QuPath学习 ② HE scripts

文献中详细介绍了处理H&E scripts的详细过程,计算H&E染色的全切片中的肿瘤基质百分比。

步骤:

1.将相关幻灯片添加到QuPath项目中。

2.对于项目中的每张幻灯片,围绕一个有代表性的肿瘤区域绘制一个注释。

3.运行“Estimate _ background _ values . groovy”来自动确定适当的“白色”值,以改进光学计算 密度。这是可选的,但可能对较暗的扫描有帮助;它预先假定背景区域在图像中的某处是可用的。

4.运行“H&E_superpixels_script.groovy”来计算注释区域内的超像素和特征。

5.使用“分类->创建检测分类器”以交互方式训练分类器,以区分 形象。完成后,将此分类器应用于所有图像。

6.运行' Export_H&E_tumor_areas.groovy '来导出结果

1,Estimate_background_values.groovy
/**
* Script to estimate the background value in a brightfield whole slide image.
*
* This effectively looks for the circle of a specified radius with the highest
* mean intensity (summed across all 3 RGB channels), and takes the mean red,
* green and blue within this circle as the background values.
*
* The background values are then set in the ColorDeconvolutionStains object
* for the ImageData, so that they are used for any optical density calculations.
*
* This is implemented with the help of ImageJ (www.imagej.net).
*
* @author Pete Bankhead
*/
import ij.plugin.filter.RankFilters
import ij.process.ColorProcessor
import qupath.imagej.images.servers.ImagePlusServerBuilder
import qupath.lib.common.ColorTools
import qupath.lib.regions.RegionRequest
import qupath.lib.scripting.QP
// Radius used for background search, in microns (will be used approximately)
double radiusMicrons = 1000
// Calculate a suitable 'preferred' pixel size
// Keep in mind that downsampling involves a form of smoothing, so we just choose
// a reasonable filter size and then adapt the image resolution accordingly
double radiusPixels = 10
double requestedPixelSizeMicrons = radiusMicrons / radiusPixels
// Get the ImageData & ImageServer
def imageData = QP.getCurrentImageData()
def server = imageData.getServer()
// Check we have the right kind of data
if (!imageData.isBrightfield() || !server.isRGB()) {print("ERROR: Only brightfield RGB images can be processed with this script, sorry")return
}
// Extract pixel size
double pixelSize = server.getAveragedPixelSizeMicrons()
// Choose a default if we need one (i.e. if the pixel size is missing from the image metadata)
if (Double.isNaN(pixelSize))pixelSize = 0.5
// Figure out suitable downsampling value
double downsample = Math.round(requestedPixelSizeMicrons / pixelSize)
// Get a downsampled version of the image as an ImagePlus (for ImageJ)
def request = RegionRequest.createInstance(server.getPath(), downsample, 0, 0, server.getWidth(), server.getHeight())
def serverIJ = ImagePlusServerBuilder.ensureImagePlusWholeSlideServer(server)
def pathImage = serverIJ.readImagePlusRegion(request)
// Check we have an RGB image (we should at this point)
def imp = pathImage.getImage(false)
def ip = imp.getProcessor()
if (!(ip instanceof ColorProcessor)) {print("Sorry, the background can only be set for a ColorProcessor, but the current ImageProcessor is " + ip)return
}
// Apply filter
if (ip.getWidth() <= radiusPixels*2 || ip.getHeight() <= radiusPixels*2) {print("The image is too small for the requested radius!")return
}
new RankFilters().rank(ip, radiusPixels, RankFilters.MEAN)
// Find the location of the maximum across all 3 channels
double maxValue = Double.NEGATIVE_INFINITY
double maxRed = 0
double maxGreen = 0
double maxBlue = 0
for (int y = radiusPixels; y < ip.getHeight()-radiusPixels; y++) {for (int x = radiusPixels; x < ip.getWidth()-radiusPixels; x++) {int rgb = ip.getPixel(x, y)int r = ColorTools.red(rgb)int g = ColorTools.green(rgb)int b = ColorTools.blue(rgb)double sum = r + g + bif (sum > maxValue) {maxValue = summaxRed = rmaxGreen = gmaxBlue = b}}
}
// Print the result
print("Background RGB values: " + maxRed + ", " + maxGreen + ", " + maxBlue)
// Set the ImageData stains
def stains = imageData.getColorDeconvolutionStains()
def stains2 = stains.changeMaxValues(maxRed, maxGreen, maxBlue)
