Logistic 回归算法

Logistic 回归

  • Logistic 回归算法
    • Logistic 回归简述
    • Sigmoid 函数
    • Logistic 回归模型表达式
    • 求解参数 $\theta $
    • 梯度上升优化算法
  • Logistic 回归简单实现
  • 使用 sklearn 构建 Logistic 回归分类器
  • Logistic 回归算法的优缺点

Logistic 回归算法

Logistic 回归简述

Logistic 回归是一种用于解决二分类问题的机器学习算法。虽然 Logistic Regression 中包含了 Regression 一词,但实际上逻辑回归是一种用于分类的方法,而不是回归。

Logistic 回归通过建立一个逻辑回归模型来预测离散的输出变量,该输出变量可以是 0 或 1。具体来说,该模型基于输入特征的线性组合,通过拟合一个逻辑函数(通常是 sigmoid 函数)将线性组合映射到 [0, 1] 的概率范围内,从而预测输入特征与离散输出变量之间的关系,并将输出映射到 0 或 1 两个不同的类别。

假设现在有一些数据点,我们利用一条直线对这些数据点进行拟合(该直线称为最佳拟合直线),这个拟合过程就称作为回归。如下图所示:

在这里插入图片描述

利用逻辑回归模型进行分类的主要思想:根据现有数据,对分类边界建立回归公式,以此进行分类。

Sigmoid 函数

想了解 Logistic 回归,首先需要了解 sigmoid 函数,其公式如下:
f ( x ) = 1 1 + e − x f(x) = \frac{1}{1 + e^{-x}} f(x)=1+ex1
sigmoid 函数曲线如下图所示:

在这里插入图片描述

Logistic 回归模型表达式

逻辑回归模型从本质上来说是一个基于条件概率的判别模型,逻辑回归模型的数学表达式如下:
p ( y = 1 ∣ x ) = 1 1 + e ( − z ) p ( y = 0 ∣ x ) = 1 − p ( y = 1 ∣ x ) p(y=1|x) = \frac{1}{1 + e^{(-z)}} \\ p(y=0|x) = 1 - p(y=1|x) p(y=1∣x)=1+e(z)1p(y=0∣x)=1p(y=1∣x)
其中, p ( y = 1 ∣ x ) p(y=1|x) p(y=1∣x) 表示给定输入 x x x 时,输出变量 y = 1 y=1 y=1 的概率, z z z 表示输入特征 x x x 的线性组合加上一个偏置项 b b b,即 z = ∑ i n w i x i + b z = \displaystyle\sum_{i}^{n}w_ix_i + b z=inwixi+b w i w_i wi 为特征 x i x_i xi 的权重,通过对训练数据进行最大似然估计或梯度下降等优化,可以确定最佳的权重参数 w w w 和偏置项 b b b

如果我们把 z z z 展开,那么可以得到如下:
$$
z = \begig{bmatrix} \theta_0
&\theta_1 &\cdots &\theta_n
\end{bmatrix}\begin{bmatrix}x_0
\ x_1
\ \vdots
\ x_n

\end{bmatrix} + b = \theta^Tx + b
$$

h θ ( x ) = g ( θ T x + b ) = g ( z ) = 1 1 + e − z h_\theta(x) = g(\theta^Tx + b) = g(z) = \frac{1}{1 + e^{-z}} hθ(x)=g(θTx+b)=g(z)=1+ez1

其中, θ \theta θ 是参数列向量(要求解的), x x x 是样本列向量(给定的数据集)。通过 sigmoid 函数可以将任意实数映射到 [0, 1] 区间。 h θ ( x ) h_\theta(x) hθ(x) 给出了输出变量为 1 1 1 的概率,比如 h θ ( x ) = 0.7 h_\theta(x)=0.7 hθ(x)=0.7 表示有 70 % 70\% 70% 的概率判定类别为 1 1 1,有 30 % 30\% 30% 的概率判定类别为 0 0 0

现在给出一个新的样本,如果我们能找到合适的参数列向量 θ ( [ θ 0 , θ 1 , . . . , θ n ] ) \theta([\theta_0, \theta_1, ..., \theta_n]) θ([θ0,θ1,...,θn]),那么我们就可以将样本数据直接代入 sigmoid 函数中进行求解,得到其类别为 1 1 1 0 0 0 的概率,进而判定其所属类别。

