管理类联考——数学——真题篇——按题型分类——充分性判断题——蒙猜C

老规矩,先看目录,平均每个3-4C(C是月饼,月饼一般分为4块)
C是什么,是两个都不行了,但联合起来可以,联合的英文是combined,好的,我知道这个英文也记不住,或者ABC都是对一个,A是条件(1)√,B是条件(2)√,C就是条件(1)+(2)√。

C是combined联合的意思,那么,取值范围有交集(交集也算另一种联合);一个等号和一个不等号需要合作,一个定性和一个定量需要一起分析(常言道需要不同角度分析事物)

文章目录

  • 2023-2013真题
    • 2023
      • 真题(2023-17)-C-单一条件信息不完全,选C;
      • 真题(2023-18)-C-选项有取值范围⇒分三种情况⇒取值范围有交集选C⇒取值范围共边界但反向选A⇒取值范围不相邻,相加非全集选D
      • 真题(2023-23)-C-一个等号+一个不等号,一个定性+一个定量,选C(定性+定量常为:①属性描述+等式;②不等式+等式;③属性描述+另一个(任意));
      • 真题(2023-24)-C-一个等号+一个不等号,一个定性+一个定量,选C(定性+定量常为:①属性描述+等式;②不等式+等式;③属性描述+另一个(任意));
    • 2022
      • 真题(2022-18)-C-要素列表法-固有关系-知三推四-总体分为甲乙两部分:①甲部分均值;②乙部分均值;③总体均值;④甲乙三间比例。这四个量中知道三个可求得第四个;
      • 真题(2022-24)-C-整体规律+局部特例:大规律在前,局部特例在后,且整体规律不能代表局部特例,选C;
      • 真题(2022-25)-C-选项有取值范围⇒分三种情况⇒取值范围有交集选C⇒取值范围共边界但反向选A⇒取值范围不相邻,相加非全集选D
    • 2021
      • 真题(2021-16)-C-定性+定量,选C-定性+定量常为:①属性描述+等式;②不等式+等式;③属性描述+另一个(任意);-C-要素列表法plus:-固有关系-知三推四-总体分为甲乙两部分:①甲部分均值;②乙部分均值;③总体均值;④甲乙三间比例。这四个量中知道三个可求得第四个;
      • 真题(2021-18)-C-定性+定量,选C-定性+定量常为:①属性描述+等式;②不等式+等式;③属性描述+另一个(任意)
      • 真题(2021-19)-C-特值体系法-两项特值与三项特值;-要素列表法plus-特殊套路-所有圆半径,球半径,均设为需要通过勾股定理求解;即要确定两个要素,需要两个关系;
      • 真题(2021-24)-C-一个等号+一个不等号,一个定性+一个定量,选C(定性+定量常为:①属性描述+等式;②不等式+等式;③属性描述+另一个(任意));
    • 2020
      • 真题(2020-17)-C-定性+定量,选C-定性+定量常为:①属性描述+等式;②不等式+等式;③属性描述+另一个(任意)
      • 真题(2020-18)-C-定性+定量,选C-定性+定量常为:①属性描述+等式;②不等式+等式;③属性描述+另一个(任意)
      • 真题(2020-19)-C-定性+定量,选C-定性+定量常为:①属性描述+等式;②不等式+等式;③属性描述+另一个(任意)
    • 2019
      • 真题(2019-16)-C-定性+定量,选C-定性+定量常为:①属性描述+等式;②不等式+等式;③属性描述+另一个(任意)
      • 真题(2019-19)-C-两选项出现取值范围,判断是否有交集⇒有交集选C⇒无交集选A
      • 真题(2019-23)-C-定性+定量,选C-定性+定量常为:①属性描述+等式;②不等式+等式;③属性描述+另一个(任意)
    • 2018
      • 真题(2018-22)-C-选项有取值范围⇒分三种情况⇒取值范围有交集选C⇒取值范围共边界但反向选A⇒取值范围不相邻,相加非全集选D
    • 2017
      • 真题(2017-18)-C-定性+定量,选C-定性+定量常为:①属性描述+等式;②不等式+等式;③属性描述+另一个(任意)
      • 真题(2017-23)-C-选项有取值范围⇒分三种情况⇒取值范围有交集选C⇒取值范围共边界但反向选A⇒取值范围不相邻,相加非全集选D
      • 真题(2017-24)-C-定性+定量,选C-定性+定量常为:①属性描述+等式;②不等式+等式;③属性描述+另一个(任意)
    • 2016
      • 真题(2016-17)-C-定性+定量,选C-定性+定量常为:①属性描述+等式;②不等式+等式;③属性描述+另一个(任意)
      • 真题(2016-19)-C-特值法-两变量不等关系中的特值法
      • 真题(2016-22)-C-定性+定量,选C-定性+定量常为:①属性描述+等式;②不等式+等式;③属性描述+另一个(任意)
    • 2015
      • 真题(2015-22)-C
      • 真题(2015-24)-C-一个等号+一个不等号,一个定性+一个定量,选C(定性+定量常为:①属性描述+等式;②不等式+等式;③属性描述+另一个(任意));-C-整体规律+局部特例:大规律在前,局部特例在后,且整体规律不能代表局部特例,选C;-不同量选项秒杀-准确率90%-C:一个等号一个不等号(如a>0)或者一个定量一个定性(a为正数),选C;-C-几何-立体几何-圆柱体
      • 真题(2015-25)-C-一个等号+一个不等号,一个定性+一个定量,选C(定性+定量常为:①属性描述+等式;②不等式+等式;③属性描述+另一个(任意));-C选项蒙猜-整体规律+局部特例:整体规律+局部特例:大规律在前,局部特例在后,且整体规律不能代表局部特例,选C;
    • 2014
      • 真题(2014-18)-C-一个等号+一个不等号,一个定性+一个定量,选C(定性+定量常为:①属性描述+等式;②不等式+等式;③属性描述+另一个(任意));
      • 真题(2014-22)-C-单一条件信息不完全,首选C;-要素列表法与维度思维;
      • 真题(2014-23)-C-一个等号+一个不等号,一个定性+一个定量,选C(定性+定量常为:①属性描述+等式;②不等式+等式;③属性描述+另一个(任意));-C-比较类问题要联合,首选C;
      • 真题(2014-24)-C-本身条件差得远,但大前提限制为整数/自然数,导致可以充分;
    • 2013
      • 真题(2013-21)-C-单一条件信息不完全,选C;-C-必联立选项秒杀-准确率75%-C:条件1与条件2必须联立,选C。(25%选E);-C-算术-绝对值-绝对值三角不等式
      • 真题(2013-22)-C-单一条件信息不完全,选C;