imageData.setColorDeconvolutionStains(stains2)
2,H&E_superpixels_script.groovy
/*
* Generate superpixels & compute features for H&E tumor stromal analysis using QuPath.
* 
* @author Pete Bankhead
*/
// Compute superpixels within annotated regions
selectAnnotations()
runPlugin('qupath.imagej.superpixels.SLICSuperpixelsPlugin', '{"sigmaMicrons": 5.0, "spacingMicrons": 40.0, "maxIterations": 10, 
"regularization": 0.25, "adaptRegularization": false, "useDeconvolved": false}');
// Add Haralick texture features based on optical densities, and mean Hue for each superpixel
selectDetections();
runPlugin('qupath.lib.algorithms.IntensityFeaturesPlugin', '{"pixelSizeMicrons": 2.0, "region": "ROI", "tileSizeMicrons": 25.0, "colorOD": 
true, "colorStain1": false, "colorStain2": false, "colorStain3": false, "colorRed": false, "colorGreen": false, "colorBlue": false, 
"colorHue": true, "colorSaturation": false, "colorBrightness": false, "doMean": true, "doStdDev": false, "doMinMax": false, "doMedian": 
false, "doHaralick": true, "haralickDistance": 1, "haralickBins": 32}');
// Add smoothed measurements to each superpixel
selectAnnotations();
runPlugin('qupath.lib.plugins.objects.SmoothFeaturesPlugin', '{"fwhmMicrons": 50.0, "smoothWithinClasses": false, "useLegacyNames": 
false}');
3,Export_H&E_tumor_areas.groovy
/**
* Script to compute areas for detection objects with different classifications.
*
* Primarily useful for converting classified superpixels into areas.
*
* @author Pete Bankhead
*/
import qupath.lib.common.GeneralTools
import qupath.lib.gui.QuPathGUI
import qupath.lib.images.servers.ImageServer
import qupath.lib.objects.PathDetectionObject
import qupath.lib.objects.PathObject
import qupath.lib.objects.classes.PathClass
import qupath.lib.objects.classes.PathClassFactory
import qupath.lib.objects.hierarchy.PathObjectHierarchy
import qupath.lib.roi.interfaces.PathArea
import qupath.lib.roi.interfaces.ROI
import qupath.lib.scripting.QPEx
import qupath.lib.gui.ImageWriterTools
import qupath.lib.regions.RegionRequest
import java.awt.image.BufferedImage
//----------------------------------------------------------------------------
// If 'exportImages' is true, overview images will be written to an 'export' subdirectory
// of the current project, otherwise no images will be exported
boolean exportImages = true
// Define which classes to analyze, in terms of determining areas etc.
def classesToAnalyze = ["Tumor", "Stroma", "Other"]
// Format output 3 decimal places
int nDecimalPlaces = 3
// If the patient ID is encoded in the filename, a closure defined here can parse it
// (By default, this simply strips off anything after the final dot - assumed to be the file extension)
def parseUniqueIDFromFilename = { n ->int dotInd = n.lastIndexOf('.')if (dotInd < 0)return nreturn n.substring(0, dotInd)
}
// The following closure handled the specific naming scheme used for the images in the paper
// Uncomment to apply this, rather than the default method above
//parseUniqueIDFromFilename = {n ->
// def uniqueID = n.trim()
// if (uniqueID.charAt(3) == '-')
// uniqueID = uniqueID.substring(0, 3) + uniqueID.substring(4)
// return uniqueID.split("[-. ]")[0]
// }
//----------------------------------------------------------------------------
// Convert class name to PathClass objects
Set<PathClass> pathClasses = new TreeSet<>()
for (String className : classesToAnalyze) {pathClasses.add(PathClassFactory.getPathClass(className))
}
// Get a formatter
// Note: to run this script in earlier versions of QuPath, 
// change createFormatter to getFormatter
def formatter = GeneralTools.createFormatter(nDecimalPlaces)
// Get access to the current ImageServer - required for pixel size information
ImageServer<?> server = QPEx.getCurrentImageData().getServer()
