NNDL 循环神经网络-梯度爆炸实验 [HBU]

目录

6.2.1 梯度打印函数

6.2.2 复现梯度爆炸现象

6.2.3 使用梯度截断解决梯度爆炸问题

【思考题】梯度截断解决梯度爆炸问题的原理是什么? 

总结


前言:

造成简单循环网络较难建模长程依赖问题的原因有两个:梯度爆炸和梯度消失

循环网络的梯度爆炸问题比较容易解决,一般通过权重衰减或梯度截断可以较好地来避免;

梯度消失问题,更加有效的方式是改变模型,比如通过长短期记忆网络LSTM来进行缓解。

本节将首先进行复现简单循环网络中的梯度爆炸问题,然后尝试使用梯度截断的方式进行解决。这里采用长度为20的数据集进行实验,训练过程中将进行输出W,U,b的梯度向量的范数,以此来衡量梯度的变化情况。


6.2.1 梯度打印函数

在训练过程中打印梯度

分别定义W_list, U_list和b_list,用于分别存储训练过程中参数W,U和b的梯度范数

流程图和代码为:

W_list = []
U_list = []
b_list = []
# 计算梯度范数
def custom_print_log(runner):model = runner.modelW_grad_l2, U_grad_l2, b_grad_l2 = 0, 0, 0for name, param in model.named_parameters():if name == "rnn_model.W":W_grad_l2 = torch.norm(param.grad, p=2).numpy()if name == "rnn_model.U":U_grad_l2 = torch.norm(param.grad, p=2).numpy()if name == "rnn_model.b":b_grad_l2 = torch.norm(param.grad, p=2).numpy()print(f"[Training] W_grad_l2: {W_grad_l2:.5f}, U_grad_l2: {U_grad_l2:.5f}, b_grad_l2: {b_grad_l2:.5f} ")W_list.append(W_grad_l2)U_list.append(U_grad_l2)b_list.append(b_grad_l2)

6.2.2 复现梯度爆炸现象

为了更好地复现梯度爆炸问题,使用SGD优化器将批大小和学习率调大,学习率为0.2,同时在计算交叉熵损失时,将reduction设置为sum,表示将损失进行累加。 流程及代码实现如下:

import os
import random
import torch
import numpy as npnp.random.seed(0)
random.seed(0)
torch.seed()# 训练轮次
num_epochs = 50
# 学习率
lr = 0.2
# 输入数字的类别数
num_digits = 10
# 将数字映射为向量的维度
input_size = 32
# 隐状态向量的维度
hidden_size = 32
# 预测数字的类别数
num_classes = 19
# 批大小 
batch_size = 64
# 模型保存目录
save_dir = "./checkpoints"# 可以设置不同的length进行不同长度数据的预测实验
length = 20
print(f"\n====> Training SRN with data of length {length}.")# 加载长度为length的数据
data_path = f"./datasets/{length}"
train_examples, dev_examples, test_examples = load_data(data_path)
train_set, dev_set, test_set = DigitSumDataset(train_examples), DigitSumDataset(dev_examples),DigitSumDataset(test_examples)
train_loader = DataLoader(train_set, batch_size=batch_size)
dev_loader = DataLoader(dev_set, batch_size=batch_size)
test_loader = DataLoader(test_set, batch_size=batch_size)
# 实例化模型
base_model = SRN(input_size, hidden_size)
model = Model_RNN4SeqClass(base_model, num_digits, input_size, hidden_size, num_classes) 
# 指定优化器
optimizer = torch.optim.SGD(lr=lr, params=model.parameters())
# 定义评价指标
metric = Accuracy()
# 定义损失函数
loss_fn = nn.CrossEntropyLoss(reduction="sum")# 基于以上组件,实例化Runner
runner = RunnerV3(model, optimizer, loss_fn, metric)# 进行模型训练
model_save_path = os.path.join(save_dir, f"srn_explosion_model_{length}.pdparams")
runner.train(train_loader, dev_loader, num_epochs=num_epochs, eval_steps=100, log_steps=1, save_path=model_save_path, custom_print_log=custom_print_log)

这段代码里还有很多上一个实验中用到的类和函数,这里进行了代码复用,完整代码如下:

#完整代码
#NNDL 梯度爆炸
W_list = []
U_list = []
b_list = []
# 计算梯度范数
def custom_print_log(runner):model = runner.modelW_grad_l2, U_grad_l2, b_grad_l2 = 0, 0, 0for name, param in model.named_parameters():if name == "rnn_model.W":W_grad_l2 = torch.norm(param.grad, p=2).numpy()if name == "rnn_model.U":U_grad_l2 = torch.norm(param.grad, p=2).numpy()if name == "rnn_model.b":b_grad_l2 = torch.norm(param.grad, p=2).numpy()print(f"[Training] W_grad_l2: {W_grad_l2:.5f}, U_grad_l2: {U_grad_l2:.5f}, b_grad_l2: {b_grad_l2:.5f} ")W_list.append(W_grad_l2)U_list.append(U_grad_l2)b_list.append(b_grad_l2)import torch
#RUnnerV3
class RunnerV3(object):def __init__(self, model, optimizer, loss_fn, metric, **kwargs):self.model = modelself.optimizer = optimizerself.loss_fn = loss_fnself.metric = metric  # 只用于计算评价指标# 记录训练过程中的评价指标变化情况self.dev_scores = []# 记录训练过程中的损失函数变化情况self.train_epoch_losses = []  # 一个epoch记录一次lossself.train_step_losses = []  # 一个step记录一次lossself.dev_losses = []# 记录全局最优指标self.best_score = 0def train(self, train_loader, dev_loader=None, **kwargs):# 将模型切换为训练模式self.model.train()# 传入训练轮数,如果没有传入值则默认为0num_epochs = kwargs.get("num_epochs", 0)# 传入log打印频率,如果没有传入值则默认为100log_steps = kwargs.get("log_steps", 100)# 评价频率eval_steps = kwargs.get("eval_steps", 0)# 传入模型保存路径,如果没有传入值则默认为"best_model.pdparams"save_path = kwargs.get("save_path", "best_model.pdparams")custom_print_log = kwargs.get("custom_print_log", None)# 训练总的步数num_training_steps = num_epochs * len(train_loader)if eval_steps:if self.metric is None:raise RuntimeError('Error: Metric can not be None!')if dev_loader is None:raise RuntimeError('Error: dev_loader can not be None!')# 运行的step数目global_step = 0# 进行num_epochs轮训练for epoch in range(num_epochs):# 用于统计训练集的损失total_loss = 0for step, data in enumerate(train_loader):X, y = data# 获取模型预测logits = self.model(X)loss = self.loss_fn(logits, y.long())  # 默认求meantotal_loss += loss# 训练过程中,每个step的loss进行保存self.train_step_losses.append((global_step, loss.item()))if log_steps and global_step % log_steps == 0:print(f"[Train] epoch: {epoch}/{num_epochs}, step: {global_step}/{num_training_steps}, loss: {loss.item():.5f}")# 梯度反向传播,计算每个参数的梯度值loss.backward()if custom_print_log:custom_print_log(self)# 小批量梯度下降进行参数更新self.optimizer.step()# 梯度归零self.optimizer.zero_grad()# 判断是否需要评价if eval_steps > 0 and global_step > 0 and \(global_step % eval_steps == 0 or global_step == (num_training_steps - 1)):dev_score, dev_loss = self.evaluate(dev_loader, global_step=global_step)print(f"[Evaluate]  dev score: {dev_score:.5f}, dev loss: {dev_loss:.5f}")# 将模型切换为训练模式self.model.train()# 如果当前指标为最优指标,保存该模型if dev_score > self.best_score:self.save_model(save_path)print(f"[Evaluate] best accuracy performence has been updated: {self.best_score:.5f} --> {dev_score:.5f}")self.best_score = dev_scoreglobal_step += 1# 当前epoch 训练loss累计值trn_loss = (total_loss / len(train_loader)).item()# epoch粒度的训练loss保存self.train_epoch_losses.append(trn_loss)print("[Train] Training done!")# 模型评估阶段,使用'torch.no_grad()'控制不计算和存储梯度@torch.no_grad()def evaluate(self, dev_loader, **kwargs):assert self.metric is not None# 将模型设置为评估模式self.model.eval()global_step = kwargs.get("global_step", -1)# 用于统计训练集的损失total_loss = 0# 重置评价self.metric.reset()# 遍历验证集每个批次for batch_id, data in enumerate(dev_loader):X, y = data# 计算模型输出logits = self.model(X)# 计算损失函数loss = self.loss_fn(logits, y.long()).item()# 累积损失total_loss += loss# 累积评价self.metric.update(logits, y)dev_loss = (total_loss / len(dev_loader))dev_score = self.metric.accumulate()# 记录验证集lossif global_step != -1:self.dev_losses.append((global_step, dev_loss))self.dev_scores.append(dev_score)return dev_score, dev_loss# 模型评估阶段,使用'torch.no_grad()'控制不计算和存储梯度@torch.no_grad()def predict(self, x, **kwargs):# 将模型设置为评估模式self.model.eval()# 运行模型前向计算,得到预测值logits = self.model(x)return logitsdef save_model(self, save_path):torch.save(self.model.state_dict(), save_path)def load_model(self, model_path):state_dict = torch.load(model_path)self.model.load_state_dict(state_dict)#Accuracy