求解参数 $\theta $

那么问题来了,我们该如何得到合适的参数向量 θ \theta θ?根据逻辑回归模型的表达式,可以得到如下:
p ( y = 1 ∣ x ; θ ) = h θ ( x ) p ( y = 0 ∣ x ; θ ) = 1 − h θ ( x ) p(y=1|x;\theta) = h_\theta(x) \\ p(y=0|x;\theta) = 1 - h_\theta(x) p(y=1∣x;θ)=hθ(x)p(y=0∣x;θ)=1hθ(x)
理想状态下,我们希望对每个样本的类别预测概率均为 1 1 1,也就是完全分类正确。但在实际情况中,很难做到如此完美,样本的类别预测概率越接近 1 1 1,其分类结果越准确。一个样本属于正样本的概率为 0.51 0.51 0.51,我们可以说它是正样本;另一个样本属于正样本的概率为 0.99 0.99 0.99,我们也可以说它是正样本;但显然,第二个样本的预测概率更高,更具说服力。我们可以将上述两个类别的条件概率合二为一,得到如下:
L o s s ( h θ ( x ) , y ) = h θ ( x ) y ( 1 − h θ ( x ) ) ( 1 − y ) Loss(h_\theta(x), y) = h_\theta(x)^y(1 - h_\theta(x))^{(1 - y)} Loss(hθ(x),y)=hθ(x)y(1hθ(x))(1y)
我们称上式为损失函数(Loss Function)。当 y = 1 y=1 y=1 时,第二项为 0 0 0;当 y = 0 y=0 y=0 时,第一项为 0 0 0。为了简化问题,我们可以对整个表达式进行求对数,得到如下:
L o s s ( h θ ( x ) , y ) = y log ⁡ h θ ( x ) + ( 1 − y ) log ⁡ ( 1 − h θ ( x ) ) Loss(h_\theta(x), y) = y \log h_\theta(x) + (1 - y) \log (1 - h_\theta(x)) Loss(hθ(x),y)=yloghθ(x)+(1y)log(1hθ(x))
上述损失函数是对于一个样本而言的。假定样本之间相互独立,那么整个样本集的预测概率即为所有样本预测概率的乘积,基于此,可得到如下公式:
J ( θ ) = ∑ i m y ( i ) log ⁡ ( h θ ( x ( i ) ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − h θ ( x ( i ) ) ) J(\theta ) = \displaystyle\sum_{i}^{m}y^{(i)}\log (h_\theta(x^{(i)})) + (1 - y^{(i)})\log (1 - h_\theta(x^{(i)})) J(θ)=imy(i)log(hθ(x(i)))+(1y(i))log(1hθ(x(i)))

− J ( θ ) = − ∑ i m y ( i ) log ⁡ ( h θ ( x ( i ) ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − h θ ( x ( i ) ) ) -J(\theta ) = -\displaystyle\sum_{i}^{m}y^{(i)}\log (h_\theta(x^{(i)})) + (1 - y^{(i)})\log (1 - h_\theta(x^{(i)})) J(θ)=imy(i)log(hθ(x(i)))+(1y(i))log(1hθ(x(i)))

其中, m m m 为样本总数, y ( i ) y^{(i)} y(i) 表示第 i i i 个样本的类别, x ( i ) x^{(i)} x(i) 表示第 i i i 个样本。由此可以得出,满足 J ( θ ) J(\theta) J(θ) 最大或满足 − J ( θ ) -J(\theta) J(θ) 最小的 θ \theta θ 值就是我们需要求解的答案。

为了使得 J ( θ ) J(\theta) J(θ) 最大,我们可以使用最大似然估计、梯度上升或梯度下降优化算法求解参数 θ \theta θ。当损失函数为 J ( θ ) J(\theta) J(θ) 时,可以使用梯度上升算法对参数 θ \theta θ 进行优化;当损失函数为 − J ( θ ) -J(\theta) J(θ) 时,可以使用梯度下降算法对参数 θ \theta θ 进行优化。

梯度上升优化算法

假设存在一个函数 f ( x ) = − x 2 + 4 x f(x) = -x^2 + 4x f(x)=x2+4x,如何计算该函数的极值?该函数的曲线如下图所示:

在这里插入图片描述

显然该函数的曲线开口向下,存在极大值。我们可以运用中学所学的知识对其求极值,其导数为 f ′ ( x ) = − 2 x + 4 f'(x) = -2x + 4 f(x)=2x+4,令导数为 0 0 0,可得出 x = 2 x=2 x=2 即为该函数的极大值点,且极大值为 4 4 4

