图的搜索(二):贝尔曼-福特算法、狄克斯特拉算法和A*算法

图的搜索(二):贝尔曼-福特算法、狄克斯特拉算法和A*算法

贝尔曼-福特算法

贝尔曼-福特(Bellman-Ford)算法是一种在图中求解最短路径问题的算法。最短路径问题就是在加权图指定了起点和终点的前提下,寻找从起点到终点的路径中权重总和最小的那条路径。

在这里插入图片描述

设置A为起点,G为终点。

在这里插入图片描述

首先设置各个顶点的初始权重 :起点为 0,其他顶点为无穷大(∞)。这个权重表示的是从 A 到该顶点的最短路径的暂定距离。随着计算往下进行,这个值会变得越来越小,最终收敛到正确的数值。

在这里插入图片描述

选中候补顶点,分别计算这条边从一端到另一端的权重,计算方法为:“顶点原本的权重+边的权重”

在这里插入图片描述

计算权重,如果计算结果小于顶点的值,就更新这个值。

如图,计算A到B的权重:顶点 B 的权重是无穷大,比 9 大,所以把它更新为 9。更新时需要记录计算的是从哪个顶点到该顶点的路径。

再次计算B到A的权重:B 的权重为 9,从 B 到 A 的权重便为 9+9=18。与顶点 A 现在的值 0 进行比较,因为现在的值更小,所以不更新。

A到C的路径计算同理。接下来计算B到C的路径。

在这里插入图片描述

在进行B-C计算时,发现A-C-B的路径比A-B的路径更短,于是更新如下:

在这里插入图片描述

接着对所有的边进行更新操作

在这里插入图片描述

更新完所有的边后,第 1 轮更新就结束了。接着,重复对所有边的更新操作,直到权重不能被更新为止。

在这里插入图片描述

第二轮更新后,顶点 B 的权重从 8 变成了 7,顶点 E 的权重从 9 变成了 8。接着进行第三轮更新。发现第三轮更新后,所有顶点的权重不再更新,操作结束。算法的搜索流程也就此结束,我们找到了从起点到其余各个顶点的最短路径。

在这里插入图片描述

根据搜索结果可知,从起点 A 到终点 G 的最短路径是 A-C-D-F-G,权重为 14。

将图的顶点数设为 n、边数设为 m。该算法经过 n 轮更新操作后就会停止,而在每轮更新操作中都需要对各个边进行 1 次确认,因此 1 轮更新所花费的时间就是 O(m),整体的时间复杂度就是 O(nm)。

有向图与以上步骤相同,只需按照边所指向的方向来计算即可。

计算最短路径时,边的权重代表的通常都是时间、距离或者路费等,因此基本都是非负数。不过,即便权重为负,贝尔曼 - 福特算法也可以正常运行。

如果闭环中有负数权重,就不存在最短路径。

狄克斯特拉算法

狄克斯特拉( Dijkstra)算法也是求解最短路径问题的算法,使用它可以求得从起点到终点的路径中权重总和最小的那条路径。

在这里插入图片描述

仍然设A为起点,G为终点。

在这里插入图片描述

与贝尔曼-福特算法相同,将起点设置为0,其他顶点设置为无穷大。设置从A出发,寻找可以从目前所在的顶点直达且尚未被搜索过的顶点,此处为顶点 B 和顶点 C,将它们设为下一步的候补顶点。

在这里插入图片描述

计算后结果如上图。计算方法是“目前所在顶点的权重+目前所在顶点到候补顶点的权重”。与贝尔曼-福特算法类似。

在这里插入图片描述

**从候补顶点中选出权重最小的顶点。**此处 B 的权重最小,那么路径 A-B 就是从起点 A 到顶点 B 的最短路径。确定了最短路径,移动到顶点B。

在这里插入图片描述

将可以从顶点B直达的顶点设为新的候补顶点,于是顶点 D 和顶点 E 也成为了候补。目前有三个候补顶点 C、D、E。

在这里插入图片描述

同理。在计算B到各顶点值后,比较各点值大小。其中B-C点的权重为8>5,所以不更新。确认了最短路径,移动到顶点D。计算D-E的权重为7>5,发现并不需要更新它。现在,有两个候补顶点(C和E)权重均为5,选择哪一个向下计算都可以。以下先选择C。

在这里插入图片描述

算出F点的权重后,回到E进行计算。

在这里插入图片描述

此时算出G点的权重为14。再次回到F,对F-G的权重进行计算得20>14。故G的最小权重为14。

在这里插入图片描述

最终得到的这颗橙色的树就 是最短路径树,它表示了起点到达各个顶点的最短路径。

比起需要对所有的边都重复计算权重和更新权重的贝尔曼 - 福特算法,狄克斯特拉算法多了一步选择顶点的操作,这使得它在求最短路径上更为高效。

将图的顶点数设为 n、边数设为 m,那么如果事先不进行任何处理,该算法的时 间复杂度就是 O( n²)。不过,如果对数据结构进行优化,那么时间复杂度就会变为 O(m + nlogn)。

