线程终止,线程的相关方法,线程状态图以及线程的同步机制。

首先我们知道了什么是线程,以及线程的实现方法,接下来我们来了解一下继承Thread类和Runnable接口的区别,其实本质上是没有区别的,因为Thread也实现了Runnable的接口,唯一区别就是使用Runnable接口,可以实现多个线程共享一个资源的情况,而且不会受到单继承的限制,这里我们建议使用Runnable接口。

我们再来聊一下线程终止的操作,线程终止顾名思义就是想让进程停止运行,我们可以通过设置变量的方法来使线程退出,即通知方式,这里我们用一个实例来进行演示:

public class ift {public static void main(String[] args) {Preson2 preson2 = new Preson2(true);Thread thread = new Thread(preson2);thread.start();for (int i = 0; i < 10; i++){try {Thread.sleep(500);} catch (InterruptedException e) {throw new RuntimeException(e);}System.out.println("hi~");if (i == 5){preson2.setf(false);}}}
}class Preson2 implements Runnable{public Boolean b;public Preson2(Boolean b) {this.b = b;}@Overridepublic void run() {while(b){try {Thread.sleep(500);} catch (InterruptedException e) {throw new RuntimeException(e);}System.out.println("hello~");}}public void setf(Boolean b){this.b = b;}
}

 

这里我们发现hello只被执行了五次,是因为我们在主线程中设定了终止信息,才实现了该功能;

线程还有一系列的相关方法:

这是线程的常用方法,我们就不一一列举了。

这里提示一下:interrupt方法并不是中断一个线程的运行,而是让正在休眠的线程提前中断休眠,让它重新运作。

这里有俩个非常常用的方法一个是yield:线程的礼让,一个是join:线程插队,线程的礼让:让出cpu,给其他线程先运行,但是会根据cpu的运行状态来确定,如果cpu的资源很丰富则不会礼让成功,所以线程礼让是不确定的,它不一定会成功,线程插队:线程插队跟线程礼让不同,它比较霸道,一旦插队成功是必须先执行完该线程,才会将cpu让出来给其他线程使用。

join方法:

public class ift {public static void main(String[] args) {Thread t3 = new Thread(new T3());//创建子线程for (int i = 1; i <= 10; i++) {System.out.println("hi " + i);if(i == 5) {//说明主线程输出了 5 次 hit3.start();//启动子线程 输出 hello... t3.join();//立即将 t3 子线程,插入到 main 线程,让 t3 先执行try {t3.join();} catch (InterruptedException e) {throw new RuntimeException(e);}}try {Thread.sleep(1000);//输出一次 hi, 让 main 线程也休眠 1s} catch (InterruptedException e) {throw new RuntimeException(e);}}}}class T3 implements Runnable{private int count = 0;@Overridepublic void run() {while (true) {System.out.println("hello " + (++count));try {Thread.sleep(1000);} catch (InterruptedException e) {e.printStackTrace();}if (count == 10) {break;}}}
}

 

yield方法:

public class ift {public static void main(String[] args) {Thread t3 = new Thread(new T3());//创建子线程for (int i = 1; i <= 10; i++) {System.out.println("hi " + i);if(i == 5) {//说明主线程输出了 5 次 hit3.start();//启动子线程 输出 hello... t3.join();//立即将 t3 子线程,插入到 main 线程,让 t3 先执行t3.yield();}try {Thread.sleep(1000);//输出一次 hi, 让 main 线程也休眠 1s} catch (InterruptedException e) {throw new RuntimeException(e);}}}}class T3 implements Runnable{private int count = 0;@Overridepublic void run() {while (true) {System.out.println("hello " + (++count));try {Thread.sleep(1000);} catch (InterruptedException e) {e.printStackTrace();}if (count == 10) {break;}}}
}

 

这里我们发现并没有礼让成功而是交替输出。

接下来我们看一下线程的状态图:
  

