快速排序(一)

目录

快速排序(hoare版本)

初级实现

问题改进 

中级实现

时空复杂度 

高级实现

三数取中 


快速排序(hoare版本)

历史背景:快速排序是Hoare于1962年提出的一种基于二叉树思想的交换排序方法
基本思想:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列

初级实现

实现步骤: 1、确定排序开始时key (每轮排序作为基准元素的元素下标) 、left (负责寻找大于基准元素的元素下标) 、right (负责寻找小于基准元素的元素下标) 三者的初始值:
int left = begin;  //数组首元素下标
int right = end;   //数组尾元素下标
int keyi = begin;  //即可以是首元素下标、也可以是尾元素下标,一般来说是首元素下标

2、right和left开始自己的寻找任务,当a[right] > a[keyi],right就--继续向左走,当a[left] < a[keyi],left就++继续向右走,当二者都在找的过程中在某一位置停下时(两个while循环均结束),交换此时的a[left]和a[right]:

void QuickSort(int* a, int begin, int end)
{int left = begin, right = end;int keyi = begin;// 右边找小while (a[right] > a[keyi]){--right;}// 左边找大while (a[left] < a[keyi]){++left;}Swap(&a[left], &a[right]);}

3、当left与right相遇即left == right时,此时元素的值一定小于基准元素的值,所以交换当前元素与基准元素的位置(因为我们要做的就是将小于基准元素的数放在左边,大于的放在右边)

void QuickSort(int* a, int begin, int end)
{int left = begin, right = end;int keyi = begin;while (left < right){// 右边找小while (a[right] > a[keyi]){--right;}// 左边找大while (a[left] < a[keyi]){++left;}Swap(&a[left], &a[right]);}Swap(&a[left], &a[keyi]);
}

关于“为什么相遇位置一定会比基准元素小”的解释:

        因为我们规定右边先走(当然你也可以让左基准元素是数组尾元素然后左边先走,这里就不再分析了),这样就会有两种相遇的情况:

①right遇到left,right没找到比基准元素小的,一直走,找到时停下,然后left向右走,当二者相遇即right ==left时停下(原因我们后面会将),所处位置的元素的值小于基准元素:

②left遇到right,right先走,找到小于基准元素的位置停下,left开始找比基准元素大的,没有找到,一直走,遇到right停下,相遇位置是right,前面说过此时的位置应该是小于基准元素的位置(“right先走,找到小于基准元素的位置停下”)

至此,我们快速排序的初级实现已经完成了,接下来就是处理我们遗留的一些问题了: 

问题改进 

1、产生原因:有时我们写的代码只适用于部分数据,但是换成其它数据时就会出错,为了保证我们代码的通用性,我们要进行多次的用例测试,比如我们将数组换为{6,1,2,5,4,6,9,7,10,8}:

        

        可以发现,之前的代码并不能让right和left相遇,又因为我们规定right先走,所以我们为了能让二者相遇,需要保证left永远不会超过right,故在a[right] > a[keyi]之前加上left < right,即left < right && a[right] >= a[keyi],left也是一样的道理:

void QuickSort(int* a, int begin, int end)
{int left = begin, right = end;int keyi = begin;while (left < right){// 右边找小while (left < right && a[right] > a[keyi]){--right;}// 左边找大while (left < right && a[left] < a[keyi]){++left;}Swap(&a[left], &a[right]);}Swap(&a[left], &a[keyi]);
}

2、产生原因:当我们将基准元素换到数组的中的某个位置时,它左侧的元素经过一系列检查与交换的操作后已经全部是小于基准元素的元素,右边的元素也已经全部是大于基准元素的元素,现在我们要做的就是将左右两边的元素均变为有序,当左右两边均有序时该数组就完全有序(原因自己想去😡)这就需要用到递归思想了(在前面我们说过hoare版本的快排是基于二叉树思想的),当我们尝试对上面的数组开始递归操作时,如果还是原来的代码就会出现下图所示的问题:

       