但在实际情况中,函数不会像上面那样简单,就算求出了函数的导数,也很难精确计算出函数的极值,此时可以考虑用迭代的方法逼近极值。这种通过迭代逼近寻找最佳拟合参数的方法就叫做最优化算法。值更新的公式表示如下:
x i + 1 = x i + α ⋅ ∂ f ( x i ) x i x_{i+1} = x_i + \alpha · \frac{\partial f(x_i)}{x_i} xi+1=xi+αxif(xi)
其中, α \alpha α 为步长,也就是学习率(Learning Rate),用于控制更新的幅度。更新示意图如下所示:

在这里插入图片描述

比如从 ( 0 , 0 ) (0, 0) (0,0) 开始,迭代路径为 1 -> 2 -> 3 -> 4 -> ··· -> n,直到求出的 f ( x ) f(x) f(x) 为函数极大值的近似值。迭代逼近函数极大值的代码实现如下:

# 梯度上升
def gradient_ascent(alpha=0.01, precision=0.00000001):""":param alpha: 学习率:param precision: 停止迭代的阈值:return: 逼近函数极值的极值点"""# 偏导表达式def partial_derivative(x_old):return -2 * x_old + 4x_old = -1  # 初始值,给一个小于 x_new 的值x_new = 0  # 梯度上升的起点,即从 (0, 0) 开始while abs(x_new - x_old) > precision:x_old = x_newx_new = x_old + alpha * partial_derivative(x_old)return x_newif __name__ == '__main__':result = gradient_ascent()print(result)
---------
1.999999515279857

从上面可以看出,结果已经非常接近真实极值点 x = 2 x=2 x=2,上述用到的就是梯度上升优化算法。同理, J ( θ ) J(\theta) J(θ) 这个损失函数的极值点也可以这样求出,只要计算出 J ( θ ) J(\theta) J(θ) 的偏导,就可以利用梯度上升算法,求解出 J ( θ ) J(\theta) J(θ) 的极大值。

J ( θ ) J(\theta) J(θ) 关于 θ \theta θ 的偏导,求解过程如下:
∂ J ( θ ) θ j = ∂ J ( θ ) ∂ g ( θ T x ) ∗ ∂ g ( θ T x ) ∂ θ T x ∗ ∂ θ T x ∂ θ j \frac{\partial J(\theta)}{\theta_j} = \frac{\partial J(\theta)}{\partial g(\theta^Tx)} * \frac{\partial g(\theta^Tx)}{\partial \theta^Tx} * \frac{\partial \theta^Tx}{\partial \theta_j} θjJ(θ)=g(θTx)J(θ)θTxg(θTx)θjθTx
其中,
∂ J ( θ ) ∂ g ( θ T x ) = y ∗ 1 g ( θ T x ) + ( y − 1 ) ∗ 1 1 − g ( θ T x ) \frac{\partial J(\theta)}{\partial g(\theta^Tx)} = y * \frac{1}{g(\theta^Tx)} + (y - 1) * \frac{1}{1 - g(\theta^Tx)} g(θTx)J(θ)=yg(θTx)1+(y1)1g(θTx)1

g ′ ( z ) = d 1 1 + e − z d z = g ( z ) ( 1 − g ( z ) ) ⟹ ∂ g ( θ T x ) ∂ θ T x = g ( θ T x ) ( 1 − g ( θ T x ) ) g'(z) = \frac{d\frac{1}{1 + e^{-z}}}{dz} = g(z)(1-g(z)) \implies \frac{\partial g(\theta^Tx)}{\partial \theta^Tx} =g(\theta^Tx)(1 - g(\theta^Tx)) g(z)=dzd1+ez1=g(z)(1g(z))θTxg(θTx)=g(θTx)(1g(θTx))

∂ θ T x θ j = ∂ J ( θ 1 x 1 + θ 2 x 2 + ⋯ + θ n x n ) ∂ θ j = x j \frac{\partial \theta^Tx}{\theta_j} = \frac{\partial J(\theta_1x_1 + \theta_2x_2 + \cdots + \theta_nx_n)}{\partial \theta_j} = x_j θjθTx=θjJ(θ1x1+θ2x2++θnxn)=xj

综上可得,
∂ J ( θ ) θ j = ( y − h θ ( x ) ) x j \frac{\partial J(\theta)}{\theta_j} = (y - h_\theta(x))x_j θjJ(θ)=(yhθ(x))xj
上述即为 J ( θ ) J(\theta) J(θ) 关于 θ \theta θ 的偏导,有了偏导,我们可以进一步推导出梯度上升中的值更新公式:
θ j _ n e w = θ j _ o l d + α ⋅ ∑ i = 1 m ( y ( i ) − h θ ( x ( i ) ) ) x j ( i ) \theta_{j\_new} = \theta_{j\_old} + \alpha \cdot \displaystyle\sum_{i=1}^{m}(y^{(i)} - h_\theta(x^{(i)}))x_j^{(i)} θj_new=θj_old+αi=1m(y(i)hθ(x(i)))xj(i)
有了上述这些公式,我们就可以编写代码,计算出损失函数的最佳拟合参数。

