互联网加竞赛 python+opencv+机器学习车牌识别

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 基于机器学习的车牌识别系统

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:4分
  • 工作量:4分
  • 创新点:3分

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate


1 课题介绍

1.1 系统简介

车牌识别这个系统,虽然传统,古老,却是包含了所有这四个特侦的一个大数据技术的缩影.

在车牌识别中,你需要处理的数据是图像中海量的像素单元;你处理的数据不再是传统的结构化数据,而是图像这种复杂的数据;如果不能在很短的时间内识别出车牌,那么系统就缺少意义;虽然一副图像中有很多的信息,但可能仅仅只有那一小块的信息(车牌)以及车身的颜色是你关心,而且这些信息都蕴含着巨大的价值。也就是说,车牌识别系统事实上就是现在火热的大数据技术在某个领域的一个聚焦,通过了解车牌识别系统,可以很好的帮助你理解大数据技术的内涵,也能清楚的认识到大数据的价值。

1.2 系统要求

  • 它基于openCV这个开源库,这意味着所有它的代码都可以轻易的获取。
  • 它能够识别中文,例如车牌为苏EUK722的图片,它可以准确地输出std:string类型的"苏EUK722"的结果。
  • 它的识别率较高。目前情况下,字符识别已经可以达到90%以上的精度。

1.3 系统架构

整体包含两个系统:

  • 车牌检测
  • 车牌字体识别(中文 + 数字 + 英文)

整体架构如下:
在这里插入图片描述

2 实现方式

2.1 车牌检测技术

车牌检测(Plate Detection):

对一个包含车牌的图像进行分析,最终截取出只包含车牌的一个图块。这个步骤的主要目的是降低了在车牌识别过程中的计算量。如果直接对原始的图像进行车牌识别,会非常的慢,因此需要检测的过程。在本系统中,我们使用SVM(支持向量机)这个机器学习算法去判别截取的图块是否是真的“车牌”。

车牌检测这里不详细说明, 只贴出opencv图像处理流程, 需要代码的可以留下邮箱

在这里插入图片描述
使用到的图像处理算法

  • 高斯模糊
  • 灰度化处理
  • Sobel算子(边缘检测)
  • 开操作
  • 闭操作
  • 仿射变换
  • 霍姆线性检测
  • 角度矫正

2.2 车牌识别技术

字符识别(Chars Recognition):

有的书上也叫Plate
Recognition,我为了与整个系统的名称做区分,所以改为此名字。这个步骤的主要目的就是从上一个车牌检测步骤中获取到的车牌图像,进行光学字符识别(OCR)这个过程。其中用到的机器学习算法是著名的人工神经网络(ANN)中的多层感知机(MLP)模型。最近一段时间非常火的“深度学习”其实就是多隐层的人工神经网络,与其有非常紧密的联系。通过了解光学字符识别(OCR)这个过程,也可以知晓深度学习所基于的人工神经网路技术的一些内容。

我们这里使用深度学习的方式来对车牌字符进行识别, 为什么不用传统的机器学习进行识别呢, 看图就知道了:
在这里插入图片描述
图2 深度学习(右)与PCA技术(左)的对比
可以看出深度学习对于数据的分类能力的优势。

这里博主使用生成对抗网络进行字符识别训练, 效果相当不错, 识别精度达到了98%

在这里插入图片描述

2.3 SVM识别字符

定义

    class SVM(StatModel):def __init__(self, C = 1, gamma = 0.5):self.model = cv2.ml.SVM_create()self.model.setGamma(gamma)self.model.setC(C)self.model.setKernel(cv2.ml.SVM_RBF)self.model.setType(cv2.ml.SVM_C_SVC)#训练svmdef train(self, samples, responses):self.model.train(samples, cv2.ml.ROW_SAMPLE, responses)

调用方法,喂数据

    def train_svm(self):#识别英文字母和数字self.model = SVM(C=1, gamma=0.5)#识别中文self.modelchinese = SVM(C=1, gamma=0.5)if os.path.exists("svm.dat"):self.model.load("svm.dat")