class Accuracy():def __init__(self, is_logist=True):# 用于统计正确的样本个数self.num_correct = 0# 用于统计样本的总数self.num_count = 0self.is_logist = is_logistdef update(self, outputs, labels):# 判断是二分类任务还是多分类任务,shape[1]=1时为二分类任务,shape[1]>1时为多分类任务if outputs.shape[1] == 1:  # 二分类outputs = torch.squeeze(outputs, dim=-1)if self.is_logist:# logist判断是否大于0preds = torch.tensor((outputs >= 0), dtype=torch.float32)else:# 如果不是logist,判断每个概率值是否大于0.5,当大于0.5时,类别为1,否则类别为0preds = torch.tensor((outputs >= 0.5), dtype=torch.float32)else:# 多分类时,使用'torch.argmax'计算最大元素索引作为类别preds = torch.argmax(outputs, dim=1)# 获取本批数据中预测正确的样本个数labels = torch.squeeze(labels, dim=-1)batch_correct = torch.sum(torch.tensor(preds == labels, dtype=torch.float32)).cpu().numpy()batch_count = len(labels)# 更新num_correct 和 num_countself.num_correct += batch_correctself.num_count += batch_countdef accumulate(self):# 使用累计的数据,计算总的指标if self.num_count == 0:return 0return self.num_correct / self.num_countdef reset(self):# 重置正确的数目和总数self.num_correct = 0self.num_count = 0def name(self):return "Accuracy"#加载数据集并划分
import os
import torch.nn as nn# 加载数据
def load_data(data_path):# 加载训练集train_examples = []train_path = os.path.join(data_path, "train.txt")with open(train_path, "r", encoding="utf-8") as f:for line in f.readlines():# 解析一行数据,将其处理为数字序列seq和标签labelitems = line.strip().split("\t")seq = [int(i) for i in items[0].split(" ")]label = int(items[1])train_examples.append((seq, label))# 加载验证集dev_examples = []dev_path = os.path.join(data_path, "dev.txt")with open(dev_path, "r", encoding="utf-8") as f:for line in f.readlines():# 解析一行数据,将其处理为数字序列seq和标签labelitems = line.strip().split("\t")seq = [int(i) for i in items[0].split(" ")]label = int(items[1])dev_examples.append((seq, label))# 加载测试集test_examples = []test_path = os.path.join(data_path, "test.txt")with open(test_path, "r", encoding="utf-8") as f:for line in f.readlines():# 解析一行数据,将其处理为数字序列seq和标签labelitems = line.strip().split("\t")seq = [int(i) for i in items[0].split(" ")]label = int(items[1])test_examples.append((seq, label))return train_examples, dev_examples, test_examples# 设定加载的数据集的长度
length = 5
# 该长度的数据集的存放目录
data_path = f"./datasets/{length}"
# 加载该数据集
train_examples, dev_examples, test_examples = load_data(data_path)
print("dev example:", dev_examples[:2])
print("训练集数量:", len(train_examples))
print("验证集数量:", len(dev_examples))
print("测试集数量:", len(test_examples))from torch.utils.data import Dataset, DataLoader
import torchclass DigitSumDataset(Dataset):def __init__(self, data):self.data = datadef __getitem__(self, idx):example = self.data[idx]seq = torch.tensor(example[0], dtype=torch.int64)label = torch.tensor(example[1], dtype=torch.int64)return seq, labeldef __len__(self):return len(self.data)class Embedding(nn.Module):def __init__(self, num_embeddings, embedding_dim):super(Embedding, self).__init__()self.W = nn.init.xavier_uniform_(torch.empty(num_embeddings, embedding_dim), gain=1.0)def forward(self, inputs):# 根据索引获取对应词向量embs = self.W[inputs]return embsemb_layer = Embedding(10, 5)
inputs = torch.tensor([0, 1, 2, 3])
emb_layer(inputs)#SRN
import torch.nn.functional as Ftorch.manual_seed(0)# SRN模型