Logistic 回归简单实现

有一个简单的数据集,其数据格式如下图所示:

在这里插入图片描述

该数据集共有三列数据,前两列为特征数据,最后一列为标签数据。我们可以将第一列特征数据看作 x x x 轴上的值,将第二列特征数据看作 y y y 轴上的值,根据对应标签的不同,对这些样本点进行分类。

代码实现如下:

import numpy as np
import matplotlib.pyplot as plt# 读取数据集
def read_dataset(file_path: str) -> (list, list):""":param file_path: 数据集的路径:return: 训练数据,训练标签"""data = []  # 用于存储特征数据;(100, 3);三列分别表示 w0(偏置项)、w1(第一列特征数据权重)、w2(第二列特征数据权重)labels = []  # 用于存储标签数据;(100,)file = open(file_path)for line in file.readlines():line_list = line.strip().split()data.append([1.0, float(line_list[0]), float(line_list[1])])labels.append(int(line_list[2]))file.close()return data, labels# 绘制样本分布图
def data_distribution(data: list, labels: list) -> None:""":param data: 训练数据:param labels: 训练标签:return: 数据分布图"""data_arr = np.array(data)  # 转成数组num_samples = data_arr.shape[0]  # 获取样本个数x0_feature = []  # 存放标签为 0 的第一列中的特征数据y0_feature = []  # 存放标签为 0 的第二列中的特征数据x1_feature = []  # 存放标签为 1 的第一列中的特征数据y1_feature = []  # 存放标签为 1 的第二列中的特征数据for i in range(num_samples):if labels[i] == 1:  # 1 为正样本x1_feature.append(data[i][1])y1_feature.append(data[i][2])else:  # 0 为负样本x0_feature.append(data[i][1])y0_feature.append(data[i][2])# 绘图fig = plt.figure()ax = fig.add_subplot(111)ax.scatter(x1_feature, y1_feature, s=20, c='r', marker='s', alpha=.5)ax.scatter(x0_feature, y0_feature, s=20, c='g', alpha=.5)plt.title('data distribution')plt.xlabel('x')plt.ylabel('y')plt.show()# sigmoid 函数
def sigmoid(z):""":param z: 目标值表达式:return: sigmoid 表达式"""return 1.0 / (1 + np.exp(-z))# 梯度上升
def gradient_ascent(data: list, labels: list, alpha=0.001, num_iteration=500) -> np.ndarray:""":param data: 训练数据:param labels: 训练标签:param alpha: 学习率:param num_iteration: 迭代次数:return: 参数权重"""data_mat = np.mat(data)  # 转成矩阵labels_mat = np.mat(labels).transpose()  # 转成矩阵,并进行转置n = data_mat.shape[1]  # data 的列数;3weights = np.ones((n, 1))  # 有几个特征就有几个参数,这里有 3 个特征,因此有 3 个参数# 训练模型,得到参数权重for i in range(num_iteration):h = sigmoid(data_mat * weights)  # 预测值;(100, 1)error = labels_mat - h  # 真实值 - 预测值;(100, 1)weights = weights + alpha * data_mat.transpose() * error  # w_new = w_old + α * x^T * (y - y')return weights.getA()  # 将矩阵转换为数组,并返回权重数组# 通过求解出的参数(回归系数),可以确定不同类别数据之间的分隔线,从而绘制出决策边界
def decision_boundary(data: list, labels: list, weights: np.ndarray) -> None:""":param data: 训练数据:param labels: 训练标签:param weights: 参数权重:return: 决策边界图"""data_arr = np.array(data)  # 转成数组num_samples = data_arr.shape[0]  # 获取样本个数x0_feature = []  # 存放标签为 0 的第一列中的特征数据y0_feature = []  # 存放标签为 0 的第二列中的特征数据x1_feature = []  # 存放标签为 1 的第一列中的特征数据y1_feature = []  # 存放标签为 1 的第二列中的特征数据for i in range(num_samples):if labels[i] == 1:  # 1 为正样本x1_feature.append(data[i][1])y1_feature.append(data[i][2])else:  # 0 为负样本x0_feature.append(data[i][1])y0_feature.append(data[i][2])# 绘图fig = plt.figure()ax = fig.add_subplot(111)ax.scatter(x1_feature, y1_feature, s=20, c='r', marker='s', alpha=.5)ax.scatter(x0_feature, y0_feature, s=20, c='g', alpha=.5)x = np.arange(-3.0, 3.0, 0.1)y = -(weights[0] + weights[1] * x) / weights[2]ax.plot(x, y)plt.title('best fit')plt.xlabel('x1')plt.ylabel('x2')plt.show()if __name__ == '__main__':file_path = r'D:\MachineLearning\testSet.txt'# 获取训练数据和训练标签data, labels = read_dataset(file_path)# 查看样本分布# data_distribution(data, labels)# 获取权重weights = gradient_ascent(data, labels)  # 得到一个形状为 (3, 1) 的权重数组print(weights)# 查看决策边界decision_boundary(data, labels, weights)"""
weights 是一个包含三个元素的数组 [w0, w1, w2],其中 w0 是偏置项(或者称为截距),w1 和 w2 分别是特征一和特征二的权重;
在二维空间中,线性分类器的决策边界通常是一条直线,其方程可以表示为 w0 + w1*x1 + w2*x2 = 0,其中 (x1, x2) 是特征一和特征二的取值;
将上述方程稍作变换,就可以得到 - (w0 + w1*x) / w2,其中 x = x1,也就是特征一的取值。这个表达式描述了特征一和特征二之间的决策边界,可以用来在二维平面上画出分类器的决策边界直线。
"""
---------
[[ 4.12414349][ 0.48007329][-0.6168482 ]]

