Transformer的学习

文章目录

  • Transformer
    • 1.了解Seq2Seq任务
    • 2.Transformer 整体架构
    • 3.Encoder的运作方式
    • 4.Decoder的运作方式
    • 5.AT 与 NAT
    • 6.Encoder 和 Decoder 之间的互动
    • 7.Training

Transformer

1.了解Seq2Seq任务

NLP 的问题,都可以看做是 QA(Question Answering)的问题,QA 的问题可以看做是 Sequence to Sequence 的问题。

Sequence to Sequence 是一个常见的任务类型,例如:语音识别、语音翻译(语音辨识)、机器翻译、Chatbot、Text-to-Speech (TTS) Synthesis(文本到语音合成)、语法分析、多标签分类、目标检测等等。

image-20231214174439817

image-20231215151943187

Sequence to Sequence 任务可以由各种序列模型执行,其中 RNN 模型是经典的用于序列数据的模型,而随着 Transformer 的出现和成功,它已经在许多序列任务中取代了传统的RNN架构。

Transformer 实际上就是一个关于 Seq2Seq 的 model


2.Transformer 整体架构

image-20231215155457110

整体架构分为两部分:Encoder 与 Decoder

3.Encoder的运作方式

Encoder 做的就是输入一个Vector sequence,输出一个Vector sequence.

Alt

Encoder的运作方式如下所示:

Encoder 里面是由多个 Block 组成的,经过多个 Block 的堆叠,最后得到一个Vector sequence.

image-20231215160756468

每个 Block 所做的事情如下:对于输入的每一个 Vector sequence,首先通过 Multi-Head Attention 得到输出 a a a,然后通过残差连接得到 a + b a+b a+b,之后通过 Layer Norm 得到正则化后的Vector sequence,接着送到 Fully Connection layer,同样使用残差连接并使用 Layer Norm 得到 Encoder 的输出。

Alt

4.Decoder的运作方式

Decoder 可以分为:Decoder-Autoregressive(AT) 与 Decoder-Non-autoregressive(NAT),在transformer中使用的是 Decoder-Autoressive.

Decoder 做了什么?

  • Decoder 部分首先输入一个 START,经过 Decoder 并且使用 Softmax 就会得到一个概率分布,然后对这个概率分布使用 max 得到概率最大的那个值(也就是one-hot编码)。

Alt

  • 紧接着,将得到的输出作为输入,送入 Decoder ,不断的迭代这个过程,就得到了最后的输出。

Alt

在 Decoder 中用了一个 Masked Multi-Head Attention.

Alt

Masked Self-atttention 每次一个 vector 在输出的时候,不可以看右边的部分,也就是说在产生 b 1 b^1 b1 的时候不能在考虑 a 2 , a 3 , a 4 a^2,a^3,a^4 a2,a3,a4,产生 b 2 b^2 b2 的时候不能考虑 a 3 , a 4 a^3,a^4 a3,a4,产生 b 3 b^3 b3 的时候不能考虑 a 4 a^4 a4 ,产生 b 4 b^4 b4 的时候就可以考虑全部的信息了。

Alt

具体细节如下图所示:

Alt

目前的这个 Decoder 运作机制不知道它应该什么时候停下来。

为了让其停下来,所以要有一个END的标记。

image-20231215102329600

通过这个 END 的标记来让模型停下来。

5.AT 与 NAT

image-20231215103750514

AT Decoder 传入的是一个 START,然后一个一个的进行输出。NAT Decoder 直接传入多个 START,同时输出。

NAT好处:平行化,一个步骤产生出完整的句子,可以控制输出的长度。(怎么控制?可能会有一个 classifier 来决定输出的长度;或者输入很多个 START,那么就会输出很多个输出,忽略 END 之后的输出)

6.Encoder 和 Decoder 之间的互动

Alt

Encoder 和 Decoder 之间的互动是通过 Cross attention 机制进行互动的。主要过程就是将 Decoder 中通过第一个 Masked Multi-Head Attention 以及 Add 与 Norm 后的 vector sequence 与 encoder 输出中的所有 vector sequence 进行 qkv 的计算。计算流程见下图:

①第一个输出的计算

image-20231215110035112

②第二个输出的计算

image-20231215110055526

7.Training

image-20231215111338358

在decoder输入的时候,要输入正确的答案(Teacher Forcing技术,使用真实的标签作为输入)

把正确答案 Ground truth 给模型,让其与 distribution 进行 cross entropy,每一个输出有一个cross entropy,将这些 cross entropy 求和,进行梯度下降,求解最好的参数,希望 decoder 的输出跟正确答案越接近越好。


参考链接:

【强烈推荐!台大李宏毅自注意力机制和Transformer详解!】 https://www.bilibili.com/video/BV1v3411r78R/?p=3&share_source=copy_web&vd_source=a36f62f9fcd2efea97449039538032fa

😃😃😃

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/226738.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

只要陪着你——来自歌手朱卫明的音乐与情感的交织

在这个五彩斑斓又纷繁复杂的世界中,情感是我们最珍贵的财富。有一种情感,它不受时间的限制,不受空间的束缚,它能够跨越四季,穿越风雨,那就是陪伴。朱卫明的歌声就是这种陪伴的象征,他用音乐为我…

vue自定义指令及常用的自定义指令封装

vue2 自定义指令 官网链接https://v2.cn.vuejs.org/v2/guide/custom-directive.html 指令注册 这里是一个 Vue2 的指令合集,详细的指令移步下面具体的指令文章,现在我们在这里要介绍如何在项目中统一管理和使用这些指令。 注册指令 单文件引入注册 …

机器学习的12个基础问题

1.阐述批归一化的意义 算法 1:批归一化变换,在一个 mini-batch 上应用于激活 x。 批归一化是一种用于训练神经网络模型的有效方法。这种方法的目标是对特征进行归一化处理(使每层网络的输出都经过激活),得到标准差为 …

O_APPEND影响写入追加,而不影响读文件

O_APPEND 标志用于打开文件时,对写入操作进行追加。它并不直接影响读取文件的操作。 当使用 O_APPEND 标志打开文件时,写入操作会自动将数据追加到文件的末尾,而无论文件指针的位置在哪里。这对于避免并发写入时的竞争条件非常有用&#xff…

腾讯云服务器优惠活动大全页面_全站搜优惠合集

腾讯云推出优惠全站搜页面 https://curl.qcloud.com/PPrF9NFe 在这个页面可以一键查询所需云服务器、轻量应用服务器、数据库、存储、CDN、网络、安全、大数据等云产品优惠活动大全,活动打开如下图: 腾讯云优惠全站搜 腾讯云优惠全站搜页面 txybk.com/go…

java-IO流

File类 引入 【1】文件,目录: 文件: 内存中存放的数据在计算机关机后就会消失。要长久保存数据,就要使用硬盘、光盘、U 盘等设备。为了便于数据的管理和检索,引入了“文件”的概念。一篇文章、一段视频、一个可执…

Element的安装以及基本使用

Element是基于Vue的网站组件库,用于快捷构建网页 像上面这样的样式 官网地址 Element - 网站快速成型工具 安装 npm i element-ui -S 装包命令 npm install babel-plugin-component -D 安装好之后会在package.json里面显示版本 在node_modules中会自动初始化一个 …

opencv中叠加Sobel算子与Laplacian算子实现边缘检测

1 边缘检测介绍 图像边缘检测技术是图像处理和计算机视觉等领域最基本的问题,也是经典的技术难题之一。如何快速、精确地提取图像边缘信息,一直是国内外的研究热点,同时边缘的检测也是图像处理中的一个难题。早期的经典算法包括边缘算子方法…

记录一次API报文替换点滴

1. 需求 各位盆友在日常开发中,有没有遇到上游接口突然不合作了,临时需要切换其他接口的情况?这不巧了,博主团队近期遇到了,又尴尬又忐忑。 尴尬的是临时通知不合作了,事前没有任何提醒; 忐忑…