训练,保存模型

else:
​    			chars_train = []
​    			chars_label = []for root, dirs, files in os.walk("train\\chars2"):if len(os.path.basename(root)) > 1:continueroot_int = ord(os.path.basename(root))for filename in files:filepath = os.path.join(root,filename)digit_img = cv2.imread(filepath)digit_img = cv2.cvtColor(digit_img, cv2.COLOR_BGR2GRAY)chars_train.append(digit_img)#chars_label.append(1)chars_label.append(root_int)chars_train = list(map(deskew, chars_train))chars_train = preprocess_hog(chars_train)#chars_train = chars_train.reshape(-1, 20, 20).astype(np.float32)chars_label = np.array(chars_label)print(chars_train.shape)self.model.train(chars_train, chars_label)

车牌字符数据集如下

在这里插入图片描述
在这里插入图片描述

这些是字母的训练数据,同样的还有我们车牌的省份简写:

在这里插入图片描述

在这里插入图片描述

核心代码

   predict_result = []roi = Nonecard_color = Nonefor i, color in enumerate(colors):if color in ("blue", "yello", "green"):card_img = card_imgs[i]gray_img = cv2.cvtColor(card_img, cv2.COLOR_BGR2GRAY)#黄、绿车牌字符比背景暗、与蓝车牌刚好相反,所以黄、绿车牌需要反向if color == "green" or color == "yello":gray_img = cv2.bitwise_not(gray_img)ret, gray_img = cv2.threshold(gray_img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)#查找水平直方图波峰x_histogram  = np.sum(gray_img, axis=1)x_min = np.min(x_histogram)x_average = np.sum(x_histogram)/x_histogram.shape[0]x_threshold = (x_min + x_average)/2wave_peaks = find_waves(x_threshold, x_histogram)if len(wave_peaks) == 0:print("peak less 0:")continue#认为水平方向,最大的波峰为车牌区域wave = max(wave_peaks, key=lambda x:x[1]-x[0])gray_img = gray_img[wave[0]:wave[1]]#查找垂直直方图波峰row_num, col_num= gray_img.shape[:2]#去掉车牌上下边缘1个像素,避免白边影响阈值判断gray_img = gray_img[1:row_num-1]y_histogram = np.sum(gray_img, axis=0)y_min = np.min(y_histogram)y_average = np.sum(y_histogram)/y_histogram.shape[0]y_threshold = (y_min + y_average)/5#U和0要求阈值偏小,否则U和0会被分成两半wave_peaks = find_waves(y_threshold, y_histogram)#for wave in wave_peaks:#	cv2.line(card_img, pt1=(wave[0], 5), pt2=(wave[1], 5), color=(0, 0, 255), thickness=2) #车牌字符数应大于6if len(wave_peaks) <= 6:print("peak less 1:", len(wave_peaks))continuewave = max(wave_peaks, key=lambda x:x[1]-x[0])max_wave_dis = wave[1] - wave[0]#判断是否是左侧车牌边缘if wave_peaks[0][1] - wave_peaks[0][0] < max_wave_dis/3 and wave_peaks[0][0] == 0:wave_peaks.pop(0)#组合分离汉字cur_dis = 0for i,wave in enumerate(wave_peaks):if wave[1] - wave[0] + cur_dis > max_wave_dis * 0.6:breakelse:cur_dis += wave[1] - wave[0]if i > 0:wave = (wave_peaks[0][0], wave_peaks[i][1])wave_peaks = wave_peaks[i+1:]wave_peaks.insert(0, wave)#去除车牌上的分隔点point = wave_peaks[2]if point[1] - point[0] < max_wave_dis/3:point_img = gray_img[:,point[0]:point[1]]if np.mean(point_img) < 255/5:wave_peaks.pop(2)if len(wave_peaks) <= 6:print("peak less 2:", len(wave_peaks))continuepart_cards = seperate_card(gray_img, wave_peaks)for i, part_card in enumerate(part_cards):#可能是固定车牌的铆钉if np.mean(part_card) < 255/5:print("a point")continuepart_card_old = part_cardw = abs(part_card.shape[1] - SZ)//2part_card = cv2.copyMakeBorder(part_card, 0, 0, w, w, cv2.BORDER_CONSTANT, value = [0,0,0])part_card = cv2.resize(part_card, (SZ, SZ), interpolation=cv2.INTER_AREA)#part_card = deskew(part_card)part_card = preprocess_hog([part_card])if i == 0:resp = self.modelchinese.predict(part_card)charactor = provinces[int(resp[0]) - PROVINCE_START]else:resp = self.model.predict(part_card)charactor = chr(resp[0])#判断最后一个数是否是车牌边缘,假设车牌边缘被认为是1if charactor == "1" and i == len(part_cards)-1:if part_card_old.shape[0]/part_card_old.shape[1] >= 7:#1太细,认为是边缘continuepredict_result.append(charactor)roi = card_imgcard_color = colorbreakreturn predict_result, roi, card_color#识别到的字符、定位的车牌图像、车牌颜色