在这里插入图片描述

上述代码在进行梯度上升优化时,每次都需要计算整个数据集,计算复杂度太高,我们可以使用随机梯度上升算法对其进行改进。主要改进有两点,第一点是动态调整学习率,使得学习率随着迭代次数的增加而减小;第二点是使用一个样本数据进行参数的更新,样本数据随机选取,且下一次迭代将从未使用过的样本点中选取。随机梯度上升算法可以有效地减少计算量,并保证回归效果。

经过综合对比,我们可以得到以下结论:

  • 当数据集较小时,使用梯度上升算法效果较好
  • 当数据集较大时,使用改进的随机梯度上升算法效果较好

使用 sklearn 构建 Logistic 回归分类器

sklearn.linear_model 模块实现了 Logistic 回归算法,不仅如此,该模块还提供了很多模型供我们使用,比如 Lasso 回归、脊回归等。LogisticRegression 函数实现如下所示:

sklearn.linear_model.LogisticRegression(penalty='l2', dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='lbfgs', max_iter=100, multi_class='auto', verbose=0, warm_start=False, n_jobs=None, l1_ratio=None)- penalty:有 l1、l2、elasticnet、None 四个值可供选择,默认为 l2;l1 表示添加 l1 正则化,假设模型的参数满足拉普拉斯分布;l2 表示添加 l2 正则化,假设模型的参数满足高斯分布;elasticnet 表示添加 l1 和 l2 正则化;None 表示不添加正则项;所谓的正则项就是对参数施加一种约束,使得模型避免发生过拟合的现象,但是不一定加约束就更好,只能说在加约束的情况下,理论上应该可以获得泛华能力更强的结果- dual:布尔值,默认为 False;二元公式仅适用于 liblinear 求解器的 l2 惩罚,当 n_samples > n_features 时,首选 dual=False- tol:停止求解的标准,即求解到多少认为已经求出最优解,默认为 1e-4- C:正则化强度的倒数,必须是正浮点数,默认为 1.0;与 SVM 一样,数值越小,正则化强度越大- fit_intercept:是否存在截距或偏差,即偏置项,默认为 True- intercept_scaling:只有在使用求解器 liblinear 且 fit_intercept=True 时才有用,默认为 1- class_weight:用于标示分类模型中各种类型的权重,可以是一个字典或 balanced 字符串,默认为 None;举个例子,对于 01 的二元模型,我们可以定义 class_weight={0: 0.9, 1: 0.1},这样类型 0 的权重为 90%,而类型 1 的权重为 10%;如果 class_weight 选择 balanced,那么类库会根据训练样本量来计算权重,某种类型样本量越多,则权重越低,样本量越少,则权重越高,类权重计算方法为 n_samples / (n_classes * np.bincount(y)),n_samples 为样本数,n_classes 为类别数量,np.bincount(y) 会输出每个类的样本数,例如 y=[1, 0, 0, 1, 1],则 np.bincount(y)=[2, 3]- random_state:随机数种子,默认为 None;仅在 solver 为 sag、saga、liblinear 时有用- solver:优化算法,默认为 lgfgs;对于小数据集,liblinear 是个不错的选择,而对于大数据集,sag 和 saga 速度更快;对于多分类问题,只有 newton-cg、sag、saga、lbfgs 能够处理多项式损失,而 liblinear 受限于一对剩余(OvR),就是用 liblinear 的时候,如果是多分类问题,得先把一种类别作为一个类别,剩余的所有类别作为另外一个类别,依次类推,遍历所有类别,从而进行分类;newton-cg、sag、lbfgs 这三种优化算法都需要损失函数的一阶或者二阶连续导数,因此不能用于没有连续导数的 L1 正则化,只能用于 L2 正则化,而 liblinear 和 saga 通吃 L1 和 L2 正则化;liblinear 使用了开源的 liblinear 库,内部使用了坐标轴下降法来迭代优化损失函数;lbfgs 是拟牛顿法的一种,利用损失函数二阶导数矩阵(即海森矩阵)来迭代优化损失函数;newton-cg 是牛顿法家族中的一种,利用海森矩阵来迭代优化;sag 是随机平均梯度下降,属于梯度下降法的变种,与普通梯度下降法的区别是每次迭代仅用一部分样本来计算梯度,适用于样本量多的情况;saga 是线性收敛的随机优化算法的变种- max_iter:算法收敛的最大迭代次数,默认为 100- multi_class:分类方式,有 auto、ovr、multinomial 可供选择,默认为 auto;如果选择的是 ovr,那么每个标签都会拟合出一个二元问题;当求解器为 liblinear 时,multinomial 不可用;如果数据是二元的,或者求解器为 liblinear,auto 会选择 ovr,其他情况则选择 multinomial- verbose:日志冗长度,默认为 0,即不输出训练过程;为 1 的时候偶尔输出结果;大于 1 时对每个子模型都输出结果- warm_start:热启动参数,默认为 False;如果为 True,则下一次训练以追加树的形式进行- n_jobs:并行数,默认为 1;如果为 2,则表示用 CPU 的 2 个内核运行程序;如果为 -1,则表示用所有内核运行- l1_ratio:elasticnet 的混合参数,仅在 penalty=elasticnet 时使用;如果为 0,则表示使用 l2 正则化