有负数权重时不能使用狄克斯特拉算法

不存在负数权重时,更适合使用效率较高的狄克斯特拉算法,而存 在负数权重时,即便较为耗时,也应该使用可以得到正确答案的贝尔曼 - 福特算法。

A*算法

A*(A-Star)算法也是一种在图中求解最短路径问题的算法,由狄克斯特拉算法发展而来。

狄克斯特拉算法会从离起点近的顶点开始,按顺序求出起点到各个顶点的最短路径。也就是说,一些离终点较远的顶点的最短路径也会被计算出来,但这部分其实是无用的。与之不同,A* 就会预先估算一个值,并利用这个值来省去一些无用的计算。

在这里插入图片描述

先使用狄克斯特拉算法来求解以上迷宫的最短路径。

将迷宫看作是一个图,其中每个方块都是一个顶点,各顶点间的距离(权重)都为 1。

在这里插入图片描述

用狄克斯特拉算法求最短路径的结果会如上图所示,方块中的数字表示从起点到该顶点的距离(权重),蓝色和橙色的方块表示搜索过的区域,橙色方块同时还表示从 S 到 G 的最短路径。

狄克斯特拉算法只根据起点到候补顶点的距离来决定下一个顶点。因此,它无法发现蓝色箭头所指的这两条路径其实离终点越来越远,同 样会继续搜索。

在这里插入图片描述

而A* 算法不仅会考虑从起点到候补顶点的距离, 还会考虑从当前所在顶点到终点的估算距离。 这个估算距离可以自由设定,此处我们用的是将顶点到终点的直线距离四舍五入后的值。

由人工预先设定的估算距离被称为**“距离估算值”。如果事先根据已知信息设定合适的距离估算值,再将它作为启发信息辅助计算,搜索就会变得更加高效。这样的算法也成为启发式算法**。

在这里插入图片描述

从起点开始搜索。分别计算起点周围每个顶点的权重。计算方法是“从起点到该顶点的距离”(方块左下)加上 “距离估算值”(方块右下)。

在这里插入图片描述
选择一个权重最小的顶点,用橙色表示,并继续向后搜索。

在这里插入图片描述

按照顺序继续向下搜索。

在这里插入图片描述

在这里插入图片描述

搜索完毕如上图。可以看出基本不回去计算离终点太远的区域。

如果我们能得到一些启发信息,即各个顶点到终点的大致距离(这个距离不需是准确的值)我们就能使用 A* 算法。当然,有时这类信息是完全无法估算的,这时就不能使用 A* 算法。

距离估算值越接近当前顶点到终点的实际值,A* 算法的搜索效率也就越高;反过来,如果距离估算值与实际值相差较大,那么该算法的效率可能会比狄克斯特拉算法的还要低。如果差距再大一些,甚至可能无法得到正确答案。

不过,当距离估算值小于实际距离时,是一定可以得到正确答案的(只是如果没有设定合适的距离估算值,效率会变差)。

A* 算法在游戏编程中经常被用于计算敌人追赶玩家时的行动路线等,但由于该算法的计算量较大,所以可能会使游戏整体的运行速度变慢。因此在实际编程时,需要考虑结合其他算法,或者根据具体的应用场景做出相应调整。

参考资料:我的第一本算法书 (石田保辉 宮崎修一)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/226985.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Vue3使用了Vite和UnoCSS导致前端项目启动报错:Error:EMFILE:too many open files

一个 Vue3 的项目,用的是 Vite 打包,通过 npm run dev 运行时,遇到了以下错误(尤其是引入了 Element-Plus 后): Error: EMFILE: too many open files,后面是具体的文件路径。。甚至到了 node_mo…

5G工业物联网网关,比4G工业网关强在哪里?

​随着5G技术的广泛应用,越来越多的行业开始探索如何利用5G网络提升效率和创新能力。其中,工业物联网领域是受益最大的领域之一。作为连接物联网设备和网络的关键组件,5G工业物联网网关在这个变革中发挥着至关重要的作用。本文将深入探讨5G工…

惰性加载函数(js的问题)

在web开发中,因为浏览器之间的实现差异,一些嗅探工作总是不可避免。 var addEvent function( elem, type, handler ){if ( window.addEventListener ){return elem.addEventListener( type, handler, false );}if ( window.attachEvent ){return elem.…

指针进阶篇

指针的基本概念: 指针是一个变量,对应内存中唯一的一个地址指针在32位平台下的大小是4字节,在64位平台下是8字节指针是有类型的,指针类型决定该指针的步长,即走一步是多长指针运算:指针-指针表示的是两个指…

Pandas实践_变形

文章目录 一、长宽表的变形1.pivot2.pivot_table3.melt4.wide_to_long 二、索引的变形1.stack与unstack2.聚合与变形的关系 三、其他变形函数1.crosstab2.explode3.get_dummies 一、长宽表的变形 什么是长表?什么是宽表?这个概念是对于某一个特征而言的…