2023-2013真题

2023

真题(2023-17)-C-单一条件信息不完全,选C;

-C-代数-一元二次方程-举反例;
在这里插入图片描述
在这里插入图片描述

真题(2023-18)-C-选项有取值范围⇒分三种情况⇒取值范围有交集选C⇒取值范围共边界但反向选A⇒取值范围不相邻,相加非全集选D

-数列-等比数列
在这里插入图片描述
在这里插入图片描述

真题(2023-23)-C-一个等号+一个不等号,一个定性+一个定量,选C(定性+定量常为:①属性描述+等式;②不等式+等式;③属性描述+另一个(任意));

-C-应用题-植树;
在这里插入图片描述
(1)各班植树的棵树均不相同;“≠”为不等式
(2)各班植树棵树最大值是28;“=”等式
在这里插入图片描述

真题(2023-24)-C-一个等号+一个不等号,一个定性+一个定量,选C(定性+定量常为:①属性描述+等式;②不等式+等式;③属性描述+另一个(任意));

-数列-等比数列
在这里插入图片描述
(1)>是不等式;(2)为属性。
在这里插入图片描述

2022

真题(2022-18)-C-要素列表法-固有关系-知三推四-总体分为甲乙两部分:①甲部分均值;②乙部分均值;③总体均值;④甲乙三间比例。这四个量中知道三个可求得第四个;

-E-应用题-十字交叉法-画叉字,大量上,小量下,中量中,交叉减,差相除,同量比(大量减中量的差与中量减大量的差之比等于其量比,其中,中量可以是平均值,混合值;量比可以是数量比,质量比)
18.两个人数不等的班数学测验的平均分不相等,则能确定人数多的班。
(1)己知两个班的平均成绩。
(2)己知两个班的总平均值。
在这里插入图片描述
在这里插入图片描述

真题(2022-24)-C-整体规律+局部特例:大规律在前,局部特例在后,且整体规律不能代表局部特例,选C;