由 LogisticRegression 创建的实例对象 clf 具有以下方法:

decision_function(X)  # 预测样本的置信度得分- X:训练数据,形状为 (n_samples, n_features)返回形状为 (n_samples, n_classes) 的置信度得分densify()  # 将系数矩阵转换为密集数组格式fit(X, y, sample_weight=None)  # 根据训练集拟合分类器- X:训练数据,形状为 (n_samples, n_features)- y:目标值(训练样本对应的标签),形状为 (n_samples,)- sample_weight:样本权重,如果为 None,则样本权重相同返回拟合的逻辑回归分类器get_params(deep=True)  # 以字典形式返回 MultinomialNB 类的参数- deep:布尔值,默认为 True返回参数predict(X)  # 预测所提供数据的类别标签- X:预测数据,形状为 (n_samples, n_features)以 np.ndarray 形式返回形状为 (n_samples,) 的每个数据样本的类别标签predict_log_proba(X)  # 返回预测数据 X 在各类别标签中所占的对数概率- X:预测数据,形状为 (n_samples, n_features)返回该样本在各类别标签中的预测对数概率,类别的顺序与属性 classes_ 中的顺序一致predict_proba(X)  # 返回预测数据 X 在各类别标签中所占的概率- X:预测数据,形状为 (n_samples, n_features)返回该样本在各类别标签中的预测概率,类别的顺序与属性 classes_ 中的顺序一致score(X, y, sample_weight=None)  # 返回预测结果和标签之间的平均准确率- X:预测数据,形状为 (n_samples, n_features)- y:预测数据的目标值(真实标签)- sample_weight:默认为 None返回预测数据的平均准确率,相当于先执行了 self.predict(X),而后再计算预测值和真实值之间的平均准确率
from sklearn.linear_model import LogisticRegressiondef colicSklearn():frTrain = open(r'D:\MachineLearning\horseColicTraining.txt')  # 打开训练集frTest = open(r'D:\MachineLearning\horseColicTest.txt')  # 打开测试集trainingSet = []trainingLabels = []testSet = []testLabels = []for line in frTrain.readlines():currLine = line.strip().split('\t')lineArr = []for i in range(len(currLine) - 1):lineArr.append(float(currLine[i]))trainingSet.append(lineArr)trainingLabels.append(float(currLine[-1]))for line in frTest.readlines():currLine = line.strip().split('\t')lineArr = []for i in range(len(currLine) - 1):lineArr.append(float(currLine[i]))testSet.append(lineArr)testLabels.append(float(currLine[-1]))classifier = LogisticRegression(solver='liblinear', max_iter=10).fit(trainingSet, trainingLabels)test_accurcy = classifier.score(testSet, testLabels) * 100print('正确率:%f%%' % test_accurcy)if __name__ == '__main__':colicSklearn()
---------
正确率:73.134328%