class SRN(nn.Module):def __init__(self, input_size, hidden_size, W_attr=None, U_attr=None, b_attr=None):super(SRN, self).__init__()# 嵌入向量的维度self.input_size = input_size# 隐状态的维度self.hidden_size = hidden_size# 定义模型参数W,其shape为 input_size x hidden_sizeif W_attr == None:W = torch.zeros(size=[input_size, hidden_size], dtype=torch.float32)else:W = torch.tensor(W_attr, dtype=torch.float32)self.W = torch.nn.Parameter(W)# 定义模型参数U,其shape为hidden_size x hidden_sizeif U_attr == None:U = torch.zeros(size=[hidden_size, hidden_size], dtype=torch.float32)else:U = torch.tensor(U_attr, dtype=torch.float32)self.U = torch.nn.Parameter(U)# 定义模型参数b,其shape为 1 x hidden_sizeif b_attr == None:b = torch.zeros(size=[1, hidden_size], dtype=torch.float32)else:b = torch.tensor(b_attr, dtype=torch.float32)self.b = torch.nn.Parameter(b)# 初始化向量def init_state(self, batch_size):hidden_state = torch.zeros(size=[batch_size, self.hidden_size], dtype=torch.float32)return hidden_state# 定义前向计算def forward(self, inputs, hidden_state=None):# inputs: 输入数据, 其shape为batch_size x seq_len x input_sizebatch_size, seq_len, input_size = inputs.shape# 初始化起始状态的隐向量, 其shape为 batch_size x hidden_sizeif hidden_state is None:hidden_state = self.init_state(batch_size)# 循环执行RNN计算for step in range(seq_len):# 获取当前时刻的输入数据step_input, 其shape为 batch_size x input_sizestep_input = inputs[:, step, :]# 获取当前时刻的隐状态向量hidden_state, 其shape为 batch_size x hidden_sizehidden_state = F.tanh(torch.matmul(step_input, self.W) + torch.matmul(hidden_state, self.U) + self.b)return hidden_state# 基于RNN实现数字预测的模型
class Model_RNN4SeqClass(nn.Module):def __init__(self, model, num_digits, input_size, hidden_size, num_classes):super(Model_RNN4SeqClass, self).__init__()# 传入实例化的RNN层,例如SRNself.rnn_model = model# 词典大小self.num_digits = num_digits# 嵌入向量的维度self.input_size = input_size# 定义Embedding层self.embedding = Embedding(num_digits, input_size)# 定义线性层self.linear = nn.Linear(hidden_size, num_classes)def forward(self, inputs):# 将数字序列映射为相应向量inputs_emb = self.embedding(inputs)# 调用RNN模型hidden_state = self.rnn_model(inputs_emb)# 使用最后一个时刻的状态进行数字预测logits = self.linear(hidden_state)return logits# 实例化一个input_size为4, hidden_size为5的SRN
srn = SRN(4, 5)
# 基于srn实例化一个数字预测模型实例
model = Model_RNN4SeqClass(srn, 10, 4, 5, 19)
# 生成一个shape为 2 x 3 的批次数据
inputs = torch.tensor([[1, 2, 3], [2, 3, 4]])
# 进行模型前向预测
logits = model(inputs)
print(logits)#复现梯度爆炸
import os
import random
import torch
import numpy as npnp.random.seed(0)
random.seed(0)
torch.seed()# 训练轮次
num_epochs = 50
# 学习率
lr = 0.2
# 输入数字的类别数
num_digits = 10
# 将数字映射为向量的维度
input_size = 32
# 隐状态向量的维度
hidden_size = 32
# 预测数字的类别数
num_classes = 19
# 批大小
batch_size = 64
# 模型保存目录
save_dir = "./checkpoints"# 可以设置不同的length进行不同长度数据的预测实验
length = 20
print(f"\n====> Training SRN with data of length {length}.")# 加载长度为length的数据
data_path = f"./datasets/{length}"
train_examples, dev_examples, test_examples = load_data(data_path)
train_set, dev_set, test_set = DigitSumDataset(train_examples), DigitSumDataset(dev_examples),DigitSumDataset(test_examples)
train_loader = DataLoader(train_set, batch_size=batch_size)
dev_loader = DataLoader(dev_set, batch_size=batch_size)
test_loader = DataLoader(test_set, batch_size=batch_size)
# 实例化模型
base_model = SRN(input_size, hidden_size)
model = Model_RNN4SeqClass(base_model, num_digits, input_size, hidden_size, num_classes)
# 指定优化器
optimizer = torch.optim.SGD(lr=lr, params=model.parameters())
# 定义评价指标
metric = Accuracy()
# 定义损失函数
loss_fn = nn.CrossEntropyLoss(reduction="sum")# 基于以上组件,实例化Runner
runner = RunnerV3(model, optimizer, loss_fn, metric)# 进行模型训练
model_save_path = os.path.join(save_dir, f"srn_explosion_model_{length}.pdparams")
runner.train(train_loader, dev_loader, num_epochs=num_epochs, eval_steps=100, log_steps=1,save_path=model_save_path, custom_print_log=custom_print_log)