-C-数列-等差数列-判定+已知递推公式求 a n a_n an
24.已知正数列{ a n a_n an},则{ a n a_n an}是等差数列
(1) a n + 1 2 − a n 2 = 2 n , n = 1 , 2 , . . . a_{n+1}^2-a_n^2=2n,n=1,2,... an+12an2=2n,n=1,2,...【整体规律(整体递推关系)】
(2) a 1 + a 3 = 2 a 2 a_1+a_3=2a_2 a1+a3=2a2【局部特例】
在这里插入图片描述

在这里插入图片描述在这里插入图片描述

真题(2022-25)-C-选项有取值范围⇒分三种情况⇒取值范围有交集选C⇒取值范围共边界但反向选A⇒取值范围不相邻,相加非全集选D

-A-算术-绝对值-三角不等式-绝对值不等式的证明,通常先举反例排除明显错误的选项,再使用三角不等式或不等式的性质进行证明。
25.设实数𝑎,𝑏满足 ∣ a − 2 b ∣ ≤ 1 |a−2b|≤1 a2b1,则 ∣ a ∣ > ∣ b ∣ |a|>|b| a>b
(1) ∣ b ∣ > 1 |b|>1 b>1
(2) ∣ b ∣ < 1 |b|<1 b<1
在这里插入图片描述

2021

真题(2021-16)-C-定性+定量,选C-定性+定量常为:①属性描述+等式;②不等式+等式;③属性描述+另一个(任意);-C-要素列表法plus:-固有关系-知三推四-总体分为甲乙两部分:①甲部分均值;②乙部分均值;③总体均值;④甲乙三间比例。这四个量中知道三个可求得第四个;

-应用题-十字交叉-画叉字,大量上,小量下,中量中,交叉减,差相除,同量比(大量减中量的差与中量减大量的差之比等于其量比,其中,中量可以是平均值,混合值;量比可以是数量比,质量比)
16.某班增加两名同学。则该班同学的平均身高增加了。
(1)增加的两名同学的平均身高与原来男同学的平均身高相同。
(2)原来男同学的平均身高大于女同学的平均身高。
在这里插入图片描述
在这里插入图片描述

真题(2021-18)-C-定性+定量,选C-定性+定量常为:①属性描述+等式;②不等式+等式;③属性描述+另一个(任意)

-应用题-比例-特值法
18.某单位进行投票表决,已知该单位的男女员工人数之比为3:2,则能确定是至少有50%的女员工参加了投票。
(1)赞成投票的人数超过了总人数的40%。
(2)参加投票的女员工比男员工多。
在这里插入图片描述

真题(2021-19)-C-特值体系法-两项特值与三项特值;-要素列表法plus-特殊套路-所有圆半径,球半径,均设为需要通过勾股定理求解;即要确定两个要素,需要两个关系;

-C-算术-绝对值-绝对值和-绝对值三角不等式-第一步:记住公式,绝对值差,和差绝对值,绝对值和。第二步:记住口诀:取等条件:中间相加取等号,左异右同零取到;中间相减取等号,上面符号方向调(其中,座椅油桶,左异右同是ab的正负号相同与否)
19.设a,b为实数,则能确定 ∣ a ∣ + ∣ b ∣ |a|+|b| a+b的值。
(1)已知 ∣ a + b ∣ |a+b| a+b的值。
(2)已知 ∣ a − b ∣ |a -b| ab的值。
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

真题(2021-24)-C-一个等号+一个不等号,一个定性+一个定量,选C(定性+定量常为:①属性描述+等式;②不等式+等式;③属性描述+另一个(任意));

-代数-数列-等比数列-数列判定
24.已知数列{a},则数列{a}为等比数列。
(1) a n a n + 1 > 0 a_na_{n+1}>0 anan+10
(2) a n + 1 2 − 2 a n 2 − a n a n + 1 = 0 a^2_{n+1}-2a^2_n-a_na_{n+1}=0 an+122an2anan+1=0
在这里插入图片描述

在这里插入图片描述

2020

真题(2020-17)-C-定性+定量,选C-定性+定量常为:①属性描述+等式;②不等式+等式;③属性描述+另一个(任意)