Logistic 回归算法的优缺点

优点

  1. 算法简单易于理解和实现,计算效率高。
  2. 可以处理二分类和多分类问题。
  3. 对特征之间的关联性不敏感,适用于处理高维数据。
  4. 输出结果具有概率解释,可以用于判断样本属于某个类别的概率。

缺点

  1. 假设特征与目标变量之间存在线性关系,无法处理非线性关系。
  2. 对异常值和缺失值比较敏感,需要进行数据预处理。
  3. 容易出现欠拟合或过拟合的情况,需要进行正则化处理。
  4. 无法处理特征之间的交互作用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/224922.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ros2+xml格式launch文件示例代码(重要内容)

源自githubeasy_ros2_launch_talk/easy_launch_demo/launch/demo_launch.xml at main tylerjw/easy_ros2_launch_talk GitHub <launch><arg name"robot_ip" default"xxx.yyy.zzz.www" /><arg name"use_fake_hardware" default…

【Spring】07 懒加载

文章目录 1.定义2. 作用3. 配置方式1&#xff09;XML配置2&#xff09;Java配置3&#xff09;注解方式 4. 应用场景5. 注意事项总结 1.定义 懒加载&#xff08;Lazy Initialization&#xff09;是Spring 框架中的一项强大的特性&#xff0c;它允许我们推迟 Bean 的初始化&…

直播源自动检测工具iptv-m3u-maker

【申明】&#xff1a;本文不提供任何播放列表或其他数字内容。屏幕截图中的频道和图片仅供演示和说明之用。 老苏以前介绍过 IPTV Checker &#xff0c;能对直播源进行有效性检测 文章传送门&#xff1a;用Jellyfin➕xTeVe播放和录制IPTV 今天要介绍的 iptv-m3u-maker 功能是一…

python学习1补充

大家好&#xff0c;这里是七七&#xff0c;这个专栏是用代码实例来学习的&#xff0c;不是去介绍很多知识的。 话不多说&#xff0c;开始今天的内容 目录 代码1 代码2 代码3 代码4 代码5 学习1的总代码 代码1 groupeddf.groupby(单品编码) result{} groupeddf.groupb…

Axure的动态图使用以及说明

认识Axure动态图 Axure动态图是Axure中的一种功能&#xff0c;它允许用户在原型中添加动画效果和交互动作&#xff0c;使原型更加生动和具有真实的用户体验。用户可以通过添加动态图来展示页面过渡、按钮点击、下拉菜单等交互操作的效果。 这是&#xff1a;就是我们今天要叫的…

生产环境_Spark处理轨迹中跨越本初子午线的经度列

使用spark处理数据集&#xff0c;解决gis轨迹点在地图上跨本初子午线的问题&#xff0c;这个问题很复杂&#xff0c;先补充一版我写的 import org.apache.spark.{SparkConf, SparkContext} import org.apache.spark.sql.{Row, SparkSession} import org.apache.spark.sql.func…

【️什么是分布式系统的一致性 ?】

&#x1f60a;引言 &#x1f396;️本篇博文约8000字&#xff0c;阅读大约30分钟&#xff0c;亲爱的读者&#xff0c;如果本博文对您有帮助&#xff0c;欢迎点赞关注&#xff01;&#x1f60a;&#x1f60a;&#x1f60a; &#x1f5a5;️什么是分布式系统的一致性 &#xff1f…

Linux---查看文件内容命令

1. 查看文件内容命令的使用 命令说明cat查看小型文件more分屏查看大型文件 cat命令的效果图 说明: cat命令结合重定向可以完成多个文件的合并gedit 文件编辑命令&#xff0c;可以查看和编辑文件 more命令的效果图 当查看内容信息过长无法在一屏上显示时&#xff0c;可以使…

mysql 数据库 关于库的基本操作

库的操作 如果想到 mysql 客户端当中数据 系统当中的命令的话&#xff0c;直接输入的话&#xff0c;会被认为是 mysql 当中的命令。 所以&#xff0c;在mysql 当中执行系统当中的命令的话&#xff0c;要在系统命令之前带上 ststem &#xff0c;表示系统命令&#xff1a; 但是…

linux内核使用ppm图片开机

什么是ppm图片 PPM&#xff08;Portable Pixmap&#xff09;是一种用于存储图像的文件格式。PPM图像文件以二进制或ASCII文本形式存储&#xff0c;并且是一种简单的、可移植的图像格式。PPM格式最初由Jef Poskanzer于1986年创建&#xff0c;并经过了多次扩展和修改。 PPM图像…