2.4 最终效果

最后算法部分可以和你想要的任何UI配置到一起:

可以这样 :
在这里插入图片描述

也可以这样:
在这里插入图片描述

甚至更加复杂一点:
在这里插入图片描述

最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/226291.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

算法:程序员的数学读书笔记

目录 ​0的故事 ​一、按位计数法 二、不使用按位计数法的罗马数字 三、十进制转二进制​​​​​​​ ​四、0所起到的作用​​​​​​​ 逻辑 一、为何逻辑如此重要 二、兼顾完整性和排他性 三、逻辑 四、德摩根定律 五、真值表 六、文氏图 七、卡诺图 八、逻…

vector——OJ题

&#x1f4d8;北尘_&#xff1a;个人主页 &#x1f30e;个人专栏:《Linux操作系统》《经典算法试题 》《C》 《数据结构与算法》 ☀️走在路上&#xff0c;不忘来时的初心 文章目录 一、只出现一次的数字1、题目讲解2、思路讲解3、代码实现 二、杨辉三角1、题目讲解2、思路讲解…

用postman进行web端自动化测试

前言 概括说一下&#xff0c;web接口自动化测试就是模拟人的操作来进行功能自动化&#xff0c;主要用来跑通业务流程。 主要有两种请求方式&#xff1a;post和get&#xff0c;get请求一般用来查看网页信息&#xff1b;post请求一般用来更改请求参数&#xff0c;查看结果是否正…

数据结构-迷宫问题

文章目录 1、题目描述2、题目分析3、代码实现 1、题目描述 题目链接&#xff1a;迷宫问题 、 注意不能斜着走&#xff01; 2、题目分析 &#xff08;1&#xff09;0为可以走&#xff0c;1不能走且只有唯一一条通路 &#xff08;2&#xff09;我们可以通过判断上下左右来确定…

vue 在for循环中设置ref并获取$refs

一、单循环动态设置ref 1.设置&#xff1a;【:ref“‘XXX’ index”】XXX -->自定义ref的名字 2.获取&#xff1a;let ref eval(‘this.$refs.XXX’ index)[0] 3.示例&#xff1a; 代码如下所示 <template><div class"ref_test"><div v-fo…

两线制(V/F,I/F)频率脉冲信号转换器

两线制(V/F,I/F)频率脉冲信号转换器 型号&#xff1a;JSD TAF-1021S V/F,I/F频率脉冲信号转换器 型号&#xff1a;JSD TAF-1001S 高端型 型号&#xff1a;JSD TAF-1001D 经济型&#xff0c;价格优惠 新款V/F,I/F频率脉冲信号转换器属升级款&#xff0c;产品从性能&#xf…

邮政快递查询,邮政快递单号查询,根据更新量筛选出需要的单号

批量查询邮政快递单号的物流信息&#xff0c;并根据物流更新量将需要的单号筛选出来。 所需工具&#xff1a; 一个【快递批量查询高手】软件 邮政快递单号若干 操作步骤&#xff1a; 步骤1&#xff1a;运行【快递批量查询高手】软件&#xff0c;第一次使用的伙伴记得先注册&…

指针相关知识(进阶)

前面的入门中已经介绍了指针的基础知识&#xff0c;接下来&#xff0c;让我们继续学习吧&#xff01; 一. 字符指针变量 char* 一般形式 int main() {char n w;char* pa &n;*pa w;return 0; } 这并不是把字符串hello world放在n中&#xff0c;而是把第一个字符的地址…

开辟“护眼绿洲”,荣耀何以为师?