Runnable状态在jvm机中又被分为ready和running两个状态。

我们可以通过getState()这个方法来查询线程的当前状态,我们写个实例来看一下:

public class ift {public static void main(String[] args) throws InterruptedException {T t = new T();System.out.println(t.getName() + " 状态 " + t.getState());//NEWt.start();while (Thread.State.TERMINATED != t.getState()) {System.out.println(t.getName() + " 状态 " + t.getState());//TIMED_WAITING,原因线程每运行一次就休眠一秒钟Thread.sleep(500);}System.out.println(t.getName() + " 状态 " + t.getState());//TERMINATED}
}
class T extends Thread {@Overridepublic void run() {while (true) {for (int i = 0; i < 10; i++) {System.out.println("hi " + i + getState());//RUNNABLEtry {Thread.sleep(1000);} catch (InterruptedException e) {e.printStackTrace();}}break;}}
}
while (Thread.State.TERMINATED != t.getState()) {System.out.println(t.getName() + " 状态 " + t.getState());//TIMED_WAITING,原因线程每运行一次就休眠一秒钟Thread.sleep(500);
}

该循环内大家肯定有疑问,为什么一直都是TIMED_WAITING状态,为什么刚启动后的RUNNABLE状态打印不了,那是因为运行的过程很快可能就几毫秒,所以根本捕捉不到该状态,但是休眠的时间很长所以打印的都是休眠的状态,运行状态可以在它运行的时候一块打印出来,就像我写的一样,给大家看一下结果:

当我们休眠状态足够短的时候我们发现状态就会发生变化:

public class ift {public static void main(String[] args) throws InterruptedException {T t = new T();System.out.println(t.getName() + " 状态 " + t.getState());//NEWt.start();while (Thread.State.TERMINATED != t.getState()) {System.out.println(t.getName() + " 状态 " + t.getState());//TIMED_WAITING,原因线程每运行一次就休眠一秒钟Thread.sleep(2);}System.out.println(t.getName() + " 状态 " + t.getState());//TERMINATED}
}
class T extends Thread {@Overridepublic void run() {while (true) {for (int i = 0; i < 10; i++) {System.out.println("hi " + i + getState());//RUNNABLEtry {Thread.sleep(1);} catch (InterruptedException e) {e.printStackTrace();}}break;}}
}

 

接下来我们来学习一下线程的同步机制:什么是线程的同步机制我们先来看一个实例来引出线程同步机制的作用:

public class Tick {public static void main(String[] args) {sellTcik sellTcik = new sellTcik();new Thread(sellTcik).start();new Thread(sellTcik).start();new Thread(sellTcik).start();}}class sellTcik implements Runnable{@SuppressWarnings({"all"})public int tick = 100;Object object = new Object();private Boolean loop = true;public void run(){while(loop){m();}}public void m(){if (tick == 0) {System.out.println("售票结束");loop = false;return;}System.out.println("线程" + Thread.currentThread().getName() + "     " + (--tick));try {Thread.sleep(10);} catch (InterruptedException e) {throw new RuntimeException(e);}}
}

当我们运行代码的时候我们就会发现一些问题:

它的票数可能出现负数的情况,这是为什么呢,这是因为它是三个线程一块进入进行操作的,假如票还有两张,三个线程一块进去检测票数确实大于0,所以会直接拿去卖,买了三张,所以出现 了超票的情况,那我们怎么来解决这样的情况呢,这里就要用到我们的线程同步机制了,它的实现方法是synchronized(),括号内可以添加一个对象,相当于一把锁,只有拿到锁的线程才能进入我们的方法中,但是听起来效率会大大降低,线程的深入学习,以后会进行讨论,我们先来了解目前学习的方法,而且这个锁,有个特点,它对于线程而言必须指向的同一个对象,如果是不同对象,那该锁则是无效的,这里我们使用接口类中的Object类型的对象,因为实现Runnable接口只需要创建一个对象即可,如果我们用的是继承Thread的方法时,我们需要创建多个对象,这是我们可以将Object类型设置为静态属性这里可以给多线程共享相同的资源。所以object对象肯定是相同对象(synchronized()被该方法框起来的代码越少越好,可以提升效率)。