运行结果(截取一段):
[Training] W_grad_l2: 0.00003, U_grad_l2: 0.00013, b_grad_l2: 0.00002 
[Train] epoch: 47/50, step: 238/250, loss: 14879.33398
[Training] W_grad_l2: 0.00000, U_grad_l2: 0.00000, b_grad_l2: 0.00000 
[Train] epoch: 47/50, step: 239/250, loss: 7440.75293
[Training] W_grad_l2: 0.00001, U_grad_l2: 0.00006, b_grad_l2: 0.00001 
[Train] epoch: 48/50, step: 240/250, loss: 14501.10547
[Training] W_grad_l2: 0.00253, U_grad_l2: 0.01115, b_grad_l2: 0.00197 
[Train] epoch: 48/50, step: 241/250, loss: 10598.82715
[Training] W_grad_l2: 0.00000, U_grad_l2: 0.00000, b_grad_l2: 0.00000 
[Train] epoch: 48/50, step: 242/250, loss: 12267.08594
[Training] W_grad_l2: 0.00002, U_grad_l2: 0.00010, b_grad_l2: 0.00002 
[Train] epoch: 48/50, step: 243/250, loss: 11133.79102
[Training] W_grad_l2: 0.00000, U_grad_l2: 0.00000, b_grad_l2: 0.00000 
[Train] epoch: 48/50, step: 244/250, loss: 5316.20361
[Training] W_grad_l2: 0.00002, U_grad_l2: 0.00010, b_grad_l2: 0.00002 
[Train] epoch: 49/50, step: 245/250, loss: 13425.17871
[Training] W_grad_l2: 0.00412, U_grad_l2: 0.01818, b_grad_l2: 0.00321 
[Train] epoch: 49/50, step: 246/250, loss: 10136.34961
[Training] W_grad_l2: 0.00000, U_grad_l2: 0.00000, b_grad_l2: 0.00000 
[Train] epoch: 49/50, step: 247/250, loss: 14019.18262
[Training] W_grad_l2: 0.00001, U_grad_l2: 0.00002, b_grad_l2: 0.00000 
[Train] epoch: 49/50, step: 248/250, loss: 10505.15234
[Training] W_grad_l2: 0.00000, U_grad_l2: 0.00000, b_grad_l2: 0.00000 
[Train] epoch: 49/50, step: 249/250, loss: 6560.39893
[Training] W_grad_l2: 0.00002, U_grad_l2: 0.00008, b_grad_l2: 0.00001 
[Evaluate]  dev score: 0.02000, dev loss: 9217.20581
[Train] Training done!