double pxWidthMM = server.getPixelWidthMicrons() / 1000
double pxHeightMM = server.getPixelHeightMicrons() / 1000
// Get access to the current hierarchy
PathObjectHierarchy hierarchy = QPEx.getCurrentHierarchy()
// Loop through detection objects (here, superpixels) and increment total area calculations for each class
Map<PathClass, Double> areaMap = new TreeMap<>()
double areaTotalMM = 0
for (PathObject tile : hierarchy.getObjects(null, PathDetectionObject.class)) {// Check the classificationPathClass pathClass = tile.getPathClass()if (pathClass == null)continue// Add current areaROI roi = tile.getROI()if (roi instanceof PathArea) {double area = ((PathArea)roi).getScaledArea(pxWidthMM , pxHeightMM)areaTotalMM += areaif (areaMap.containsKey(pathClass))areaMap.put(pathClass, area + areaMap.get(pathClass))elseareaMap.put(pathClass, area)}
}
// Loop through each classification & prepare output
double areaSumMM = 0
double areaTumor = 0
double areaStroma = 0
// Include image name & ID
String delimiter = "\t"
StringBuilder sbHeadings = new StringBuilder("Image").append(delimiter).append("Unique ID")
String uniqueID = parseUniqueIDFromFilename(server.getShortServerName())
StringBuilder sb = new StringBuilder(server.getShortServerName()).append(delimiter).append(uniqueID)
// Compute areas per class
for (PathClass pathClass : pathClasses) {// Extract area from map - or zero, if it does not occur in the mapdouble area = areaMap.containsKey(pathClass) ? areaMap.get(pathClass) : 0// Update total & record tumor area, if requiredareaSumMM += areaif (pathClass.getName().toLowerCase().contains("tumor") || pathClass.getName().toLowerCase().contains("tumour"))areaTumor += areaif (pathClass.getName().toLowerCase().contains("stroma"))areaStroma += area// Display area for classificationsbHeadings.append(delimiter).append(pathClass.getName()).append(" Area mm^2")sb.append(delimiter).append(formatter.format(area))
}
// Append the total area
sbHeadings.append(delimiter).append("Total area mm^2")
sb.append(delimiter).append(formatter.format(areaTotalMM))
// Append the calculated stromal percentage
sbHeadings.append(delimiter).append("Stromal percentage")
sb.append(delimiter).append(formatter.format(areaStroma / (areaTumor + areaStroma) * 100.0))
// Export images in a project sub-directory, if required
if (exportImages) {// Create the directory, if requireddef path = QPEx.buildFilePath(QPEx.PROJECT_BASE_DIR, "export")QPEx.mkdirs(path)// We need to get the display settings (colors, line thicknesses, opacity etc.) from the current viewerdef overlayOptions = QuPathGUI.getInstance().getViewer().getOverlayOptions()def imageData = QPEx.getCurrentImageData()def name = uniqueID// Aim for an output resolution of approx 20 µm/pixeldouble requestedPixelSize = 20double downsample = requestedPixelSize / server.getAveragedPixelSizeMicrons()RegionRequest request = RegionRequest.createInstance(imageData.getServerPath(), downsample, 0, 0, server.getWidth(), server.getHeight())// Write output image, with and without overlaydef dir = new File(path)def fileImage = new File(dir, name + ".jpg")BufferedImage img = ImageWriterTools.writeImageRegion(imageData.getServer(), request, fileImage.getAbsolutePath())def fileImageWithOverlay = new File(dir, name + "-overlay.jpg")ImageWriterTools.writeImageRegionWithOverlay(img, imageData, overlayOptions, request, fileImageWithOverlay.getAbsolutePath())
}
// Write header to output file if it's empty, and print on screen
sbHeadings.append("\n")
sb.append("\n")
def fileOutput = new File(QPEx.buildFilePath(QPEx.PROJECT_BASE_DIR, "Results.txt"))
if (fileOutput.length() == 0) {print(sbHeadings.toString())fileOutput << sbHeadings.toString()
}
// Write data to output file & print on screen
fileOutput << sb.toString()
print(sb.toString())

