Unity中URP下的菲涅尔效果实现(URP下的法线和视线向量怎么获取)

文章目录

  • 前言
  • 一、实现思路
  • 二、实现原理
    • 我们可以由下图直观的感受到 N 与 L夹角越小,点积越接近(白色)1。越趋近90°,点积越接近0(黑色)
  • 三、实现URP下的菲涅尔效果
    • 1、我们新建一个Shader,修改为最简
    • 2、获取世界空间下的顶点法线 N
    • 3、获取顶点指向摄像机的视线单位向量 L
    • 4、在片元着色器中,计算得到 NdotL 值
    • 5、用1 - NdotL 值得到菲尼尔效果
  • 四、测试代码


前言

我们在这篇文章中,了解一下URP中Shader怎么实现菲涅尔效果,同时学习一下URP下怎么获取法线 和 视线向量。


一、实现思路

Lambert光照模型公式:

Diffuse = Ambient + Kd * LightColor * max(0,dot(N,L))

  • 实现灯光照射中间亮 周围暗的效果,核心是dot(N,L)
    在这里插入图片描述

  • Unity中Shader的Lambert光照的实现

  • 光照效果下, 视线单位向量 点积 法线单位向量的效果是 中间亮周围暗。我们需要的效果刚好相反,用 1 减去该结果即可得到菲尼尔效果。

  • 所以,我们主要要获取 N 和 L

我们在之前的文章中,实现过一次菲涅尔效果(模型中间暗周围亮的效果)

  • Unity中Shader的XRay透视效果

二、实现原理

为什么 NdotL 可以得到中间亮,周围亮的的效果
在这里插入图片描述

我们可以由下图直观的感受到 N 与 L夹角越小,点积越接近(白色)1。越趋近90°,点积越接近0(黑色)

请添加图片描述


三、实现URP下的菲涅尔效果

我们这里用一个 BRP 下的Shader来修改为 URP 下的该效果

1、我们新建一个Shader,修改为最简

Shader "MyShader/URP/P3_2_4"
{Properties{}SubShader{Tags { "RenderType"="Opaque" }LOD 100Pass{CGPROGRAM#pragma vertex vert#pragma fragment frag#include "UnityCG.cginc"struct appdata{float4 vertex : POSITION;float2 uv : TEXCOORD0;};struct v2f{float2 uv : TEXCOORD0;float4 vertex : SV_POSITION;};v2f vert (appdata v){v2f o;o.vertex = UnityObjectToClipPos(v.vertex);return o;}fixed4 frag (v2f i) : SV_Target{return 1;}ENDCG}}
}
  • 在SubShader的Tags中,告诉引擎这是URP下的Shader

“RenderPipeline” = “UniversalPipeline”

  • 替换代码块申明

CGPROGRAM -> HLSLPROGRAM
ENDCG -> ENDHLSL

  • 替换我们的引入库为HLSL常用的几个

#include “Packages/com.unity.render-pipelines.core/ShaderLibrary/Color.hlsl”
#include “Packages/com.unity.render-pipelines.universal/ShaderLibrary/Core.hlsl”
#include “Packages/com.unity.render-pipelines.universal/ShaderLibrary/Lighting.hlsl”
#include “Packages/com.unity.render-pipelines.core/ShaderLibrary/UnityInstancing.hlsl”

2、获取世界空间下的顶点法线 N

  • 在应用程序传入顶点着色器的 Attributes(appdata)结构体 加入本地法线
struct Attributes
{float3 vertexOS : POSITION;float3 normalOS : NORMAL;
};
  • 在顶点着色器传入片元着色器的 Varyings(v2f)结构体 加入世界法线
struct Varyings
{float4 vertexCS : SV_POSITION;float3 normalWS : TEXCOORD0;
};
  • 在顶点着色器进行法线坐标转化

o.normalWS = TransformObjectToWorld(v.normalOS);

3、获取顶点指向摄像机的视线单位向量 L

要获取该向量,需要知道 摄像机的世界空间坐标 和 我们顶点的世界空间坐标

  1. 摄像机的世界空间坐标

_WorldSpaceCameraPos

  1. 顶点世界空间下的坐标
  • 在顶点着色器传入片元着色器的 Varyings(v2f)结构体 加入世界顶点坐标

float3 vertexWS : TEXCOORD1;

  • 在顶点着色器进行顶点坐标的空间转化

o.vertexWS = TransformObjectToWorld(v.vertexOS);

  • 我们在片元着色器输出看看效果
    请添加图片描述
  1. 用世界空间下的 摄像机坐标 减去 模型顶点坐标 得到 L

half3 L = normalize(_WorldSpaceCameraPos - i.vertexWS);

4、在片元着色器中,计算得到 NdotL 值

half NdotL = dot(N,L);