         可以发现, 原本我们是想通过右递归将右侧大于基准元素的几个元素变为有序,但可以看到的是只有当a[right] == 4时才会停下,此时就已经在左递归的范围内了,因此为了保证不会越界,我们还需要为a[right] > a[keyi]加上一个"=",即a[right] >= a[keyi],左递归也是一样的道理:

void QuickSort(int* a, int begin, int end)
{int left = begin, right = end;int keyi = begin;while (left < right){// 右边找小while (left < right && a[right] >= a[keyi]){--right;}// 左边找大while (left < right && a[left] <= a[keyi]){++left;}Swap(&a[left], &a[right]);}Swap(&a[left], &a[keyi]);
}

中级实现

至此,我们开始进行递归操作,关于递归的过程如下图所示:

关于递归的代码也不再过多解释,自行理解即可: 

void QuickSort(int* a, int begin, int end)
{if (begin >= end)return;int left = begin, right = end;int keyi = begin;while (left < right){// 右边找小while (left < right && a[right] >= a[keyi]){--right;}// 左边找大while (left < right && a[left] <= a[keyi]){++left;}Swap(&a[left], &a[right]);}Swap(&a[left], &a[keyi]);keyi = left;// [begin, keyi-1] keyi [keyi+1, end]QuickSort(a, begin, keyi - 1);QuickSort(a, keyi+1, end);
}

以上就是一个“较为”完整的快速排序的代码 

时空复杂度 

最坏时间复杂度:O(N^2)(当数组已经降序有序或升序有序时,此时基准元素一直位于首元素或尾元素,n个元素要进行n次快速排序才能将当前的顺序改变,n*n)

最好时间复杂度:O(N*logN)每次划分都能将数组均匀地分成两个接近子数组,N个元素要进行logN次的排序,N*logN

空间复杂度:O(logN)或O(N)(在递归过程中需要使用栈来保存函数调用信息,所以快速排序的空间复杂度取决于递归调用的层数。在最坏情况下,递归调用栈可能达到O(n)的空间复杂度,最好的空间复杂度为O(logn))

高级实现

        当面对有序队列时,快速排序的效率确实会降低。这是因为快速排序的分区操作通常选择一个基准元素,并将小于等于基准的元素放在左侧,大于基准的元素放在右侧。如果输入数据已经有序,那么每次分区后只能将一个元素移到正确位置上,而剩余部分仍然需要进行递归调用。为了应对这种情况,可以采取以下方法来提高快速排序在有序队列上的效率:

  1. 随机化选择基准:通过随机选择基准值可以降低出现最坏情况(即已经有序)的概率。这样可以增加快速排序处理无序数据时的性能。

  2. 三数取中法:使用三数取中法来选择合适的基准值。从待排序数组中选取头、尾和中间位置上的三个数,并将它们按照大小顺序排列。然后选取其中位数作为划分子数组(即作为枢纽),以避免最坏情况发生。

  3. 插入排序优化:当待排序子数组长度较小时(比如小于某个阈值),可以切换到插入排序算法进行处理。插入算法对局部有序数据表现良好,在长度较短的子数组上可以提高排序效率。

  4. 优化递归调用:通过限制递归深度或者使用尾递归优化等方法,减少对有序数据的不必要处理。

        这些方法可以在特定情况下提高快速排序算法在有序队列上的性能,但需要根据具体场景选择合适的策略。

三数取中 

注意事项:获取的是下标为begin、midi、end的三个元素中的中位数(非最多,非最小)

完整代码如下:

int GetMidi(int* a, int begin, int end)
{int midi = (begin + end) / 2;// begin midi end 三个数选中位数if (a[begin] < a[midi]){if (a[midi] < a[end])return midi;   //返回a[midi] < a[midi] < a[end]else if (a[begin] > a[end])return begin;  //返回a[end] < a[begin] < a[midi]elsereturn end;    //返回a[begin] < a[end] < a[midi]}else // a[begin] > a[midi]{if (a[midi] > a[end])return midi;   //返回a[end] < a[mid] < a[begin]else if (a[begin] < a[end])return begin;  //返回a[midi] < a[begin] < a[end]else return end;    //返回a[midi] < a[end] < a[begin]}
}void QuickSort(int* a, int begin, int end)
{if (begin >= end)return;int midi = GetMidi(a, begin, end);Swap(&a[midi], &a[begin]);int left = begin, right = end;int keyi = begin;while (left < right){// 右边找小while (left < right && a[right] >= a[keyi]){--right;}// 左边找大while (left < right && a[left] <= a[keyi]){++left;}Swap(&a[left], &a[right]);}Swap(&a[left], &a[keyi]);keyi = left;// [begin, keyi-1] keyi [keyi+1, end]QuickSort(a, begin, keyi - 1);QuickSort(a, keyi+1, end);
}