赛氪为第五届全球校园人工智能算法精英大赛决赛选手保驾护航

12月10日,以“智青春算未来”为主题的2023年第五届全球校园人工智能算法精英大赛全国总决赛在河海大学江宁校区举行。本次大赛由江苏省人工智能学会主办,自9月份启动以来,共吸引了全国近400所高校的3000多支参赛团队参加。经过校赛、省赛选拔…

nlp与cv的发展

Transformer的出现,促进了更高容量模型的建立,为大模型的出现奠定基础. 🧐大模型通常具有十亿个以上参数(仅供参考) 😮左边的蓝色是CV领域、右下绿色是NLP、右上蓝色是多模态😃基础模型(Foundational Models)首次由Bommasani等人在《Stanford…

Spring boot 配置参数

# ---------------------------------------- 2 # CORE PROPERTIES 3 # ---------------------------------------- 4 5 # SPRING 相关配置 (ConfigFileApplicationListener) 6 spring.config.name # config file name (default to application) 7 spring.config.location # lo…

服务总线SpringCloudBus

1 简介 为了使用户微服务能够及时感知到Git仓库中配置文件的修改,可以使用SpringCloud Bus来实现配置的自动更新。 SpringCloud Bus底层是基于RabbitMQ实现的,默认使用本地的消息队列服务。它是用轻量级的消息代理将分布式的系统连接起来,用…

和为K的子数组(LeetCode 560)

文章目录 1.问题描述2.难度等级3.热门指数4.解题思路方法一:枚举方法二:前缀和 哈希表优化 参考文献 1.问题描述 给你一个整数数组 nums 和一个整数 k ,请你统计并返回 该数组中和为 k 的子数组的个数 。 子数组是数组中元素的连续非空序列…

HTTP代理服务器脚本录制

1、报错1 target controller is configured to “use recording Controller“ but no such controller exists,ensure_target controller is configured to "use recording -CSDN博客

等等Domino 14.0FP1

大家好,才是真的好。 节奏确实太快了,有时候我深感我也追不上。 以前Notes Domino是三年磨一剑,也就说每三年才发一个大版本,从2019年开始,进行了高频提速,居然一年一个大版本! 周末&#xf…

NAT——网络地址转换

目录 一、概念 二、NAT的分类 1.静态NAT 1.1 静态NAT的配置 1.2 利用eNSP小实验加强对静态NAT的理解 2、动态NAT 三、NAPT——端口映射 四、Easy IP 使用一个公网地址可以让所有人都上公网 一、概念 随着Internet的发展和网络应用的增多,IPv4地址枯竭已经成为…

jmeter 如何循环使用接口返回的多值?

有同学在用jmeter做接口测试的时候,经常会遇到这样一种情况: 就是一个接口请求返回了多个值,然后下一个接口想循环使用前一个接口的返回值。 这种要怎么做呢? 有一定基础的人,可能第一反应就是先提取前一个接口返回…

在Node.js中MongoDB排序的方法

本文主要介绍在Node.js中MongoDB排序的方法。 目录 Node.js中MongoDB排序使用原生的mongodb驱动程序进行排序使用Mongoose库中的排序 Node.js中MongoDB排序 在Node.js中使用MongoDB进行排序,可以使用原生的mongodb驱动程序或者Mongoose库。 使用原生的mongodb驱动…

K8s中Service Account和RBAC

一.Service Account详解 1.什么是Service Account? ①.ServiceAccount(服务账户)是Kubernetes集群中的一种资源对象,用于为Pod或其他资源提供身份验证和授权,以便它们能够与Kubernetes API进行交互。 ②.ServiceAcc…

改进lora-scripts,支持SDXL训练,以及启动脚本

分享下自己改进的一个lora训练脚本,在ubuntu下如果SD-WEBUI的环境已经搭好的话,只需要下载lora-script就可以支持训练了,直接命令行方式训练。 首先,我们需要克隆下项目: git clone https://github.com/Akegarasu/lo…

黑色翻页时钟HTML源码-倒计时单页翻页时钟

黑色翻页时钟HTML源码-倒计时单页翻页时钟这是一个类似fliqlo的黑色翻页时钟HTML源码,它仅包含一个HTML文件,上传到网站后即可使用。该时钟具有查看当前时间、秒表和倒计时功能,并且可以在页面的右下角进行设置。 红色动态炫酷数字时钟html网…

八股文打卡day1——计算机网络(1)

面试题:从输入 URL 到页面展示到底发生了什么? 我的回答: 1.首先在浏览器缓存中寻找该页面资源。如果找到了,就返回页面资源。如果没找到,就进行网络请求。 2.在进行网络请求前,先进行DNS的解析&#xff…

【已解决】在使用poi-tl生成的word文档时候,怎么添加目录?poi-tl生成目录解决办法

需求: 需求的报告模板中大概包括标题、目录、前言、章节(根据模板动态生成的标题文字表格图片),其中目录需要根据章节的实际情况动态生成。在网上没有找到什么好的解决方案,请教一下实现思路,非常感谢。 …