  • 我们输出看看效果
    请添加图片描述

5、用1 - NdotL 值得到菲尼尔效果

需要调节效果强弱的话,我们使用pow函数即可

return 1 - NdotL;

请添加图片描述


四、测试代码

//URP下的菲涅尔效果
Shader "MyShader/URP/P3_2_4"
{Properties{}SubShader{Tags{//告诉引擎,该Shader只用于 URP 渲染管线"RenderPipeline"="UniversalPipeline"//渲染类型"RenderType"="Opaque"//渲染队列"Queue"="Geometry"}Pass{Cull Back Blend One Zero ZTest LEqual ZWrite OnHLSLPROGRAM#pragma vertex vert#pragma fragment frag#pragma target 2.0#include "Packages/com.unity.render-pipelines.core/ShaderLibrary/Color.hlsl"#include "Packages/com.unity.render-pipelines.universal/ShaderLibrary/Core.hlsl"#include "Packages/com.unity.render-pipelines.universal/ShaderLibrary/Lighting.hlsl"struct Attributes{float3 vertexOS : POSITION;float3 normalOS : NORMAL;};struct Varyings{float4 vertexCS : SV_POSITION;float3 normalWS : TEXCOORD0;float3 vertexWS : TEXCOORD1;};Varyings vert (Attributes v){Varyings o;o.vertexWS = TransformObjectToWorld(v.vertexOS);o.vertexCS = TransformWorldToHClip(o.vertexWS);o.normalWS = TransformObjectToWorldNormal(v.normalOS);return o;}half4 frag (Varyings i) : SV_Target{//菲涅尔效果 1 - dot(N,L)half3 N = i.normalWS;half3 L = normalize(_WorldSpaceCameraPos - i.vertexWS);half NdotL = dot(N,L);return 1 - NdotL;}ENDHLSL}}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/228548.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

安全密码(字符串)

#include <stdio.h> #include <stdbool.h> #include <string.h> bool is_secure_password(const char* password); int main() {int M;char password[51];// 读取输入中的密码数量 Mscanf("%d", &M);// 处理每个密码for (int i 0; i < M; …

Pytorch:Tensorboard简要学习

目录 一、TensorBoard简介二、TensorBoard的安装与启动Tensorboard的安装Tensorboard的启动 三、TensorBoard的简单使用3.1 SummaryWriter()3.2 add_scalar()和add_scalars()3.3 add_histogram()3.4 模型指标监控 四、总结参考博客 一、TensorBoard简介 TensorBoard 是Google开…

17.Oracle中instr()函数查询字符位置

1、instr()函数的格式 &#xff08;俗称&#xff1a;字符查找函数&#xff09; 格式一&#xff1a;instr( string1, string2 ) // instr(源字符串, 目标字符串) 格式二&#xff1a;instr( string1, string2 [, start_position [, nth_appearance ] ] ) // instr(源字符…

typescript使用解构传参

看下面这个函数 interface Student {id: number;name: string;class: string;sex: string;}function matriculation(student: Student) {//...}我们要调用它,就需要传递一个实现了Student约束的对象进去 interface Student {id: number;name: string;class: string;sex: string…

C语言:将三个数从大到小输出

#include<stdio.h> int main() {int a 0;int b 0;int c 0;printf("请输入abc的值&#xff1a;");scanf_s("%d%d%d", &a, &b, &c);if (b > a){int tmp a;a b;b tmp;}if (c > a){int tmp a;a c;c tmp;}if (b < c){int t…

app分发平台哪个好点?手机app应用内测分发平台支持负载均衡的重要性

随着互联网的快速发展&#xff0c;内测分发平台扮演着越来越重要的角色。而在现代应用程序的开发和运营过程中&#xff0c;负载均衡技术是不可或缺的一部分。内测分发平台支持负载均衡对于提高系统的稳定性、可靠性和性能至关重要。那么什么是负载均衡又有哪些重要性。 图片来源…

在线学习平台,云课堂云教育类网站源码,在线题库+随身携带的刷题神器+视频安装教程

源码介绍 在线题库&#xff1a;由传统的线下学习模式改为在线学习。能够实现学员在线学习、练习、考试 优点&#xff1a;方便、便宜、自我管理、选择性更多 、成人教育 &#xff08;1&#xff09;公考&#xff1a;国考、省考、事业单位… &#xff08;2&#xff09;升学&…

数据结构期末考题之001

算法复杂度就是n&#xff08;0&#xff09;

C++ Qt开发:自定义Dialog对话框组件

Qt 是一个跨平台C图形界面开发库&#xff0c;利用Qt可以快速开发跨平台窗体应用程序&#xff0c;在Qt中我们可以通过拖拽的方式将不同组件放到指定的位置&#xff0c;实现图形化开发极大的方便了开发效率&#xff0c;本章将重点介绍自定义Dialog组件的常用方法及灵活运用。 在…