public class Tick {public static void main(String[] args) {sellTcik sellTcik = new sellTcik();new Thread(sellTcik).start();new Thread(sellTcik).start();new Thread(sellTcik).start();}}class sellTcik implements Runnable{@SuppressWarnings({"all"})public int tick = 100;Object object = new Object();private Boolean loop = true;public void run(){while(loop){m();}}public void m(){synchronized (object) {if (tick == 0) {System.out.println("售票结束");loop = false;return;}System.out.println("线程" + Thread.currentThread().getName() + "     " + (--tick));try {Thread.sleep(10);} catch (InterruptedException e) {throw new RuntimeException(e);}}}
}

如果设置同步方法

public synchronized static void m1() {
}
它默认的锁就是该类的类名.class

这里我们发现超票的问题得到了很好的解决。(同步机制的互斥锁大多设置为自己的类即类名.class),该锁是必然有效的,因为类只能有一个,可以根据自己的喜好,自行添加锁。

互斥锁:

互斥锁的特征就像上述所说,只允许一个线程拿到锁,等到该线程运行完才能让其他线程进入,而且互斥锁,必须指向的同一对象,如果不同对象进入拿到的锁不同,则无法做到限制的作用,则该锁无效。

线程死锁:

我们直接模拟死锁给大家一个直观的感受:

public class Tick {public static void main(String[] args) {//模拟死锁现象DeadLockDemo A = new DeadLockDemo(true);A.setName("A 线程");DeadLockDemo B = new DeadLockDemo(false);B.setName("B 线程");A.start();B.start();}}class DeadLockDemo extends Thread {static Object o1 = new Object();// 保证多线程,共享一个对象,这里使用 staticstatic Object o2 = new Object();boolean flag;public DeadLockDemo(boolean flag) {//构造器this.flag = flag;}@Overridepublic void run() {//1. 如果 flag 为 T, 线程 A 就会先得到/持有 o1 对象锁, 然后尝试去获取 o2 对象锁//2. 如果线程 A 得不到 o2 对象锁,就会 Blocked//3. 如果 flag 为 F, 线程 B 就会先得到/持有 o2 对象锁, 然后尝试去获取 o1 对象锁//4. 如果线程 B 得不到 o1 对象锁,就会 Blockedif (flag) {synchronized (o1) {//对象互斥锁, 下面就是同步代码System.out.println(Thread.currentThread().getName() + " 进入 1");synchronized (o2) { // 这里获得 li 对象的监视权System.out.println(Thread.currentThread().getName() + " 进入 2");}}} else {synchronized (o2) {System.out.println(Thread.currentThread().getName() + " 进入 3");synchronized (o1) { // 这里获得 li 对象的监视权System.out.println(Thread.currentThread().getName() + " 进入 4");}}}}
}

 

我们发现A,B两线程都处于了Blocked状态,这就是死锁,互相拿着对方需要的锁,无法继续往下运行。

 

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/227702.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

关联规则 Apriori算法原理

Apriori算法 算法概述 Apriori算法利用频繁项集生成关联规则。它基于频繁项集的子集也必须是频繁项集的概念频繁项集是支持值大于阈值 (support) 的项集 Apriori算法就是基于一个先验如果某个项集是频繁的&#xff0c;那么它的所有子集也是频繁的 算法流程 输入: 数据集合D…

【笔试强化】Day 4

文章目录 一、单选1.2.3.4.5.6.7. 二、不定项选择1.2.3. 三、编程1. 计算糖果题解&#xff1a;代码&#xff1a; 2. 进制转换题解&#xff1a;代码&#xff1a; 一、单选 1. 正确答案&#xff1a;D队列先进先出 A&#xff1a;栈有关 B&#xff1a;错 C&#xff1a;错 2. 正确…

