智能优化算法应用:基于天牛须算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于天牛须算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于天牛须算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.天牛须算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用天牛须算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.天牛须算法

天牛须算法原理请参考:网络博客
天牛须算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

天牛须算法参数如下:

%% 设定天牛须优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明天牛须算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/232336.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MLOps在极狐GitLab 的现状和前瞻

什么是 MLOps 首先我们可以这么定义机器学习(Machine Learning):通过一组工具和算法,从给定数据集中提取信息以进行具有一定程度不确定性的预测,借助于这些预测增强用户体验或推动内部决策。 同一般的软件研发流程比…

【lesson17】MySQL表的基本操作--表去重、聚合函数和group by

文章目录 MySQL表的基本操作介绍插入结果查询(表去重)建表插入数据操作 聚合函数建表插入数据操作 group by(分组)建表插入数据操作 MySQL表的基本操作介绍 CRUD : Create(创建), Retrieve(读取),Update(更新)&#x…

【TB作品】STM32 PWM之实现呼吸灯,STM32F103RCT6,晨启

文章目录 完整工程参考资料实验过程 实验任务: 1:实现PWM呼吸灯,定时器产生PWM,控制实验板上的LED灯亮灭; 2:通过任意两个按键切换PWM呼吸灯输出到两个不同的LED灯,实现亮灭效果; 3&…

Axure的案例演示

增删改查: 在中继器里面展示照片

创建型模式之抽象工厂模式

一、概述 1、抽象工厂模式:提供一个创建一系列相关或相互依赖对象的接口,而无需指定它们具体的类。 2、抽象工厂模式:一个工厂可以生产一系列产品(一族产品),极大减少了工厂类的数量 3、抽象工厂模式&am…

众和策略:加强经济监测预测预警 加大宏观调控力度

12月17日至18日,全国展开和革新作业会议在京举行,整理总结2023年展开革新作业,组织布置2024年展开革新关键使命。会议指出,中心经济作业会议对本年经济作业作了全面体系总结,侧重我国经济全体上升向好,全年…

选择合适教育管理软件:必须考虑的10个关键问题

随着教育行业的迅速数字化,学校要能够提供最新的管理和教育方法。大家逐渐意识到技术让运营变得更容易、更有效率。 不过首先我们需要找到一个能满足需求的应用程序。面对众多的选择,你该如何选择一个合适的平台呢?当然,没有人想…

MYSQL中使用IN,在xml文件中怎么写?

MYSQL: Spring中: mysql中IN后边的集合,在后端中使用集合代替,其他的没有什么注意的,还需要了解foreach 语法即可。

Spark编程实验一:Spark和Hadoop的安装使用

目录 一、目的与要求 二、实验内容 三、实验步骤 1、安装Hadoop和Spark 2、HDFS常用操作 3、Spark读取文件系统的数据 四、结果分析与实验体会 一、目的与要求 1、掌握在Linux虚拟机中安装Hadoop和Spark的方法; 2、熟悉HDFS的基本使用方法; 3、掌…

SCADA助力食品加工数字化变革:未来产业的智慧引擎

一、背景介绍 当前,在国际市场竞争加剧、消费者个性化需求突出的背景下,我国食品加工行业面临着诸多挑战:越发严苛的食品安全标准、追求供应链的透明度和效率、进一步提高产品质量和降低成本等等。 为了应对上述挑战,我国食品加…

亚马逊,速卖通,shein卖家如何准确有效的测评补单

一、合理规划测评时间和数量 卖家需要合理规划测评的时间和数量。如果卖家过于频繁地进行测评,或者在短时间内进行大量的测评,这可能会被视为恶意行为,从而触犯风控机制。因此,卖家需要根据自己的销售情况和市场需求,…

如何确保对称密钥管理的存储安全?

确保对称密钥管理的存储安全是保障信息安全的重要一环。以下是一些建议,以确保对称密钥管理的存储安全: 使用安全存储设备:选择使用经过验证的安全存储设备来存储对称密钥。这些设备通常具有高度的物理安全性,可以防止未经授权的访…

vp与vs联合开发-通过CogAcqFifoTool工具连接相机

1.完成相机硬件配置后 2.完成vp与vs联合开发配置功能后 1.创建winform 项目 目的 : 搭建 界面应用 2. 1. vpp文件存入 项目的debug 目录中 目的: 在项目中加载本地vpp文件 读取相机工具 1.控件CogRecordDisplay 用于显示相机拍摄照片和实施显示的窗口 2和3 …

aidd【人工智能技术及在生物分子活性预测、药物发现中的应用】

人工智能技术在生物分子活性预测和药物发现中具有广泛的应用。以下是一些具体的应用方式: 生物分子活性预测:利用机器学习算法,可以对生物分子的活性进行预测。这些算法可以学习并识别与生物分子活性相关的模式,并基于这些模式对…

2024年业务流程管理(BPM)的10大发展趋势

业务流程管理(BPM)及其相关技术已经伴随着企业数十载。然而,在最近几年里,BPM 和它的辅助工具经历了重大的变革,这些变化归功于RPA、流程挖掘和低代码开发平台的兴起。Gartner 也提出了一个全新的概念——“超级自动化…

机器学习笔记 - 用于时间序列分析的深度学习技术

一、简述 过去,时间序列分析采用自回归综合移动平均线等传统统计方法。然而,随着深度学习的出现,研究人员探索了各种神经网络架构来建模和预测时间序列数据。 深度学习技术,例如(LSTM)长短期记忆、卷积神经网络和自动编码器,已经在时间序列预测、异常检测和模式识别方面…

UE5 C++(六)— 枚举UENUM、结构体USTRUCT和补充属性说明符

文章目录 枚举(ENUM)第一种方式第二种方式 结构体(USTRUCT)补充属性说明符(ExposeOnSoawn)结构体创建数据表格 枚举(ENUM) 第一种方式 定义枚举 UENUM(BlueprintType) namespace …

Rust基本语法

Rust基本语法 Hello World fn main() {println!("Hello, world!"); }Rust数据类型 Rust 是一种静态类型的语言。 Rust 中的每个值都是某种数据类型。 编译器可以根据分配给它的值自动推断变量的数据类型。 声明变量 使用关键词 let 声明变量。 直接赋值的场合R…

[C++从入门到精通] 14.虚函数、纯虚函数和虚析构(virtual)

📢博客主页:https://blog.csdn.net/weixin_43197380📢欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正!📢本文由 Loewen丶原创,首发于 CSDN,转载注明出处🙉&…

解决docker alpine /bin/sh: ./main: not found

解决docker alpine /bin/sh: ./main: not found golang中编译之后的二进制文件部署在alpine镜像中出现了not found问题解决这种情况是因为动态链接库位置错误导致的,alpine镜像使用的是musl libc而不是gun libc。因而动态链接库的位置不一致。在基础镜像内执行&…