【C语言】——认识指针变量和地址,以及指针变量类型的意义

🎥 岁月失语唯石能言的个人主页        

🔥个人栏专:秒懂C语言

若在许我少年时,一两黄金一两风    

目录

前言

一、指针变量和地址

1.1 取地址操作符(&)

1.2 指针变量和解引用操作符(*)

1.2.1 指针变量

1.2.2 如何拆解指针类型

1.2.3 解引用操作符

1.3 指针变量的大小

二、指针变量类型的意义

2.1指针的解引用

2.2 指针+-整数

2.3 void* 指针

总结


前言

指针变量也是⼀种变量,这种变量就是用来存放地址的,存放在指针变量中的值都会理解为地址。

一、指针变量和地址

1.1 取地址操作符(&)

在C语言中创建变量其实就是向内存申请空间,比如:
# include <stdio.h>
int main ()
{
        int a = 10 ;
        return 0 ;
}

比如,上述的代码就是创建了整型变量a,内存中
申请4个字节,用于存放整数10,其中每个字节都
有地址,上图中4个字节的地址分别是:
1. 0x006FFD70
2. 0x006FFD71
3. 0x006FFD72
4. 0x006FFD73

#include <stdio.h>
int main()
{
    int a = 10;
    &a;//取出a的地址
    printf("%p\n", &a);
    return 0;
}

&a取出的是a所占4个字节中地址较小的字节的地址。
虽然整型变量占用4个字节,我们只要知道了第一个字节地址,顺藤摸瓜访问到4个字节的数据也是可行的。

1.2 指针变量和解引用操作符(*)

1.2.1 指针变量

那我们通过取地址操作符(&)拿到的地址是⼀个数值,比如:0x006FFD70,这个数值有时候也是需要存储起来,方便后期再使用的,那我们把这样的地址值存放在哪里呢?答案是:指针变量中。

ex:

#include <stdio.h>
int main()
{int a = 10;int* pa = &a;//取出a的地址并存储到指针变量pa中return 0;
}
指针变量也是一种变量,这种变量就是用来存放地址的,存放在指针变量中的值都会理解为地址。

1.2.2 如何拆解指针类型

我们看到pa的类型是 int* ,我们该如何理解指针的类型呢?
int a = 10 ;
int * pa = &a;
这里pa左边写的是 int* * 是在说明pa是指针变量,而前面的 int 是在说明pa指向的是整型(int)
类型的对象。
那如果有⼀个char类型的变量ch,ch的地址,要放在什么类型的指针变量中呢?
char ch = 'w' ;
char * pc = &ch;

1.2.3 解引用操作符

我们将地址保存起来,未来是要使用的,那怎么使用呢?
在现实生活中,我们使用地址要找到⼀个房间,在房间里可以拿去或者存放物品。
C语言中其实也是一样的,我们只要拿到了地址(指针),就可以通过地址(指针)找到地址(指针) 指向的对象,这里必须学习一个操作符叫解引用操作符(*)。
#include <stdio.h>int main()
{int a = 100;int* pa = &a;*pa = 0;return 0;
}
上面代码中第7行就使用了解引用操作符, *pa 的意思就是通过pa中存放的地址,找到指向的空间,*pa其实就是a变量了;所以*pa = 0,这个操作符是把a改成了0.
有同学肯定在想,这里如果目的就是把a改成0的话,写成 a = 0; 不就完了,为啥非要使用指针呢?
其实这里是把a的修改交给了pa来操作,这样对a的修改,就多了一种的途径,写代码就会更加灵活。