参考:

1:QuPath: Open source software for digital pathology image analysis - PMC (nih.gov)

2:【WSI/QuPath】如何使用QuPath导出切片(patch/tile)-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/225886.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LeetCode190. Reverse Bits

文章目录 一、题目二、题解 一、题目 Reverse bits of a given 32 bits unsigned integer. Note: Note that in some languages, such as Java, there is no unsigned integer type. In this case, both input and output will be given as a signed integer type. They sho…

【Flink-Sql-Kafka-To-ClickHouse】使用 FlinkSql 将 Kafka 数据写入 ClickHouse

【Flink-Sql-Kafka-To-ClickHouse】使用 FlinkSql 将 Kafka 数据写入 ClickHouse 1&#xff09;需求分析2&#xff09;功能实现3&#xff09;准备工作3.1.Kafka3.2.ClickHouse 4&#xff09;Flink-Sql5&#xff09;验证 1&#xff09;需求分析 1、数据源为 Kafka&#xff0c;定…

每日一博 - Cache Miss Attack

文章目录 概述解决思路缓存空值键并设置短期 TTL&#xff08;生存时间&#xff09;使用布隆过滤器 伪代码1. 缓存空值键并设置短期 TTLa. 缓存空值键b. 设置短期 TTL 2. 使用布隆过滤器a. 集成布隆过滤器b. 查询布隆过滤器 进一步优化系统性能的建议 概述 在缓存管理中&#x…

基于VGG-16+Android+Python的智能车辆驾驶行为分析—深度学习算法应用(含全部工程源码)+数据集+模型(三)

目录 前言总体设计系统整体结构图系统流程图 运行环境模块实现1. 数据预处理2. 模型构建3. 模型训练及保存1&#xff09;模型训练2&#xff09;模型保存 4. 模型生成1&#xff09;模型导入及调用2&#xff09;相关代码&#xff08;1&#xff09;布局文件&#xff08;2&#xff…

bug-ku--计算器

F12 maxlength"1" 限制的是你能输入几位数 改成3就行 来那个数相相加就能输入了 flag{464f5f406e7e182014500fc49f7aedfc}

Mysql和Oracle的区别

MySQL 和 Oracle 是两种常用的关系型数据库管理系统&#xff08;RDBMS&#xff09;&#xff0c;它们有许多相似之处&#xff0c;也有一些显著的不同点。 相同点&#xff1a; 关系型数据库&#xff1a; MySQL 和 Oracle 都是关系型数据库&#xff0c;采用表&#xff08;table&a…

Vue3+Ts项目——登录页面跳转到首页

前言&#xff1a;根据我上篇所实现的左边菜单栏之后&#xff0c;需要登录成功跳转home页面。主要分为三步。 第一步&#xff1a;创建三个ts文件结合pinia缓存登录信息和token src\api\userTypes.ts 就是个接口类方便页面和另一个ts文件数据传递&#xff0c;其实也可以不用 …

【异步绘制】UIView刷新原理 与 异步绘制

快捷目录 壹、 iOS界面刷新机制贰、浅谈UIView的刷新与绘制概述一.UIView 与 CALayer1. UIView 与 CALayer的关系2. CALayer的一些常用属性contents属性contentGravity属性contentsScale属性maskToBounds属性contentsRect属性 二.View的布局与显示1.图像显示原理2.布局layoutSu…

【UE】在蓝图中修改材质实例的参数的两种方式

目录 方式一、通过“在材质上设置标量/向量参数值”节点实现 方式二、通过“设置标量/向量参数值”节点实现 方式一、通过“在材质上设置标量/向量参数值”节点实现 1. 在材质中设置了两个参数 2. 创建材质实例 3. 创建一个蓝图&#xff0c;对静态网格体赋予材质实例 在事件…

【C++初阶】类与对象(上)