获取训练过程中关于W,U和b参数梯度的L2范数,并将其绘制为图片以便展示:

代码:

#可视化
import matplotlib.pyplot as plt
def plot_grad(W_list, U_list, b_list, save_path, keep_steps=40):# 开始绘制图片plt.figure()# 默认保留前40步的结果steps = list(range(keep_steps))plt.plot(steps, W_list[:keep_steps],'*', color="b", label="W_grad_l2")plt.plot(steps, U_list[:keep_steps], "-.", color="pink", label="U_grad_l2")plt.plot(steps, b_list[:keep_steps], "--", color="y", label="b_grad_l2")plt.xlabel("step")plt.ylabel("L2 Norm")plt.legend(loc="upper right")plt.show()plt.savefig(save_path)print("image has been saved to: ", save_path)save_path = f"./images/6.8.pdf"
plot_grad(W_list, U_list, b_list, save_path)

结果为:

U和b参数梯度的L2范数,可以看到经过学习率等方式的调整,梯度范数急剧变大,而后梯度范数几乎为0.
这是因为Tanh为Sigmoid型函数,其饱和区的导数接近于0,由于梯度的急剧变化,参数数值变的较大或较小,容易落入梯度饱和区,导致梯度为0,模型很难继续训练.

 接下来,使用该模型在测试集上进行测试:

准确率只有9%,这个性能太差了,应该是模型随机蒙出来的效果。


6.2.3 使用梯度截断解决梯度爆炸问题

梯度截断是一种可以有效解决梯度爆炸问题的启发式方法,当梯度的模大于一定阈值时,就将它截断成为一个较小的数。一般有两种截断方式:按值截断和按模截断.本实验使用按模截断的方式解决梯度爆炸问题。

在RunnerV3中加一行代码进行按模截断

nn.utils.clip_grad_norm_(parameters=self.model.parameters(), max_norm=20, norm_type=2)

在引入梯度截断之后,将重新观察模型的训练情况。这里我们重新实例化一下:模型和优化器,然后组装runner,进行训练。代码实现如下:

# 清空梯度列表
W_list.clear()
U_list.clear()
b_list.clear()
# 实例化模型
base_model = SRN(input_size, hidden_size)
model = Model_RNN4SeqClass(base_model, num_digits, input_size, hidden_size, num_classes)# 定义clip,并实例化优化器optimizer = torch.optim.SGD(lr=lr, params=model.parameters())
# 定义评价指标
metric = Accuracy()
# 定义损失函数
loss_fn = nn.CrossEntropyLoss(reduction="sum")# 实例化Runner
runner = RunnerV3(model, optimizer, loss_fn, metric)# 训练模型
model_save_path = os.path.join(save_dir, f"srn_fix_explosion_model_{length}.pdparams")
runner.train(train_loader, dev_loader, num_epochs=num_epochs, eval_steps=100, log_steps=1, save_path=model_save_path, custom_print_log=custom_print_log)

可视化结果:

引入按模截断的策略之后,模型训练时参数梯度的变化情况。可以看到,随着迭代步骤的进行,梯度始终保持在一个有值的状态,表明按模截断能够很好地解决梯度爆炸的问题.

接下来,使用梯度截断策略的模型在测试集上进行测试:

print(f"Evaluate SRN with data length {length}.")# 加载训练过程中效果最好的模型
model_path = os.path.join(save_dir, "srn_explosion_model_20.pdparams")
runner.load_model(model_path)# 使用测试集评价模型,获取测试集上的预测准确率
score, _ = runner.evaluate(test_loader)
print(f"[SRN] length:{length}, Score: {score: .5f}")

结果为:

由于为复现梯度爆炸现象,改变了学习率,优化器等,因此准确率相对比较低。但由于采用梯度截断策略后,在后续训练过程中,模型参数能够被更新优化,因此准确率有一定的提升。


【思考题】梯度截断解决梯度爆炸问题的原理是什么? 

参考文章:解决 “梯度爆炸” 的方法 - 梯度裁剪_loss 梯度裁剪-CSDN博客

【调参19】如何使用梯度裁剪(Gradient Clipping)避免梯度爆炸-CSDN博客

在给定的神经网络(例如卷积神经网络或多层感知器)中,可能由于配置选择不当而发生梯度爆炸:

学习率选择不当会导致较大的权重更新。
准备的数据有很多噪声,导致目标变量差异很大。
损失函数选择不当,导致计算出较大的误差值。
在递归神经网络(例如长短期记忆网络)中容易出现梯度爆炸。通常,可以通过精心配置网络模型来避免爆炸梯度,例如,选择较小的学习速率,按比例缩放目标变量和标准损失函数。尽管如此,对于具有大量输入时间步长的递归网络,梯度爆炸仍然是一个需要着重考虑的问题。

梯度爆炸的一种常见解决方法是先更改误差导数,然后通过网络反向传播误差导数,然后使用它来更新权重。通过重新缩放误差导数,权重的更新也将被重新缩放,从而大大降低了上溢或下溢的可能性。更新误差导数的主要方法有两种:

>梯度缩放(Gradient Scaling)
>梯度裁剪(Gradient Clipping)