-几何-解析几何-位置-线圆位置-相切-圆心点到直线距离公式
17、曲线 上的点到 x 2 + y 2 = 2 x + 2 y x^2+y^2=2x+2y x2+y2=2x+2y上的点到 a x + b y + 2 = 0 ax+by+\sqrt2=0 ax+by+2 =0的距离最小值大于 1。
(1) a 2 + b 2 = 1 a^2+b^2=1 a2+b2=1
(2) a > 0 , b > 0 a>0,b>0 a0b0
在这里插入图片描述
在这里插入图片描述

真题(2020-18)-C-定性+定量,选C-定性+定量常为:①属性描述+等式;②不等式+等式;③属性描述+另一个(任意)

-数据分析-数据描述-平均值与方差
18、若a, b, c 是实数,则能确定a, b, c 的最大值。
(1)已知a, b, c 的平均值。
(2)已知a, b, c 的最小值。
在这里插入图片描述
在这里插入图片描述

真题(2020-19)-C-定性+定量,选C-定性+定量常为:①属性描述+等式;②不等式+等式;③属性描述+另一个(任意)

-数据分析-概率-已知元素的数量求概率⟹ 古典概型⟹ 两个排列组合相除计算概率或穷举法⟹ 分母有顺序要求是A运算,无顺序是C运算,分子数量少用穷举,数量多用C运算⟹ 袋中取球模型⟹ 正难则反⟹ 转为一次取球模型⟹ 设口袋中有a个白球,b个黑球,一次取出若干个球,则恰好取了 m ( m ≤ a ) m (m≤a) m(ma)个白球, n ( n ≤ b ) n(n≤b) n(nb)个黑球的概率是 P = C a m ⋅ C b n C a + b m + n P=\frac{C_a^m·C_b^n}{C_{a+b}^{m+n}} P=Ca+bm+nCamCbn。翻译“≥≤”-准确率90%-D:题干或选项可以翻译成≥或≤的,选D
19、甲、乙两种品牌手机共有 20 部,从中任选 2 部,则恰有 1 部甲品牌手机的概率大于 1 2 1\over2 21
(1)甲手机不少于 8 部
(2)乙手机大于 7 部
在这里插入图片描述在这里插入图片描述

2019

真题(2019-16)-C-定性+定量,选C-定性+定量常为:①属性描述+等式;②不等式+等式;③属性描述+另一个(任意)

16、甲、乙、丙三人各自拥有不超过 10 本图书,甲再购入 2 本图书后,他们拥有的图书量构成等比数列,则能确定甲拥有图书的数量。
(1) 已知乙拥有的图书数量。
(2) 已知丙拥有的图书数量。
在这里插入图片描述
在这里插入图片描述

真题(2019-19)-C-两选项出现取值范围,判断是否有交集⇒有交集选C⇒无交集选A

19、能确定小明年龄。
(1)小明年龄是完全平方数。
(2)20年后小明年龄是完全平方数。
在这里插入图片描述

在这里插入图片描述

真题(2019-23)-C-定性+定量,选C-定性+定量常为:①属性描述+等式;②不等式+等式;③属性描述+另一个(任意)

-数据分析-数据描述-平均值
23、某校理学院五个系每年录取人数如下表:

系数数学系物理系化学系生物系地学系
录取人数60120906030

今年与去年相比,物理系平均分没交,则理学院录取平均分升高了。
(1) 数学系录取平均分升高了 3 分,生物系录取平均分降低了 2 分
(2) 化学系录取平均分升高了 1 分,地学系录取平均分降低了 4 分

在这里插入图片描述
在这里插入图片描述

2018

真题(2018-22)-C-选项有取值范围⇒分三种情况⇒取值范围有交集选C⇒取值范围共边界但反向选A⇒取值范围不相邻,相加非全集选D

-几何-解析几何-线性规划
22.已知点 P ( m , 0 ) P(m,0) P(m,0) A ( 1 , 3 ) A(1,3) A(1,3) B ( 2 , 1 ) , B(2,1), B(2,1) ( x , y ) (x,y) (x,y)在三角形PAB 上,则 x − y x- y xy的最小值与最大值分别为-2和1。
(1) m ≤ 1 m ≤ 1 m1
(2) m ≥ − 2 m ≥ -2 m2
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2017

真题(2017-18)-C-定性+定量,选C-定性+定量常为:①属性描述+等式;②不等式+等式;③属性描述+另一个(任意)