【上海大学数字逻辑实验报告】七、中规模元件及综合设计

一、实验目的 掌握中规模时序元件的测试。学会在Quartus II上设计序列发生器。 二、实验原理 74LS161是四位可预置数二进制加计数器&#xff0c;采用16引脚双列直插式封装的中规模集成电路&#xff0c;其外形如下图所示&#xff1a; 其各引脚功能为&#xff1a; 异步复位输…

在做题中学习(33):只出现一次的数字 II

137. 只出现一次的数字 II - 力扣&#xff08;LeetCode&#xff09; 思路&#xff1a; 1.首先想到出现三次的数&#xff0c;它们仨的任意一位都是相同的&#xff08;1/0&#xff09; 2.可以发现出现三次的数的某一位和a某一位在所有情况下%3最后的结果都和a的那一位相同&…

PMP项目管理 - 风险管理

系列文章目录 PMP项目管理 - 质量管理 PMP项目管理 - 采购管理 PMP项目管理 - 资源管理 PMP项目管理 - 风险管理 现在的一切都是为将来的梦想编织翅膀&#xff0c;让梦想在现实中展翅高飞。 Now everything is for the future of dream weaving wings, let the dream fly in…

Java技术栈 —— Log4j 2、Logpack、SLF4j日志框架介绍

Log4j 2、Logpack、SLF4j日志框架介绍 Log4j 2、Logpack、SLF4j日志框架&#xff0c;及其区别1.1 Log4j 21.1.1 日志级别1.1.2 日志输出目标位置1.1.3 日志刷新机制1.1.4 结构化打印日志1.1.5 异步打印日志1.1.6 在Cloud云环境汇集日志信息 1.2 LogPack1.3 SLF4j1.4 区别 Log4j…

从数据应用案例出发,探索2024年及未来的数据科学转型

如今&#xff0c;数据科学已经取得了长足的进步&#xff01;回顾数据科学的发展史&#xff0c;19世纪&#xff0c;人们使用基本统计模型收集、存储和处理数据。后来&#xff0c;当计算机进入万千家庭&#xff0c;数字时代正式到来&#xff0c;并由此产生了大量数据。互联网上数…

数据库——关系数据的规范化:范式判断【知识点罗列+例题讲解】

知识点罗列&#xff1a; 各种范式之间的关系 1.第一范式1NF&#xff1a; 如果关系模式R中所有的属性都具有原子性&#xff0c;均是不可再分的&#xff08;一个属性不能再被分解成更小的数据单元&#xff09;&#xff0c;则称R属于第一范式&#xff0c;简称1NF&#xff0c;记作R…

基于urllib库的网页数据爬取

实验名称&#xff1a; 基于urllib库的网页数据爬取 实验目的及要求&#xff1a; 【实验目的】 通过本实验了解和掌握urllib库。 【实验要求】 1. 使用urllib库爬取百度搜索页面。 2. 使用urllib库获取百度搜索的关键字搜索结果&#xff08;关键字任选&#xff09;。 实验原理及…

vite原理

一、依赖预构建 1、为什么需要依赖预构建 CommonJS和UMD兼容性 在开发阶段中&#xff0c;vite的开发服务器将所有的代码视为原生ES模块。因此&#xff0c;vite必须先将作为CommonJS或者UMD发布的依赖项转换为ESM。 这是vite的一个特色&#xff0c;也是为什么会相对于webpack比…

[足式机器人]Part4 南科大高等机器人控制课 Ch08 Rigid Body Dynamics

本文仅供学习使用 本文参考&#xff1a; B站&#xff1a;CLEAR_LAB 笔者带更新-运动学 课程主讲教师&#xff1a; Prof. Wei Zhang 南科大高等机器人控制课 Ch08 Rigid Body Dynamics 1. Spatial Vecocity1.1 Spatial vs. Conventional Accel1.2 Plueker Coordinate System and…

C语言学习NO.-操作符(二)二进制相关的操作符,原码、反码、补码是什么,左移右移操作符、按位与,按位或,按位异或,按位取反

一、操作符的分类 操作符的分类 算术操作符&#xff1a; 、- 、* 、/ 、%移位操作符: << >>位操作符: & | ^ 赋值操作符: 、 、 - 、 * 、 / 、% 、<< 、>> 、& 、| 、^单⽬操作符&#xff1a; &#xff01;、、–、&、*、、-、~ 、siz…

Redis 数据类型和对象机制

一、Redis 简介 Redis 是&#xff08;key-value&#xff09;的 NoSQL 数据库&#xff0c;所有的 key 都是 String ,它的 value 可以是 String、hash、list、set、zset&#xff08;有序集合&#xff09;、Bitmaps&#xff08;位图&#xff09;、HyperLogLog、GEO(地理信息定位)…