1.3 指针变量的大小

前面的内容我们了解到,32位机器假设有32根地址总线,每根地址线出来的电信号转换成数字信号后是1或者0,那我们把32根地址线产生的2进制序列当做⼀个地址,那么一个地址就是32个bit位,需要4 个字节才能存储。
如果指针变量是用来存放地址的,那么指针变的大小就得是4个字节的空间才可以。
同理64位机器,假设有64根地址线,⼀个地址就是64个⼆进制位组成的⼆进制序列,存储起来就需要 8个字节的空间,指针变的大小就是8个字节。
#include <stdio.h>
//指针变量的⼤⼩取决于地址的⼤⼩
//32位平台下地址是32个bit位(即4个字节)
//64位平台下地址是64个bit位(即8个字节)
int main()
{printf("%zd\n", sizeof(char*));printf("%zd\n", sizeof(short*));printf("%zd\n", sizeof(int*));printf("%zd\n", sizeof(double*));return 0;
}

                  X86环境输出结果                                                        X64环境输出结果
结论:
32位平台下地址是32个bit位,指针变量大小是4个字节
64位平台下地址是64个bit位,指针变量大小是8个字节
注意指针变量的大小和类型是无关的,只要指针类型的变量,在相同的平台下,大小都是相同的。


二、指针变量类型的意义

指针变量的大小和类型无关,只要是指针变量,在同⼀个平台下,大小都是⼀样的,为什么还要有各种各样的指针类型呢?
其实指针类型是有特殊意义的,我们接下来继续学习。

2.1指针的解引用

对比,下面2段代码,主要在调试时观察内存的变化。
//代码1 #include <stdio.h>
int main()
{int n = 0x11223344;int* pi = &n;*pi = 0;return 0;
}
//代码2 #include <stdio.h>
int main()
{int n = 0x11223344;char *pc = (char *)&n;*pc = 0;return 0; }
调试我们可以看到,代码1会将n的4个字节全部改为0,但是代码2只是将n的第一个字节改为0。
结论:指针的类型决定了,对指针解引用的时候有多⼤的权限(⼀次能操作几个字节)。
比如: char* 的指针解引用就只能访问⼀个字节,而  int* 的指针的解引用就能访问四个字节。

2.2 指针+-整数

先看一段代码,调试观察地址的变化。
#include <stdio.h>
int main()
{int n = 10;char* pc = (char*)&n;int* pi = &n;printf("%p\n", &n);printf("%p\n", pc);printf("%p\n", pc + 1);printf("%p\n", pi);printf("%p\n", pi + 1);return 0;
}
代码运行的结果如下:
我们可以看出, char* 类型的指针变量+1跳过1个字节, int* 类型的指针变量+1跳过了4个字节。
这就是指针变量的类型差异带来的变化。
结论:指针的类型决定了指针向前或者向后走一步有多大(距离)。

2.3 void* 指针

在指针类型中有⼀种特殊的类型是 void* 类型的,可以理解为无具体类型的指针(或者叫泛型指 针),这种类型的指针可以用来接受任意类型地址。但是也有局限性, void* 类型的指针不能直接进行指针的+-整数和解引用的运算。
ex:
#include <stdio.h>
int main()
{int a = 10;int* pa = &a;char* pc = &a;return 0;
}
在上面的代码中,将⼀个int类型的变量的地址赋值给⼀个char*类型的指针变量。编译器给出了⼀个警告(如下图),是因为类型不兼容。而使用void*类型就不会有这样的问题。
VS2022编译的结果
使用void*类型的指针接收地址:
#include <stdio.h>
int main()
{int a = 10;void* pa = &a;void* pc = &a;*pa = 10;*pc = 0;return 0;
}
VS编译代码的结果:
这里我们可以看到, void* 类型的指针可以接收不同类型的地址,但是无法直接进行指针运算。
⼀般 void* 类型的指针是使用在函数参数的部分,用来接收不同类型数据的地址,这样的设计可以
实现泛型编程的效果。使得⼀个函数来处理多种类型的数据,这我会在后面博客提到。


总结

指针变量的大小和类型无关,只要是指针变量,在同⼀个平台下,大小都是⼀样的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/227793.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux上使用HTTP协议进行数据获取的实战示例