文章解读与仿真程序复现思路——电网技术EI\CSCD\北大核心《考虑灵活性资源传输精细化建模的配电网优化运行》

这个标题表达的是关于配电网优化运行的一个概念&#xff0c;其中考虑了灵活性资源传输的精细化建模。让我们逐个解读关键词&#xff1a; 考虑灵活性资源传输&#xff1a;这指的是在配电网优化运行中考虑到不同类型的灵活性资源的传输。灵活性资源包括可再生能源、储能系统、柔性…

爬虫工作量由小到大的思维转变---<第十一章 Scrapy之sqlalchemy模版和改造(番外)>

前言: 正常的pymysql当然问题不大,但是我个人还是建议:sqlalchemy! 因为他更能让我们把精力放在表单设计上,而不执着于代码本身了. (-----版权所有。未经作者书面同意&#xff0c;不得转载或用于任何商业用途!----) 正文: 先提供一个基础模版: 表图: 创建表的sql: CREA…

crmeb v5新增一个功能的完整示例记录

首先&#xff0c;需求 工作中的二开需求是这样的&#xff0c;修改首页的装修&#xff0c;并新增回收报价的功能 开始动手 第一步&#xff0c;我们要到后面的管理界面&#xff0c;去装修中修改首面的展示 首页的页面配置好之后&#xff0c;就要在 前端的展示程序中 配置相…

【专栏目录】

摘要 本专栏是讲解如何改进RT-DETR的专栏。改进方法采用了最新的论文提到的方法。改进的方法包括&#xff1a;增加注意力机制、更换卷积、更换block、更换backbone、更换head、更换优化器等&#xff1b;每篇文章提供了一种到N种改进方法。 评测用的数据集是我自己标注的数据集…

如何使用ycsb工具对mongodb进行性能测试过程

测试环境&#xff1a; linux系统&#xff1a;Centos 7.2 ,版本&#xff1a;Red Hat 4.8.5-44) YCSB简介 ycsb是一款性能测试工具&#xff0c;用Java写的&#xff0c;并且什么都可以压&#xff0c;像是mongodb&#xff0c;redis&#xff0c;mysql&#xff0c;hbase&#xff0c;等…

某60内网渗透之frp实战指南2

内网渗透 文章目录 内网渗透frp实战指南2实验目的实验环境实验工具实验原理实验内容frp实战指南2 实验步骤(1)确定基本信息。(2)查看frp工具的基本用法(3)服务端frp的配置(4)客户端frp的配置(5)使用frp服务 frp实战指南2 实验目的 让学员通过该系统的练习主要掌握&#xff1a…

Python基础06-异常

零、文章目录 Python基础06-异常 1、异常的基本概念 &#xff08;1&#xff09;异常是什么 当检测到一个错误时&#xff0c;解释器就无法继续执行了&#xff0c;反而出现了一些错误的提示&#xff0c;这就是所谓的"异常"。 &#xff08;2&#xff09;异常演示 …

【NSX-T】9. 搭建NSX-T环境 —— 使用 OSPF 配置 Tier-0 网关

目录 Lab 说明9.1 创建上行链路网段9.2 创建 Tier-0 网关&#xff08;1&#xff09;设置 Interface 信息&#xff08;2&#xff09;禁用 BGP&#xff08;3&#xff09;启用和配置 OSPF&#xff08;4&#xff09;查看 OSPF Neighbors&#xff08;5&#xff09;为 OSPF 配置路由重…

基于BWA,Bowtie2,samtools、checkm等工具计算宏基因组学序列分析中Contigs与Genes在样品中的丰度,多种计算方式和脚本对比

计算contigs和genes相对丰度可以提供有关微生物群落结构和功能的信息。以下是计算这两个指标的意义&#xff1a; 1. Contigs的相对丰度&#xff1a;contigs是利用基因组测序技术获得的碎片序列&#xff0c;通过计算contigs的相对丰度可以了解微生物群落中不同菌种的相对丰度。…