梯度截断解决梯度爆炸问题的原理是在计算梯度的过程中,当梯度超过一定阈值或范围时,梯度截断会将超过部分的梯度值重置为设定范围内的值。例如,设定阈值为100,当某个梯度超过100时,就将其值重置为1到10之间的一个数。这种方式能有效防止梯度变得过大,从而使模型保持稳定。

        在模型训练过程中,如果梯度变得过大,可能会导致模型不稳定,阻止神经网络参数的更新,进而无法从训练数据中得到稳定的模型。此时,梯度截断通过设置一个梯度剪切阈值,在更新梯度时,将超出阈值的梯度强制限制在设定范围内。这种方式有助于让走向“邪路”的梯度回归正轨,避免因梯度爆炸引起的网络不稳定问题。

如下图所示:

①按值截断

按值截断是比较简单粗暴的方法,由于梯度太大会产生梯度爆炸的现象,太小会产生梯度消失的现象(参数不更新),所以为梯度提供一个范围[a,b],

  • 如果梯度大于b,就把它设置为b;
  • 如果梯度小于a,就把它设置为a;
  • 若在此区间,不做变化

②按模截断

为梯度g设置一个最大阈值threshold,用梯度的二范数与该阈值做比较;

  • 若大于阈值,则对其进行压缩,计算公式如图所示
  • 否则,不改变梯度

总结

这次的实验步骤仍然和以前的步骤一样,很多的代码都是可以复用的。对照着实验教材来做也是十分顺利的,训练速度很快(对比CIFAR图像实验的训练效率高很多很多),现在我有所疑惑的就是 L2范数 是什么?它的数学概念以及在深度学习领域中起到的作用?

一文搞懂深度学习正则化的L2范数-CSDN博客

欧几里得范数(L2范数)-CSDN博客

             

>L2范数(欧几里得范数)

首先明确一点,常用到的几个概念,含义相同。

欧几里得范数(Euclidean norm) == 欧式长度(距离) = L2 范数 == L2距离

十分简单的数学公式,L2范数的公式可以认为是两点之间的距离,当然不限于二维。

在深度学习里,L1、L2范数正则化常常用来解决模型过拟合问题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/227395.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【MySQL】(DDL) 表操作-查询

查询: show tables ; //查询所有表名称 desc 表名称 ; //查询表结构 show create table 表名称; //查看创建表语句 create table 表名 ( 字段名1 字段类型1,字段名2 字段类型2) ; //创建表结构 示列: 1. show tables; use 数据库名; show tables …

Llama 架构分析

从代码角度进行Llama 架构分析 Llama 架构分析前言Llama 架构分析分词网络主干DecoderLayerAttentionMLP 下游任务因果推理文本分类 Llama 架构分析 前言 Meta 开发并公开发布了 Llama系列大型语言模型 (LLM),这是一组经过预训练和微调的生成文本模型,参…

二蛋赠书八期:《Java物联网、人工智能和区块链编程实战》

前言 大家好!我是二蛋,一个热爱技术、乐于分享的工程师。在过去的几年里,我一直通过各种渠道与大家分享技术知识和经验。我深知,每一位技术人员都对自己的技能提升和职业发展有着热切的期待。因此,我非常感激大家一直…

【改进YOLOv8】电动车电梯入户检测系统:融合HGNetv2改进改进YOLOv8

1.研究背景与意义 项目参考AAAI Association for the Advancement of Artificial Intelligence 研究背景与意义: 随着电动车的普及和人们对环境保护的重视,电动车的使用量逐渐增加。然而,电动车的充电问题一直是一个挑战,特别是…

贝蒂详解<string.h>哦~(用法与实现)

目录 引言: (一)字符函数和字符串函数 1.简介 2.strlen()函数 2.1用法 2.2实例 2.3 实现strlen() (1)计数法 (2)递归法 (3) 指针-指针 2.4sizeof和strlen()的区别 3.s…

PhpStorm下载、安装、配置教程

前面的文章中,都是把.php文件放在WampServer的www目录下,通过浏览器访问运行。这篇文章就简单介绍一下PhpStorm这个php集成开发工具的使用。 目录 下载PhpStorm 安装PhpStorm 配置PhpStorm 修改个性化设置 修改字符编码 配置php的安装路径 使用Ph…

网络基础3

NAT(Network Address Translation):网络地址转换 通过将内部网络的私有IP地址装换成全球唯一的公网IP地址,使内部网络可以连接到互联网。 广域网就是外网,局域网就是内网 私有IP地址:(如果是纯内…