-应用题-路程
18.某人从 A 地出发,先乘时速为 220 千米的动车,后转乘时速为 100 千米的汽车到达 B 地,则 A,B 两地的距离为 960 千米。
(1)乘动车的时间与乘汽车的时间相等
(2)乘动车的时间与乘汽车的时间之和为 6 小时
在这里插入图片描述
在这里插入图片描述

真题(2017-23)-C-选项有取值范围⇒分三种情况⇒取值范围有交集选C⇒取值范围共边界但反向选A⇒取值范围不相邻,相加非全集选D

-数据分析-概率-已知各对象的概率求概率⟹ n重伯努利概型⟹ 用乘法或加法计算概率
23.某人参加资格考试,有 A 类和 B 类选择,A 类的合格标准是抽 3 道题至少会做 2 道,B 类的合格标准是抽 2 道题须都会做,则此人参加 A 类合格的机会大。
(1)此人 A 类题中有 60%会做。
(2)此人 B 类题中有 80%会做。
在这里插入图片描述
在这里插入图片描述

真题(2017-24)-C-定性+定量,选C-定性+定量常为:①属性描述+等式;②不等式+等式;③属性描述+另一个(任意)

-应用题-整数不定方程
24.某机构向 12 位教师征题,共征集到 5 种题型的试题 52 道,则能确定供题教师的人数。
(1)每位供题教师提供题数相同
(2)每位供题教师提供的题型不超过 2 种
在这里插入图片描述
在这里插入图片描述

2016

真题(2016-17)-C-定性+定量,选C-定性+定量常为:①属性描述+等式;②不等式+等式;③属性描述+另一个(任意)

-几何-平面几何-求面积-设未知数
17.如图 6,正方形 ABCD 由四个相同的长方形和一个小正形拼成,则能确定小正方形的面积。
(1)已知正方形 ABCD 的面积。
(2)已知长方形的长宽之比。

在这里插入图片描述
在这里插入图片描述

真题(2016-19)-C-特值法-两变量不等关系中的特值法

19.设 x , y x,y x,y是实数,则 x ≤ 6 , y ≤ 4 x≤6, y≤4 x6,y4
(1) x ≤ y + 2 x≤y+2 xy+2
(2) 2 y ≤ x + 2 2y≤x+2 2yx+2

在这里插入图片描述

在这里插入图片描述

真题(2016-22)-C-定性+定量,选C-定性+定量常为:①属性描述+等式;②不等式+等式;③属性描述+另一个(任意)

几何-图像的判断
22.已知M是一个平面有限点集,则平面上存在到M中各点距离相等的点。
(1)M中只有三个点。
(2)M中的任意三点都不共线。

在这里插入图片描述

2015

真题(2015-22)-C

-应用题-整数不定方程
22.几个朋友外出游玩,购买了一些瓶装水,则能确定购买的瓶装水数量
(1)若每人分3 瓶,则剩余30 瓶
(2)若每人分10 瓶,则只有一人不够
在这里插入图片描述

在这里插入图片描述

真题(2015-24)-C-一个等号+一个不等号,一个定性+一个定量,选C(定性+定量常为:①属性描述+等式;②不等式+等式;③属性描述+另一个(任意));-C-整体规律+局部特例:大规律在前,局部特例在后,且整体规律不能代表局部特例,选C;-不同量选项秒杀-准确率90%-C:一个等号一个不等号(如a>0)或者一个定量一个定性(a为正数),选C;-C-几何-立体几何-圆柱体

  1. 底面半径为r ,高为h 的圆柱体表面积记为 S 1 S_1 S1,半径为 R 球体表面积记为 S 2 S_2 S2,则 S 1 ≤ S 2 S_1≤S_2 S1S2
    (1) R ≥ R≥ R r + h 2 {r+h}\over2 2r+h
    (2) R ≤ R≤ R r + 2 h 3 {r+2h}\over3 3r+2h
    在这里插入图片描述
    在这里插入图片描述

真题(2015-25)-C-一个等号+一个不等号,一个定性+一个定量,选C(定性+定量常为:①属性描述+等式;②不等式+等式;③属性描述+另一个(任意));-C选项蒙猜-整体规律+局部特例:整体规律+局部特例:大规律在前,局部特例在后,且整体规律不能代表局部特例,选C;