笔记本电脑如何安装openwrt

环境&#xff1a; 联想E14笔记本 装机U盘 DiskImage v1.6 刷写工具 immortalwrt镜像 问题描述&#xff1a; 笔记本电脑如何安装openwrt 解决方案&#xff1a; 一、官方版 1.官网下载固件 2.BIOS关闭安全启动改为引导 3.用U盘启动进入PE系统后&#xff0c;需要先用PE系…

数组笔试题解析(下)

数组面试题解析 字符数组 &#xff08;一&#xff09; 我们上一篇文章学习了一维数组的面试题解析内容和字符数组的部分内容&#xff0c;我们这篇文章讲解一下字符数组和指针剩余面试题的解析内容&#xff0c;那现在&#xff0c;我们开始吧。 我们继续看一组字符数组的面试…

深眸科技聚焦AI+机器视觉产业化建设,加速智能制造国产替代升级

随着科技的不断发展&#xff0c;传统的制造生产已经无法满足现代制造业的需求&#xff0c;智能制造应运而生&#xff0c;以智能化、柔性化等生产优势&#xff0c;大幅提升制造效率和生产质量。智能制造是指具有信息自感知、自决策、自执行等功能的先进制造过程、系统与模式的总…

美易官方:零售销售数据提振信心

美易全球投资中心副总裁Kenny Jolin表示全球股市在经历了动荡之后逐渐恢复了稳定。最近&#xff0c;美国股市表现强劲&#xff0c;连续六天上涨&#xff0c;道琼斯指数也创下了新高。这一趋势不仅反映了投资者信心的恢复&#xff0c;也表明了全球经济正在逐渐复苏。 他说&#…

如何在jenkins容器中安装python+httprunner+pytest+git+allure(一)

背景&#xff1a; API接口自动化使用python语言实现&#xff0c;利用httprunner框架编写自动化用例场景&#xff08;执行的时候还是依赖pytest),使用jenkins自动构建git上的源代码&#xff0c;并产生allure报告可视化展示API执行结果。 步骤 1.进入jenkins容器 注意使用roo…

WPF 基于TableControl的页面切换

文章目录 前言其它项目的UserControl切换TableControl添加按钮&#xff0c;隐去TableItem的Header 结论 前言 我想用WPF简单实现一个按钮视图切换的效果&#xff0c;但是我发现别人的实现效果非常的麻烦。 其它项目的UserControl切换 我网上找了个开源的项目&#xff0c;他是…

【Spring教程29】Spring框架实战:从零开始学习SpringMVC 之 服务器响应知识全面详解

目录 1 环境准备2 响应页面3 返回文本数据4 响应JSON数据5 知识点总结 欢迎大家回到《Java教程之Spring30天快速入门》&#xff0c;本教程所有示例均基于Maven实现&#xff0c;如果您对Maven还很陌生&#xff0c;请移步本人的博文《如何在windows11下安装Maven并配置以及 IDEA配…

uniapp:使用fixed定位,iOS平台的安全区域问题解决

manifest.json > 添加节点 "safearea": { //iOS平台的安全区域"background": "#1C1E22","backgroundDark": "#1C1E22", // HX 3.1.19支持"bottom": {"offset": "auto"} },已解决&#xff…

OpenAI发布了一份提示工程指南(Prompt Engineering Guide)

我的新书《Android App开发入门与实战》已于2020年8月由人民邮电出版社出版&#xff0c;欢迎购买。点击进入详情 Open AI 发布了一份很棒的提示工程指南。 以下是在 GPT-4 使用提示时获得更好结果的 6 种策略的总结:

elasticsearch|大数据|kibana的安装(https+密码)

前言&#xff1a; kibana是比较好安装的&#xff0c;但https密码就比较麻烦一些了&#xff0c;下面将就如何安装一个可在生产使用的kibana做一个简单的讲述 一&#xff0c; kibana版本和下载地址 这里我想还是强调一下&#xff0c;kibana的版本需要和elasticsearch的版本一…