Flask基本用法:一个HelloWorld,搭建服务、发起请求

目录 1、简介 2、安装 3、Flask使用示例 参考 1、简介 官网文档 Flask是一个轻量的web服务框架,我们可以利用它快速搭建一个服务,对外提供接口,其他人可以轻松调用我们的服务。这对算法工程师来说比较关键,我们通常不擅长搞开发…

极坐标下的牛拉法潮流计算14节点MATLAB程序

微❤关注“电气仔推送”获得资料(专享优惠) 潮流计算: 潮流计算是根据给定的电网结构、参数和发电机、负荷等元件的运行条件,确定电力系统各部分稳态运行状态参数的计算。通常给定的运行条件有系统中各电源和负荷点的功率、枢纽…

JRT实现原生Webservice发布

之前准备试试Java发布Webservice,开始以为很简单,因为C#发布很简单。后面发现太费劲了,依赖一堆包,下面几种都试了一下: JAX-WS (Java API for XML Web Services):这是Java EE平台的标准,用于创…

nodejs微信小程序+python+PHP的微博网络舆情分析系统-计算机毕业设计推荐

(4)微博信息交流:在首页导航栏上我们会看到“微博信息交流”这一菜单,我们点击进入进去以后,会看到所有管理员在后台发布的交流信息; (5)新闻资讯:用户可以查看新闻资讯信…

【STM32入门】4.2对射红外传感器计次

1.接线方式 主要是编写传感器的驱动、配合OLED,每遮挡对射红外传感器,OLED屏幕的计数就加一。 2.驱动编写 首先新建.c文件和.h文件,命名为CountSensor 国际惯例,.c文件内要包含stm32.h头文件,然后编写 CountSensor_…

在Linux上安装配置Nginx高性能Web服务器

1 前言 Nginx是一个高性能的开源Web服务器,同时也可以作为反向代理服务器、负载均衡器、HTTP缓存以及作为一个邮件代理服务器。它以其出色的性能和灵活性而闻名,被广泛用于处理高流量的网站和应用程序。本文将介绍在Linux环境中安装Nginx的步骤&#xf…

new一个对象

1.自己直接调用 function Person(name, age) {this.name name;this.age age;}let a1 new Person("小明", 20);let a2 new Person("小菜", 25);console.log(a1); 打印的对象: 2.自己模拟一个 function Person(name, age) {this.name name;this.age a…

[Linux] LVS负载均衡群集——DR模式

一、 DR模式的特点 直接路由: 在LVS_DR模式下,负载均衡器不修改数据包的IP地址,只修改目的MAC地址。这使得数据包可以直接路由到后端实际服务器上,而不需要返回到负载均衡器。 高性能: 由于数据包在传输过程中不需要回…

本地运行大语言模型并可视化(Ollama+big-AGI方案)

目前有两种方案支持本地部署,两种方案都是基于llamacpp。其中 Ollama 目前只支持 Mac,LM Studio目前支持 Mac 和 Windows。 LM Studio:https://lmstudio.ai/ Ollama:https://ollama.ai/download 本文以 Ollama 为例 step1 首先下…

STM32_启动流程详解

目录标题 前言 启动流程概述复位中断函数详解SystemInit函数详解 __main函数详解 附录 stm32单片机的存储器映像中断向量表的映射 前言 最近在学习IAP远程OTA升级单片机固件程序,发现自己对单片机的启动流程还不是那么了解,就总结整理一下吧。 启动流程…

QT实现四则运算计算器

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this);this->setMaximumSize(240,300);this->setMinimumSize(240,300);this->setWindowTitle("计算器&…

node.js mongoose简述

目录 官方文档 mongoose Schema Model Query document 关系 官方文档 Mongoose v8.0.3: Getting Started mongoose Mongoose 是一个 Node.js 环境下 MongoDB 的对象建模工具。它提供了一种在应用程序中与 MongoDB 数据库进行交互的方式,使得开发者能够使用…

NoSQL 数据库有哪些典型应用?

前面的内容介绍了数据库读写分离和分库分表相关知识,都是针对关系型数据库的,即通常说的 RDBMS。除了关系型数据库,NoSQL 在项目开发中也有着越来越重要的作用,与此同时,NoSQL 相关的内容也是面试的常客。今天我们一起…