25.已知 x 1 , x 2 , x 3 x_1,x_2,x_3 x1,x2,x3为实数, x x x x 1 , x 2 , x 3 x_1,x_2,x_3 x1,x2,x3的平均值,则 ∣ x k − x ∣ ≤ 1 , k = 1 , 2 , 3 |x_k-x|≤1,k=1,2,3 xkx1k=1,2,3
(1) ∣ x k ∣ ≤ 1 , k = 1 , 2 , 3 |x_k|≤1,k=1,2,3 xk1k=1,2,3
(2) x 1 = 0 x_1=0 x1=0

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

2014

真题(2014-18)-C-一个等号+一个不等号,一个定性+一个定量,选C(定性+定量常为:①属性描述+等式;②不等式+等式;③属性描述+另一个(任意));

-数列-等差数列&等比数列-既是等差数列又是等比数列的数列是非零的常数列
18.甲、乙、丙三人的年龄相同
(1)甲、乙、丙的年龄成等差数列
(2)甲、乙、丙的年龄成等比数列

在这里插入图片描述
在这里插入图片描述

真题(2014-22)-C-单一条件信息不完全,首选C;-要素列表法与维度思维;

-C-函数-一元二次函数-顶点坐标: ( − b 2 a , 4 a c − b 2 4 a ) (-\frac{b}{2a},\frac{4ac-b^2}{4a}) (2ab,4a4acb2)
22.已知二次函数为 f ( x ) = a x 2 + b x + c f(x)=ax^2+bx+c f(x)=ax2+bx+c ,则能确定 a , b , c a, b, c a,b,c的值。
(1)曲线 y = f ( x ) y = f (x) y=f(x)过点 ( 0 , 0 ) (0, 0) (0,0)和点 ( 1 , 1 ) (1,1) (1,1)
(2)曲线 y = f ( x ) y = f (x) y=f(x)与直线 y = a + b y = a + b y=a+b相切。

在这里插入图片描述
在这里插入图片描述

真题(2014-23)-C-一个等号+一个不等号,一个定性+一个定量,选C(定性+定量常为:①属性描述+等式;②不等式+等式;③属性描述+另一个(任意));-C-比较类问题要联合,首选C;

-数据分析-概率-已知元素的数量求概率⟹ 古典概型⟹ 两个排列组合相除计算概率或穷举法⟹ 分母有顺序要求是A运算,无顺序是C运算,分子数量少用穷举,数量多用C运算⟹ 袋中取球模型⟹ 正难则反⟹ 转为一次取球模型⟹ 设口袋中有a个白球,b个黑球,一次取出若干个球,则恰好取了 m ( m ≤ a ) m (m≤a) m(ma)个白球, n ( n ≤ b ) n(n≤b) n(nb)个黑球的概率是 P = C a m ⋅ C b n C a + b m + n P=\frac{C_a^m·C_b^n}{C_{a+b}^{m+n}} P=Ca+bm+nCamCbn
23.已知袋中装有红、黑、白三种颜色的球若干个,则红球数量最多。
(1)随机取出的一球是白球的概率为 2 5 \frac{2}{5} 52
(2)随机取出的两球中至少有一个黑球的概率小于 1 5 \frac{1}{5} 51

秒杀:红>黑,且红>白
在这里插入图片描述
在这里插入图片描述

真题(2014-24)-C-本身条件差得远,但大前提限制为整数/自然数,导致可以充分;

-C-数据描述-平均值&方差
24.已知m={ a , b , c , d , e a,b,c,d,e a,b,c,d,e}是一个整数集合,则能确定集合m。
(1) a, b, c, d , e 的平均值为 10。
(2) a, b, c, d , e 的方差为 2。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

2013

真题(2013-21)-C-单一条件信息不完全,选C;-C-必联立选项秒杀-准确率75%-C:条件1与条件2必须联立,选C。(25%选E);-C-算术-绝对值-绝对值三角不等式

21.已知a,b 为实数,则 ∣ a ∣ ≤ 1 , ∣ b ∣ ≤ 1 |a|≤1,|b|≤1 a1b1
(1) ∣ a + b ∣ ≤ 1 |a+b|≤1 a+b1
(2) ∣ a − b ∣ ≤ 1 |a-b|≤1 ab1
方法二:举反例,往大值取(满足条件,不满足题干)。如(1)a=10,b=-10,不充分;(2)a=10,b=10,不充分。考试时不要证明联立情况,充分必要题秒杀:最难选择C或E,75%选C,25%选E。
在这里插入图片描述

