原子性操作

在Java语言中,对基本数据类型的变量读取赋值操作都是原子性的,对引用类型的变量读取和赋值的操作也是原子性的,因此诸如此类的操作是不可被中断的,要么执行,要么不执行,正所谓一荣俱荣一损俱损。 原子操作…

Linux线程——互斥锁

概念 互斥量(mutex)从本质上来说是一把锁,在访问共享资源前对互斥量进行加锁,在访问完成后释放互斥量上的锁。对互斥量进行加锁后,任何其他试图再次对互斥量加锁的线程将会被阻塞直到当前线程释放该互斥锁。 如果释放…

【HCIP学习记录】OSPF之DD报文

1.OSPF报文格式 24字节 字段长度含义Version1字节版本,OSPF的版本号。对于OSPFv2来说,其值为2。Type1字节类型,OSPF报文的类型,有下面几种类型: 1:Hello报文;● 2:DD报文&#xff1…

美国联邦机动车安全标准-FMVSS

FMVSS标准介绍: FMVSS是美国《联邦机动车安全标准》,由美国运输部下属的国家公路交通安全管理局(简称NHTSA)具体负责制定并实施。是美国联邦政府针对机动车制定的安全标准,旨在提高机动车的安全性能,减少交通事故中的人员伤亡。F…

ubuntu无 root 权限安装 screen

网上的方法主要是如下图的方法,源码安装,但是我一直 make install失败显示没有权限 然后选择放弃,然后随便试了一下方法 2,成功 方法 1 方法 2 pip3 install screen结果:

生物识别应用指纹的算法是什么样的?有什么性能?

方案特点 • 采用金融级安全芯片 ACH512 的指纹模组,指纹和密码安全存储,云端数据安全传输 • 采用高性能指纹专用安全MCU芯片ACM32FP4,支持小点阵图像算法处理 • 支持80*64、88*112、96*96、160*160、192*192等像素传感器 • 已适配传…

Ubuntu系统使用Nginx搭建RTMP服务器

环境: 推流端 rockpi s 主控rk3308 运行ubuntu系统 服务端 ubuntu 播放器 VLC播放器 服务端安装依赖: apt-get install build-essential libpcre3 libpcre3-dev libssl-dev创建nginx编译目录: mkdir my_nginx_rtmp cd my_nginx_rtmp/下载 …

【Python基础】文件读写

文章目录 [toc]打开文件open()函数参数解析示例 文件路径绝对路径示例 相对路径示例 打开文件的模式常用模式 读文件示例 写文件示例 按行读写文件readline()示例 readlines()示例 writelines()示例 关闭文件示例finally语句示例 上下文管理器示例 自定义读写类示例 打开文件 …