嗨&#xff0c;Linux爱好者们&#xff0c;今天我们要一起探讨一下如何在Linux上进行HTTP协议的数据获取。这不是一项简单的任务&#xff0c;但放心&#xff0c;我会以最简单的语言&#xff0c;结合实例来给大家讲解。 首先&#xff0c;我们需要一个工具&#xff0c;那就是curl…

Java 锁的优化

Java锁的优化主要包括以下几个方面&#xff1a; 锁优化&#xff1a; 锁优化主要是通过减少锁的粒度和缩小锁的范围来提高性能。锁优化的方法有&#xff1a; 减少锁的粒度&#xff1a;将大对象拆分成小对象&#xff0c;这样可以减少锁的竞争&#xff0c;提高并发性能。缩小锁…

Git 生成系统公私钥

windows下如何生成公钥和私钥 首先Windows操作系统需要安装git.安装完成后,再到任意的文件夹内,点击右键.选择git bash here打开之后,输入ssh-keygen,一路按enter键.全部结束后,再到C:\Users\Administrator\.ssh 文件夹下,打开id_rsa.pub文件,复制文件内的公钥. 注意:.ssh是隐…

“Java已死、前端已凉”?尊嘟假嘟?

一、为什么会出现“Java已死、前端已凉”的言论 “Java已死、前端已凉”的言论出现&#xff0c;主要是由于以下几个原因&#xff1a; 技术更新迅速&#xff1a;随着互联网技术的发展&#xff0c;新的编程语言和技术不断涌现。Java和前端技术作为广泛应用的技术&#xff0c;面临…

SpringBoot 源码解析

前言 本文只是纯源码分析文章&#xff0c;阅读者需要有Spring或者SpringBoot使用经验。 SpringBoot 源码解析 SpringBoot 源码解析1&#xff1a;环境搭建 SpringBoot 源码解析2&#xff1a;启动流程1 SpringBoot 源码解析3&#xff1a;启动流程2 SpringBoot 源码解析4&#…

初识Dubbo学习,一文掌握Dubbo基础知识文集(2)

&#x1f3c6;作者简介&#xff0c;普修罗双战士&#xff0c;一直追求不断学习和成长&#xff0c;在技术的道路上持续探索和实践。 &#x1f3c6;多年互联网行业从业经验&#xff0c;历任核心研发工程师&#xff0c;项目技术负责人。 &#x1f389;欢迎 &#x1f44d;点赞✍评论…

springMVC-@RequestMapping

基本介绍 RequestMapping注解可以指定控制器/处理器的某个方法的请求的url, 示例 &#xff08;结合springMVC基本原理理解&#xff09; Controller public class UserHandler {RequestMapping(value "/login")public String login() {System.out.println("登…

说说你对闭包的理解?闭包使⽤场景

作用链域闭包 闭包的特性&#xff1a;说说你对闭包的理解使用闭包的注意点总结 扩展 循环中使用闭包解决 var 定义函数的问题 解决办法有三种 作用链域 JavaScript 的作用域链&#xff08;Scope Chain&#xff09;是指在代码中访问变量时的查找路径。 当 JavaScript 引擎在执…

ubuntu20.04禁用自动更新(禁用更新、禁用自动升级、禁用apt更新、禁用apt升级、禁用软件更新、禁用系统更新)

想要禁用Ubuntu 20.04的所有自动升级&#xff0c;只需要修改两个文件&#xff1a; /etc/apt/apt.conf.d/10periodic&#xff1a; 这个文件控制APT的周期性任务。你需要编辑这个文件并设置所有选项为"0"&#xff0c;这将禁止任何定期的任务。 你可以使用以下命令快速完…

springCloud项目打包如何把jar放到指定目录下

springCloud项目打包如何把jar发放到指定目录下 maven-antrun-plugin springCloud微服务打包jar&#xff0c;模块过多&#xff1b;我的项目模块结构如下&#xff1a; 我把实体类相关的单独抽离一个模块在service-api下服务单独写在service某块下&#xff0c; 每个模块的jar都…