在这里插入图片描述

真题(2013-22)-C-单一条件信息不完全,选C;

-C-代数-分式-齐次分式;
22.设 x , y , z x, y, z x,y,z为非零实数,则 2 x + 3 y − 4 z − x + y − 2 z = 1 \frac{2x+3y-4z}{-x+y-2z}=1 x+y2z2x+3y4z=1
(1) 3 x − 2 y = 0 3x-2y=0 3x2y=0
(2) 2 y − z = 0 2y-z=0 2yz=0
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/232859.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Python】管理项目第三方包

我们在开发python项目时&#xff0c;如果代码每移植到到其他机器上&#xff0c;就手动 pip install XXX 安装一次&#xff0c;这样手动介入 是不是不太方便&#xff1f; 那么&#xff0c;python有像java一样的maven管理包的工具吗&#xff1f;只需要一个类似pom的文件&#xff…

Excel怎样统计一列中不同的数据分别有多少个?

文章目录 1.打开Excel数据表2.选择“插入”&#xff0c;“数据透视表”3.选择数据透视表放置位置4.将统计列分别拖到“行”和“数值”区间5.统计出一列中不同的数据分别有多少个 1.打开Excel数据表 2.选择“插入”&#xff0c;“数据透视表” 3.选择数据透视表放置位置 4.将统计…

c 实现jpeg中的ALI(可变长度整数转换)正反向转换

用于DC的ALI表&#xff1a;DIFF 就是前后两个8X8块DC的差值&#xff0c;ssss就是DIFF值用二进制表示的位数 亮度&#xff0c;与色度的DC都是这种处理的。两个相邻的亮度与亮度比差&#xff0c;色度与色度比差产生DIFF, 扫描开始DIFF等于0。 用于AC ALI表&#xff1a;表中的AC…

喜讯!聚铭网络入选国家信息安全漏洞库(CNNVD)技术支撑单位

近日&#xff0c;国家信息安全漏洞库&#xff08;CNNVD&#xff09;公示2023年度新增技术支撑单位名单。经考核评定&#xff0c;聚铭网络正式入选并被授予《国家信息安全漏洞库&#xff08;CNNVD&#xff09;三级技术支撑单位证书》。 国家信息安全漏洞库&#xff08;CNNVD&am…

解决腾讯云CentOS 6硬盘空间不足问题:从快照到数据迁移

引言&#xff1a; 随着数据的不断增加&#xff0c;服务器硬盘空间不足变成了许多运维人员必须面对的问题。此主机运行了httpd&#xff08;apache服务&#xff09;&#xff0c;提供对外web访问服务,web资源挂载在**/data/wwwroot目录下,http日志存放在/data/wwwlogs目录下&…

11 v-bind指令

概述 v-bind指令可以说是Vue3中最常用的指令之一&#xff0c;使用v-bind&#xff0c;我们几乎能够给任何实现动态的绑定比值。 这里&#xff0c;我们主要演示以下&#xff0c;通过v-bind动态绑定CSS样式。 基本用法 我们创建src/components/Demo11.vue&#xff0c;在这个组…

JS逆向实战——开发者工具检测

说明&#xff1a;仅供学习使用&#xff0c;请勿用于非法用途&#xff0c;若有侵权&#xff0c;请联系博主删除 作者&#xff1a;zhu6201976 一、背景 在JS逆向领域&#xff0c;Chrome开发者工具是核心&#xff0c;抓包、调试、看调用栈等都离不开它。可以说&#xff0c;逆向人…

C语言--字符函数与字符串函数

大家好&#xff0c;我是残念&#xff0c;希望在你看完之后&#xff0c;能对你有所帮助&#xff0c;有什么不足请指正&#xff01;共同学习交流 本文由&#xff1a;残念ing 原创CSDN首发&#xff0c;如需要转载请通知 个人主页&#xff1a;残念ing-CSDN博客&#xff0c;欢迎各位…

Java 数据结构篇-实现二叉搜索树的核心方法

&#x1f525;博客主页&#xff1a; 【小扳_-CSDN博客】 ❤感谢大家点赞&#x1f44d;收藏⭐评论✍ 文章目录 1.0 二叉搜索树的概述 2.0 二叉搜索树的成员变量及其构造方法 3.0 实现二叉树的核心接口 3.1 实现二叉搜索树 - 获取值 get(int key) 3.2 实现二叉搜索树 - 获取最小…