~over~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/230790.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

软件测试技术分享| Appium用例录制

下载及安装 下载地址&#xff1a; github.com/appium/appi… 下载对应系统的 Appium 版本&#xff0c;安装完成之后&#xff0c;点击 “Start Server”&#xff0c;就启动了 Appium Server。 在启动成功页面点击右上角的放大镜&#xff0c;进入到创建 Session 页面。配置好…

QT作业3

完善对话框&#xff0c;点击登录对话框&#xff0c;如果账号和密码匹配&#xff0c;则弹出信息对话框&#xff0c;给出提示”登录成功“&#xff0c;提供一个Ok按钮&#xff0c;用户点击Ok后&#xff0c;关闭登录界面&#xff0c;跳转到其他界面 如果账号和密码不匹配&#xf…

对Arthas-Trace命令的一次深度剖析,竟发现...

前言&#xff1a;此文仅为笔者学习Arthas源码的一次尝试&#xff0c;不对本文结论负全部责任。 一、背景 笔者在学习arthas这个十分方便的小工具的过程中&#xff0c;发现&#xff1a; 目前据arthas官方解释&#xff1a;因为trace多层是十分消耗资源的&#xff0c;因此trace命…

【期刊出版征稿】2024年艺术、教育和管理国际学术会议(ICAEM2024)

2024年艺术、教育和管理国际学术会议 2024 International Conference on Arts, Education and Management&#xff08;ICAEM2024&#xff09; 2024年艺术、教育和管理国际学术会议&#xff08;ICAEM2024&#xff09;将于2024年2月02-04日在马来西亚-吉隆坡召开。会议主题主要…

跨境助手:提升跨境电商卖家运营效率的利器

在如今全球化的商业环境中&#xff0c;跨境电商成为越来越多卖家追逐的商机。然而&#xff0c;对于新手卖家来说&#xff0c;跨境电商的复杂性和竞争激烈的市场环境可能会成为入坑的风险。如何降低风险、提高运营效率成为卖家们关注的焦点。而跨境助手作为一款专为跨境电商卖家…

Python Pandas 如何增加/插入一列数据(第5讲)

Python Pandas 如何增加/插入一列数据(第5讲)         🍹博主 侯小啾 感谢您的支持与信赖。☀️ 🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹꧔ꦿ🌹…

Python实现冰墩墩

目录 一、运行效果 图片效果 二、项目概述 三、开发环境 四、实现步骤及代码 1.导入需要的库。 2.完成剩余部分代码。 五、项目总结 六、源码获取 一、运行效果 图片效果 二、项目概述 这个项目使用了turtle库绘制了一个编程乐学的Logo。Logo中包含了一个笑脸&#xf…

SpringBoot接入轻量级分布式日志框架GrayLog

1.前言 日志在我们日常开发定位错误&#xff0c;链路错误排查时必不可少&#xff0c;如果我们只有一个服务&#xff0c;我们可以只简单的通过打印的日志文件进行排查定位就可以&#xff0c;但是在分布式服务环境下&#xff0c;多个环境的日志统一收集、展示则成为一个问题。目…

基于CNN+数据增强+残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)+数据集+模型(一)

系列文章目录 基于CNN数据增强残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)数据集模型&#xff08;一&#xff09; 基于CNN数据增强残差网络Resnet50的少样本高准确度猫咪种类识别—深度学习算法应用(含全部工程源码)数据集模型&#xf…

1U、2U、4U和42U服务器,看完秒懂!