文 | 智能相对论 作者 | 佘凯文 俗话说&#xff0c;眼睛是心灵的窗户&#xff0c;可如今&#xff0c;人们对于这扇“窗户”的保护&#xff0c;似乎越来越不重视。 据人民日报今年发布的调查显示&#xff0c;中国眼病患病人数2.1亿&#xff0c;近视患者人数多达6亿&#xff0…

干货分享|数据驱动消费者价值提升实践

数据如何驱动消费者价值提升&#xff1f;围绕该话题&#xff0c;神策数据品牌零售事业部总经理刘洋从运营挑战、价值主张、解决方案三个方面做了完整分享。 一、数据化运营面临的挑战 1、数据与全域业务打通。品牌数据量庞大&#xff0c;种类较多&#xff0c;独立存在&#xff…

C++使用UDP

C使用UDP 对C使用UDP做了简单封装&#xff0c;可直接运行 头文件udp.h #pragma once #include <Winsock.h> #pragma comment(lib,"WS2_32.lib")#define LOCAL_IP_ADDR INADDR_ANY //当前应用程序接收的IP地址 #define LOCAL_PORT 9527 …

上手第一关,手把手教你安装kafka与可视化工具kafka-eagle

上手第一关&#xff0c;手把手教你安装kafka与可视化工具kafka-eagle 一、环境与下载二、安装三、启动1. 启动ZK2. 启动Kafka 四、可视化工具 EFAK(kafka-eagle)1. kafka开启JMX2. 下载及配置3. 启动故障及解决① 错误信息 C:\Program is not recognized as an internal or ext…

灾备建设中,虚拟机异构平台恢复技术原理与应用

在如今混合云环境下&#xff0c;实现异构虚拟化恢复与迁移面临着极大挑战。不同于市面上有代理的恢复方案&#xff0c;虚拟机无代理跨平台恢复解决方案利用自主研发的转换引擎&#xff08;VMCE&#xff09;对已备份虚拟机文件进行高效的存储格式转换和配置信息转换&#xff0c;…

运营微信视频号要注意哪些问题?

视频号运营的5个雷点你别踩! 今天和你说的视频号运营的5大雷点 你踩过没? 这5点虽然和野花似的 但也不能踩哦 雷点1:违规行为 雷点2:抄袭剽窃 雷点3:没有明确目标受众 雷点4:短视频质量过低 雷点5:缺少社交互动 相信不管是视频号还是别的平台都通用哈

docker consul容器自动与注册

微服务&#xff08;容器&#xff09;注册与发现&#xff1a;是一种分布式的管理系统&#xff0c;定位服务的方法。 在传统架构当中&#xff0c;应用程序之间直连到已知服务&#xff0c;设备提供的网络&#xff1a;IP地址&#xff0c;基于tcp/ip&#xff0c;端口&#x…

flume:Ncat: Connection refused.

一&#xff1a;nc -lk 44444 和 nc localhost 44444区别 nc -lk 44444 和 nc localhost 44444 是使用 nc 命令进行网络通信时的两种不同方式。 1. nc -lk 44444&#xff1a; - 这个命令表示在本地监听指定端口&#xff08;44444&#xff09;并接受传入的连接。 - -l 选项…

Google 论坛和 QA 结构化数据更新重点关注 Authorship

谷歌更新了论坛结构化数据和问答结构化数据的文档&#xff0c;明确了这两种结构化数据与作者身份相关的新要求。 就论坛结构化数据而言&#xff0c;对 InteractionCounter schema.org 数据类型进行了说明&#xff0c;还为作者类型增加了一个新的推荐属性&#xff0c;这两个属性…

AutoSAR(基础入门篇)1.3-AutoSAR的概述

目录 一、到底什么是AutoSAR 1、大白话来讲 2、架构上来讲 应用软件层(APPL) 实时运行环境&#xff08;RTE&#xff09; 基础软件层(BSW) 3、工具链上来讲 二、AutoSAR的目标 一、到底什么是AutoSAR 1、大白话来讲 AUTOSAR 就是AUTomotive Open System ARchitecture的…

nginx 1.24.0 安装nginx最新稳定版

1.官网&#xff1a; nginx: download 2. 选择稳定版&#xff1a; 3. 可以下载&#xff0c;然后上传服务器&#xff0c;也可以wget获取&#xff1a; cd /home wget https://nginx.p2hp.com/download/nginx-1.24.0.tar.gz 4. 放入/home 下。并解压缩&#xff0c;重命名nginx;…

【教学类-06-18】20231216 (按“列”正序题)X-Y之间“加法题+题”(1页最多0-13。不考虑空格补全)

作品展示&#xff1a;按列排序&#xff0c;从小到大正序&#xff08;有空格&#xff09; 背景需求&#xff1a; 55格模板&#xff0c;很多幼儿都是按照“列”的方式&#xff0c;从上到下&#xff0c;从左向右完成题目的。 视觉上&#xff0c;两列之间间距大&#xff08;给孩子…