程序流程图的意义(合集)

程序流程图的意义 1、矩形 作用&#xff1a;一般用作要执行的处理(process)&#xff0c;在程序流程图中做执行框。 在axure中如果是画页面框架图&#xff0c;那么也可以指代一个页面。有时候我们会把页面和执行命令放在同一个流程中做说明&#xff0c;这个时候将两类不同的矩形…

算法(2)——滑动窗口

前言&#xff1a; 步骤及算法模板&#xff1a; 确定两个指针变量&#xff0c;left0,right0; 进窗口&#xff1a; 判断&#xff1a; 出窗口 更新结果 接下来我们的所用滑动窗口解决问题都需要以上几个步骤。 一、长度最小的子数组 209. 长度最小的子数组 - 力扣&#xff08;L…

Ebullient第一阶段开发小结

一. 简介 距离Ebullient硬件发布已有一段时间&#xff0c;小一个月吧&#xff0c;在这段时间内在努力的编写代码&#xff0c;现在终于完成了第一阶段的功能设计&#xff0c;算是一个小型的样机吧&#xff0c;基本的代码框架基本确定了&#xff0c;相信后续的会快一点(希望如此…

Nodejs 第二十六章(反向代理)

什么是反向代理? 反向代理&#xff08;Reverse Proxy&#xff09;是一种网络通信模式&#xff0c;它充当服务器和客户端之间的中介&#xff0c;将客户端的请求转发到一个或多个后端服务器&#xff0c;并将后端服务器的响应返回给客户端。 负载均衡&#xff1a;反向代理可以根…

二、W5100S/W5500+RP2040之MicroPython开发<DHCP示例>

文章目录 1 前言2 相关网络信息2 .1 简介2.2 DHCP工作原理2.3 DHCP的优点2.4 应用场景 3 WIZnet以太网芯片4 DHCP网络设置示例概述以及使用4.1 流程图4.2 准备工作核心4.3 连接方式4.4 主要代码概述4.5 结果演示 5 注意事项6 相关链接 1 前言 在这个智能硬件和物联网时代&#…

在Python中使用Kafka帮助我们处理数据

Kafka是一个分布式的流数据平台&#xff0c;它可以快速地处理大量的实时数据。Python是一种广泛使用的编程语言&#xff0c;它具有易学易用、高效、灵活等特点。在Python中使用Kafka可以帮助我们更好地处理大量的数据。本文将介绍如何在Python中使用Kafka简单案例。 一、安装K…

C到C++笔记记录

C到C笔记记录 输入(cin) and 输出(cout)bool内联(inline)重载缺省函数哑元引用(&)C动态内存分配笔记扩充&#xff1a; 输入(cin) and 输出(cout) #include<iostream>using namespace std;void main() {int i;//输入 cincin >> i;//输出 coutcout << i &…

浅谈云性能测试的关键要点

随着云计算的广泛应用&#xff0c;云性能测试成为确保云服务质量和性能的关键环节。云性能测试不仅涵盖了传统性能测试的方面&#xff0c;还需要考虑云环境的特殊性。以下是云性能测试的几个关键要点&#xff1a; 1. 模拟真实云环境 云环境具有虚拟化、弹性扩展等特点&#xff…

IDEA tomcat内存不足

-Xms256m -Xmx256m -XX:MaxNewSize256m -XX:MaxPermSize256m

API资源对象StorageClass;Ceph存储;搭建Ceph集群;k8s使用ceph

API资源对象StorageClass;Ceph存储;搭建Ceph集群;k8s使用ceph API资源对象StorageClass SC的主要作用在于&#xff0c;自动创建PV&#xff0c;从而实现PVC按需自动绑定PV。 下面我们通过创建一个基于NFS的SC来演示SC的作用。 要想使用NFS的SC&#xff0c;还需要安装一个NFS…

Kubernetes 的用法和解析 -- 5

一.企业级镜像仓库Harbo 准备&#xff1a;另起一台新服务器&#xff0c;并配置docker yum源&#xff0c;安装docker 和 docker-compose 1.1 上传harbor安装包并安装 [rootharbor ~]# tar xf harbor-offline-installer-v2.5.3.tgz [rootharbor ~]# cp harbor.yml.tmpl harbor…