晚上好&#xff0c;我的网工朋友。 服务器是一个很广泛的概念&#xff0c;涵盖了各种类型和规格的计算机&#xff0c;用于提供各种网络和数据服务。 而机架服务器是当前数据中心和专业计算环境中&#xff0c;使用最为广泛的服务器类型之一。 机架式服务器的外形看来不像计算…

C++面试宝典第7题:重载自增自减运算符

题目 编程实现一个自定义类CMyInteger,它重载了前缀和后缀形式的++和--操作符。同时,CMyInteger类还有一个Print成员函数,用于输出内部成员变量的值。完成该类后,下面使用CMyInteger的代码应能够编译通过,并得到与内置整形int相同的效果。 int main() {CMyInteger mi1(10…

考研英语一图表作文必背模版句

英语一的作文还是很靠日常积累的&#xff0c;依据潘赟老师的九宫格理论&#xff1a; 2——图画描述5——意义论证8——建议措施 这3个模块式最为核心也是最容易拉开分差的&#xff0c;对于时间有限的同志不建议忙下功夫浪费时间&#xff0c;而对于另外6个模块&#xff0c;还是…

Flink系列之:自定义函数

Flink系列之&#xff1a;自定义函数 一、自定义函数二、概述三、开发指南四、函数类五、求值方法六、类型推导七、自动类型推导八、定制类型推导九、确定性十、内置函数的确定性十一、运行时集成十二、标量函数十三、表值函数十四、聚合函数十五、表值聚合函数 一、自定义函数 …

【深度学习目标检测】八、基于yolov5的抽烟识别(python,深度学习)

YOLOv5是目标检测领域一种非常优秀的模型&#xff0c;其具有以下几个优势&#xff1a; 1. 高精度&#xff1a;YOLOv5相比于其前身YOLOv4&#xff0c;在目标检测精度上有了显著的提升。YOLOv5使用了一系列的改进&#xff0c;如更深的网络结构、更多的特征层和更高分辨率的输入图…

Git及Linux命令介绍

Git介绍 Git 命令如何工作 首先&#xff0c;必须确定我们的代码存储在哪里。常见的假设是只有两个位置 - 一个位于 Github 等远程服务器上&#xff0c;另一个位于我们的本地计算机上。然而&#xff0c;这并不完全准确。 Git 在我们的机器上维护了三个本地存储&#xff0c;这意…

Linux-----12、时间日期

# 时间日期 # 时区设置 在Linux (opens new window)系统中&#xff0c;默认使用的是UTC时间。 即使在安装系统的时候&#xff0c;选择的时区是亚洲上海&#xff0c;Linux默认的BIOS时间&#xff08;也称&#xff1a;硬件时间&#xff09;也是UTC时间 (opens new window)。 在…

90%的人学Python爬虫都干过这种事,别不承认!

可以说&#xff0c;我是因为想批量下载一个网站的图片&#xff0c;才开始学的python爬虫。当一张一张图片自动下载下来时&#xff0c;满满的成就感&#xff0c;也满满的罪恶感……哈哈哈&#xff01;&#xff01;&#xff01;窈窕淑女&#xff0c;君子好逑&#xff0c;这篇文章…

Android 大版本升级变更截图方法总结

Android 大版本升级变更截图方法总结 一、Android R (11) 平台二、Android S (12) 平台三、Android U (14) 平台 Android 原生的截屏功能是集成在 SystemUI 中&#xff0c;因此我们普通应用想要获取截图方法&#xff0c;就需要研读下 SystemUI 截屏部分的功能实现。 一、Androi…

Android 移动端编译 cityhash动态库

最近做项目&#xff0c; 硬件端 需要 用 cityhash 编译一个 动态库 提供给移动端使用&#xff0c;l 记录一下 编译过程 city .cpp // // Created by Administrator on 2023/12/12. // // Copyright (c) 2011 Google, Inc. // // Permission is hereby granted, free of charg…

java配置+J_IDEA配置+git配置+maven配置+基本语句

当前目录文件夹dir 进入文件夹cd 返回上一级cd.. 创建文件夹&#xff1a;mkdir 文件名删除文件夹&#xff1a;rd 文件夹名&#xff0c; 目录不为空不能直接删 rd /s 带子文件夹一起删 清屏cls 切换d盘才能进入 下载git地址&#xff1a; Git - Downloading Package (g…