MQTT 介绍与学习 —— 筑梦之路

之前写过的相关文章: MQTT协议(转载)——筑梦之路_mqtt url-CSDN博客 k8s 部署mqtt —— 筑梦之路-CSDN博客 CentOS 7 搭建mqtt服务——筑梦之路_腾讯云宝塔搭 centos 7.9.2009 x86_64 建标准mqtt服务器-CSDN博客 mqtt简介 MQTT&#xff…

Mysql数据库 19.Mysql 锁

MySQL锁 锁:锁是计算机用以协调多个进程间并发访问同一共享资源的一种机制,在数据库中,除传统的计算资源(CPU、RAM、I/O)的争用以外,数据也是一种供许多用户共享的资源,如何保证数据并发访问的一…

SpringBoot 自动装配原理---源码详解

目录 SpringBoot 自动装配原理源码流程详解:流程总结:条件匹配解释:其他解释: SpringBoot 自动装配原理 源码流程详解: 1、先看启动类,启动这个main方法,然后调用这个run方法。 2、把 启动类作…

城市货车通行码二维码解析

目录 说明 界面 下载 城市货车通行码二维码解析 说明 二维码扫描信息为: tmri://12123?ywlx1041&ewmeyJ0eHpiaCI6IjUxMDcwMDAwMDE0MyIsInR4em1jIjoiQeivgSIsImhwemwiOiIwMiIsImhwaG0iOiLlt51CMkwzMjYiLCJrc3JxIjoiMjAyMS0xMS0yOCIsImpzcnEiOiIyMDIyLTEyL…

Elasitcsearch--解决CPU使用率升高

原文网址:Elasitcsearch--解决CPU使用率升高_IT利刃出鞘的博客-CSDN博客 简介 本文介绍如何解决ES导致的CPU使用率升高的问题。 问题描述 线上环境 Elasticsearch CPU 使用率飙升常见问题如下: Elasticsearch 使用线程池来管理并发操作的 CPU 资源。…

智慧农业大数据可视化UI,数据展示平台(免费可视化大屏模版PS资料)

大屏幕展示方式可以实现信息的直观呈现与交互操作,使农业生产者能够一目了然地掌握有关农情、天气、土壤等数据信息,从而科学决策。智慧农业大数据可视化大屏是提升农业生产效益的一种重要工具。 现分享亩产效益指标、农业大数据可视化、农业数据展示平…

Flutter工具安装与环境搭建

1、下载 Flutter SDK,下载完成后,在需要放置SDK的地方解压即可。 注意: 请勿将 Flutter 有特殊字符或空格的路径下。请勿将 Flutter 安装在需要高权限的文件夹内,例如 C:\Program Files\。 2、配置环境变量 例如: …

NO-IOT翻频,什么是翻频,电信为什么翻频

1.1 翻频迁移最终的目的就是减少网络的相互干扰,提供使用质量. 1.2 随着与日俱增的网络规模的扩大,网内干扰已成了影响网络的质量标准之一,为了保障电信上网体验,满足用户日益增长的网速需求,更好的服务客户,电信针对…

缓存的定义及重要知识点

文章目录 缓存的意义缓存的定义缓存原理缓存的基本思想缓存的优势缓存的代价 缓存的重要知识点 缓存的意义 在互联网高访问量的前提下,缓存的使用,是提升系统性能、改善用户体验的唯一解决之道。 缓存的定义 缓存最初的含义,是指用于加速 …

宝塔PostgreSQL设置数据库远程访问

宝塔PostgreSQL设置数据库远程访问 宝塔的PostgreSQL1. 添加数据库2. 打开PostgreSQL设置界面3. 修改配置4. 重载配置/重启数据库 Docker的PostgreSQL1. postgresql.conf2. pg_hba.conf3. 重启数据库 注意其他问题 宝塔PostgreSQL设置数据库远程访问?docker容器Post…