类与对象&#xff08;上&#xff09; 1.面向过程和面向对象初步认识2.类的引入3.类的定义4.类的访问限定符及封装4.1 访问限定符4.2 封装 5.类的作用域6.类的实例化7.类对象模型7.1 如何计算类对象的大小7.2 结构体内存对齐规则 8.this指针8.1 this指针的引出8.2 this指针的特性…

C语言——高精度减法

相较于高精度加法&#xff0c;高精度减法会有一些不同&#xff0c;如果是num1 - num2的话&#xff0c;如果num1 > num2时&#xff0c;也就是结果为正时&#xff0c;只需要对每一位进行按位相减&#xff0c;如果不够就向下一位借位&#xff1b;但是如果是num1 < num2时&am…

【算法与数据结构】53、LeetCode最大子数组和

文章目录 一、题目二、解法三、完整代码 所有的LeetCode题解索引&#xff0c;可以看这篇文章——【算法和数据结构】LeetCode题解。 一、题目 二、解法 思路分析&#xff1a;程序一共两个变量&#xff0c;一个result一个count。result用来记录最终的结果&#xff0c;count记录当…

LAMP平台——构建PHP运行环境

在构建LAMP平台时&#xff0c;各组件的安装顺序依次为Linux、Apache、MySQL、PHP。其中Apache和 MySQL的安装并没有严格的顺序&#xff1b;而PHP环境的安装一般放到最后&#xff0c;负责沟通Web服务器和数据库 系统以协同工作。 PHP 即 Hypertext Preprocessor&#xff08;超级…

数据结构 之map/set练习

文章目录 1. 只出现一次的数字算法原理&#xff1a;代码&#xff1a; 2. 随机链表的复制算法原理&#xff1a;代码&#xff1a; 3. 宝石与石头算法原理&#xff1a;代码&#xff1a; 4. 坏键盘打字算法原理&#xff1a;代码&#xff1a; 5. 前K个高频单词算法原理&#xff1a;代…

图片的批量建码怎么做?一图一码的制作方法

在使用图片展示内容时&#xff0c;经常会有同一类型的图片信息是有区别的&#xff0c;如果需要将每张图片批量生成二维码图片&#xff0c;那么出了一张一张去制作之外&#xff0c;有没有能够一键批量建码的功能可以解决这个问题呢&#xff1f;下面来给大家分享一下图片批量建码…

SpringBoot 源码解析1:环境搭建

SpringBoot 源码解析1&#xff1a;环境搭建 1.项目结构2.pom.xml3.MyApplication 1.项目结构 最简单的spring-web项目 2.pom.xml <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns…

2023 年安徽省职业院校技能大赛信息安全管理与评估项目竞赛须知

2023 年安徽省职业院校技能大赛&#xff08;高职组&#xff09; “信息安全管理与评估”项目竞赛须知 一、参赛队须知 1.参赛队名称&#xff1a;统一使用规定的学校代表队名称&#xff0c;不接受跨市、跨校组队报名。 2.参赛队组成&#xff1a;本赛项为团体赛&#xff0c;以…

记删除CK不彻底问题 及 新增表TTL机制

问题背景&#xff1a;对CK表进行删除时&#xff0c;发现无法彻底删除&#xff0c;并报错如下&#xff1a; 同时也会有下面的报错信息&#xff1a; 解决过程&#xff1a; 确认CK 节点是否健康存活&#xff0c;select * from system.clusters 可以查看&#xff1b;确认CK元数据是…

redis中存储list<map>,list<entity>结构数据如何处理

redis中存储list结构数据如何处理 用到的工具类 1、序列化操作 String multiMapStr JSON.toJSONString(multiMapList); // list转换为json字符串 Object o JSON.parse(userList); // list转换为object List<Map<String, String>> maps CastBeanUtil.castListM…

基于ssm日用品网站设计论文

摘 要 现代经济快节奏发展以及不断完善升级的信息化技术&#xff0c;让传统数据信息的管理升级为软件存储&#xff0c;归纳&#xff0c;集中处理数据信息的管理方式。本日用品网站就是在这样的大环境下诞生&#xff0c;其可以帮助管理者在短时间内处理完毕庞大的数据信息&…