使用Audition录制电脑内部声音

在电脑上播放的媒体文件&#xff0c;包括视频和声音&#xff0c;很多是可以播放却无法保存的。例如一些网页播放的视频&#xff0c;或者在线播放的音乐。 视频的话&#xff0c;可以使用工具来截图&#xff0c;抓取GIF或录屏。 声音的话&#xff0c;也可以使用工具进行录制。这里…

Oracle EBS PAC“定期成本分配处理程序”报错:30004不存在为成本类型、成本组和法人主体定义的帐户

Oracle EBS版本&#xff1a; RDBMS : 12.1.0.2.0 Oracle Applications : 12.2.6 问题症状&#xff1a; 中文环境&#xff1a; 30004不存在为成本类型、成本组和法人主体定义的帐户。 CSTPALPC.dyn_proc_call : Error Calling Package 30004不存在为成本类型、成本组和法人主…

c++ websocket 协议分析与实现

前言 网上有很多第三方库&#xff0c;nopoll,uwebsockets,libwebsockets,都喜欢回调或太复杂&#xff0c;个人只需要在后端用&#xff0c;所以手动写个&#xff1b; 1:环境 ubuntu18 g(支持c11即可) 第三方库:jsoncpp,openssl 2:安装 jsoncpp 读取json 配置文件 用 自动安装 网…

最新50万字312道Java经典面试题52道场景题总结(附答案PDF)

最近有很多粉丝问我&#xff0c;有什么方法能够快速提升自己&#xff0c;通过阿里、腾讯、字节跳动、京东等互联网大厂的面试&#xff0c;我觉得短时间提升自己最快的手段就是背面试题&#xff1b;花了3个月的时间将市面上所有的面试题整理总结成了一份50万字的300道Java高频面…

国际教育-S1试讲讲稿

习题题目 答案 用到的概念&#xff1a; 概率之和等于1 E ( x ) ∑ i 1 4 x i P i E(x)\sum_{i1}^4x_iP_i E(x)∑i14​xi​Pi​ E ( x 2 ) ∑ i 1 4 x i 2 P i E(x^2)\sum_{i1}^4x_i^2P_i E(x2)∑i14​xi2​Pi​ V a r ( X ) Var(X) Var(X) ∑ i 1 4 ( x i − x ‾ ) 2…

自定义时间选择器

自定义时间选择器 文章目录 自定义时间选择器第一章 效果演示第01节 效果图第02节 主要文件 第二章 案例代码第01节 核心文件 WheelPicker第02节 实体类 WheelBean第03节 接口类 IWheelPicker第04节 原子时间类 DateTimePickerView第05节 原子时间类 PickerYear第06节 原子时间…

nginx的location与rewrite

目录 一.location 二.rewrite rewrite跳转实现&#xff1a; 语法格式&#xff1a;rewrite [flag]; flag标记说明&#xff1a; 三.基于域名跳转 四.基于ip跳转 五.基于旧域名跳转到新域名后面加目录 六.基于参数匹配的跳转 可以同过全局变量来匹配&#xff1a; 基于目…

linux常见错误

1.E45: ‘readonly‘ option is set (add ! to override) 首先使用以下命令从Vim编辑器中出来&#xff1a;:qa!(强制退出) 接下来&#xff0c;使用sudo vim filename和更高版本&#xff1a;:wq 2.Bash script – "/bin/bash^M: bad interpreter: No such file or direc…

鸿蒙4.0开发 - DevEco Studio如何使用Previewer窗口预览器报错

DevEco Studio预览器概况在HarmonyOS应用开发过程中&#xff0c;通过使用预览器&#xff0c;可以查看应用的UI效果&#xff0c;方便开发者实时查看应用的运行效果&#xff0c;随时调整代码。 1.正常启动 打开预览器的位置在DevEco Studio编辑界面的右上角部分&#xff0c;竖排…