如何使用jQuery获取当前网址路径

如何使用jQuery获取当前网址路径概述在前端开发中&#xff0c;经常需要获取当前网址的路径&#xff0c;通过使用jQuery库&#xff0c;我们可以轻松地实现这个功能。本文将逐步介绍如何使用jQuery获取当前网址路径。流程步骤以下是实现该功能的步骤&#xff1a;步骤 描述…

人工智能导论复习资料

题型 1、简答题&#xff08;5题&#xff09; 2、设计题 3、综合题 4、论述题&#xff08;10分&#xff09; 考点 第一章 1、人工智能的定义、发展&#xff1b; 2、人工智能的学派、认知观及其间的关系&#xff1b; 3、人工智能要素及系统分类&#xff1b; 4、人工智能的研究、…

Python轴承故障诊断 (七)基于EMD-CNN-LSTM的故障分类

目录 前言 1 经验模态分解EMD的Python示例 2 轴承故障数据的预处理 2.1 导入数据 2.2 制作数据集和对应标签 2.3 故障数据的EMD分解可视化 2.4 故障数据的EMD分解预处理 3 基于EMD-CNN-LSTM的轴承故障诊断分类 3.1 训练数据、测试数据分组&#xff0c;数据分batch 3.…

Fanuc-Focas库函数库中控制机床轴的移动

在Fanuc-Focas库中控制机床轴的移动&#xff0c;通常需要通过调用库函数来实现。具体的函数和参数可能因不同的库版本和机床型号而有所不同&#xff0c;因此请参考相关的Fanuc-Focas文档或手册以获取准确的信息。 一般来说&#xff0c;控制机床轴的移动需要以下几个步骤&#…

canal环境部署

docker 部署canal同步数据 1 环境: 2 Mysql 配置 查看 binlog 是否启用 SHOW VARIABLES LIKE ‘%log_bin%’; 开启 binlog, 修改 my.cnf docker cp mysql:/etc/my.cnf /data/mysql/conf 拷贝文件到临时目录修改后再拷贝回去 # For advice on how to change settings please …

ArchLinux安装使用ifconfig

安装 sudo pacman -S net-tools 使用 ifconfig

【网络安全】网络防护之旅 - 点燃网络安全战场的数字签名烟火

​ &#x1f308;个人主页&#xff1a;Sarapines Programmer&#x1f525; 系列专栏&#xff1a;《网络安全之道 | 数字征程》⏰墨香寄清辞&#xff1a;千里传信如电光&#xff0c;密码奥妙似仙方。 挑战黑暗剑拔弩张&#xff0c;网络战场誓守长。 ​ 目录 &#x1f608;1. 初识…

Android studio 多渠道打包步骤

在Android Studio中&#xff0c;可以使用Gradle的多渠道打包功能来生成不同渠道的应用包。以下是多渠道打包的步骤&#xff1a; 在项目的build.gradle文件中&#xff0c;添加渠道相关的配置。在android节点下添加productFlavors块&#xff0c;定义不同的渠道&#xff0c;例如&…

渗透实验基础教程(完整版):

#江南的江 #每日鸡汤&#xff1a;影响我们人生的绝不仅仅是环境&#xff0c;其实是心态在控制个人的行动和思想。同时&#xff0c;心态也决定了一个人的视野事业和成就&#xff0c;甚至一生。 #初心和目标&#xff1a;成为网络安全达人。。。 渗透实验基础教程&#xff08;完整…

UniGuiApplication的客户端信息包括以下内容:

UniGuiApplication的客户端信息包括以下内容&#xff1a; UserAgent: 客户端的用户代理信息&#xff0c;用于识别客户端的浏览器类型和版本。Browser: 客户端的浏览器类型&#xff0c;如Chrome、Firefox、Safari等。Platform: 客户端的操作系统平台&#xff0c;如Windows、Mac…