深度学习 Day14——P3天气识别

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊 | 接辅导、项目定制

文章目录

  • 前言
  • 1 我的环境
  • 2 代码实现与执行结果
    • 2.1 前期准备
      • 2.1.1 引入库
      • 2.1.2 设置GPU(如果设备上支持GPU就使用GPU,否则使用CPU)
      • 2.1.3 导入数据
      • 2.1.4 可视化数据
      • 2.1.4 图像数据变换
      • 2.1.4 划分数据集
      • 2.1.4 加载数据
      • 2.1.4 查看数据
    • 2.2 构建CNN网络模型
    • 2.3 训练模型
      • 2.3.1 训练模型
      • 2.3.2 编写训练函数
      • 2.3.3 编写测试函数
      • 2.3.4 正式训练
    • 2.4 结果可视化
  • 3 知识点详解
    • 3.1 torchvision.transforms.Compose()详解
    • 3.2 pathlib中glob匹配多个格式文件获取数据列表
    • 3.3 plt.tight_layout()作用
    • 3.4 x.view()函数
    • 3.5 The freeze_support error解决方案
    • 3.6 提升测试acc--改变优化器
  • 总结


前言

本文将采用pytorch框架创建CNN网络,实现天气识别。讲述实现代码与执行结果,并浅谈涉及知识点。
关键字: torchvision.transforms.Compose()详解,pathlib中glob匹配多个格式文件获取数据列表,plt.tight_layout()作用,x.view()函数,The freeze_support error解决方案,提升测试acc–改变优化器。

1 我的环境

  • 电脑系统:Windows 11
  • 语言环境:python 3.8.6
  • 编译器:pycharm2020.2.3
  • 深度学习环境:
    torch == 1.9.1+cu111
    torchvision == 0.10.1+cu111
  • 显卡:NVIDIA GeForce RTX 4070

2 代码实现与执行结果

2.1 前期准备

2.1.1 引入库

import torch
import torch.nn as nnfrom torchvision import transforms, datasets
import os
from pathlib import Path
from PIL import Image
from torchinfo import summary
import torch.nn.functional as F
import matplotlib.pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100  # 分辨率
import warningswarnings.filterwarnings('ignore')  # 忽略一些warning内容,无需打印

2.1.2 设置GPU(如果设备上支持GPU就使用GPU,否则使用CPU)

"""前期准备-设置GPU"""
# 如果设备上支持GPU就使用GPU,否则使用CPUdevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")print("Using {} device".format(device))

输出

Using cuda device

2.1.3 导入数据

'''前期工作-导入数据'''
data_dir = "D:/DeepLearning/data/weather_photos/"
data_dir = Path(data_dir)data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[-1] for path in data_paths]
print(classeNames)

输出

['cloudy', 'rain', 'shine', 'sunrise']

2.1.4 可视化数据

'''前期工作-可视化数据'''
# 指定图像文件夹路径
image_folder = os.path.join(data_dir, 'cloudy/')
# 获取文件夹中的所有图像文件
image_files = [f for f in os.listdir(image_folder) if f.endswith((".jpg", ".png", ".jpeg"))]
# 创建Matplotlib图像
fig, axes = plt.subplots(3, 8, figsize=(16, 6))
# 使用列表推导式加载和显示图像
for ax, img_file in zip(axes.flat, image_files):img_path = os.path.join(image_folder, img_file)img = Image.open(img_path)ax.imshow(img)ax.axis('off')
# 显示图像
plt.tight_layout()
plt.show()

在这里插入图片描述

2.1.4 图像数据变换

'''前期工作-图像数据变换'''
total_datadir = data_dir# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸transforms.ToTensor(),  # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间transforms.Normalize(  # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])
total_data = datasets.ImageFolder(total_datadir, transform=train_transforms)
print(total_data)

输出

Dataset ImageFolderNumber of datapoints: 1125Root location: D:\DeepLearning\data\weather_photosStandardTransform
Transform: Compose(Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=None)ToTensor()Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]))

2.1.4 划分数据集

'''前期工作-划分数据集'''
train_size = int(0.8 * len(total_data))  # train_size表示训练集大小,通过将总体数据长度的80%转换为整数得到;
test_size = len(total_data) - train_size  # test_size表示测试集大小,是总体数据长度减去训练集大小。
# 使用torch.utils.data.random_split()方法进行数据集划分。该方法将总体数据total_data按照指定的大小比例([train_size, test_size])随机划分为训练集和测试集,
# 并将划分结果分别赋值给train_dataset和test_dataset两个变量。
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
print(train_dataset, test_dataset)

输出

<torch.utils.data.dataset.Subset object at 0x000001A0144E8D00> <torch.utils.data.dataset.Subset object at 0x000001A0144E8DC0>

2.1.4 加载数据

'''前期工作-加载数据'''
batch_size = 32train_dl = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size,shuffle=True,num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,batch_size=batch_size,shuffle=True,num_workers=1)

2.1.4 查看数据

'''前期工作-查看数据'''
for X, y in test_dl:print("Shape of X [N, C, H, W]: ", X.shape)print("Shape of y: ", y.shape, y.dtype)break

输出

Shape of X [N, C, H, W]:  torch.Size([32, 3, 224, 224])
Shape of y:  torch.Size([32]) torch.int64

2.2 构建CNN网络模型

在这里插入图片描述

"""构建CNN网络"""
class Network_bn(nn.Module):def __init__(self):super(Network_bn, self).__init__()"""nn.Conv2d()函数:第一个参数(in_channels)是输入的channel数量第二个参数(out_channels)是输出的channel数量第三个参数(kernel_size)是卷积核大小第四个参数(stride)是步长,默认为1第五个参数(padding)是填充大小,默认为0"""self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)self.bn1 = nn.BatchNorm2d(12)self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)self.bn2 = nn.BatchNorm2d(12)self.pool = nn.MaxPool2d(2, 2)self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)self.bn4 = nn.BatchNorm2d(24)self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)self.bn5 = nn.BatchNorm2d(24)self.fc1 = nn.Linear(24 * 50 * 50, len(classeNames))def forward(self, x):x = F.relu(self.bn1(self.conv1(x)))x = F.relu(self.bn2(self.conv2(x)))x = self.pool(x)x = F.relu(self.bn4(self.conv4(x)))x = F.relu(self.bn5(self.conv5(x)))x = self.pool(x)x = x.view(-1, 24 * 50 * 50)x = self.fc1(x)return xmodel = Network_bn().to(device)
print(model)
summary(model)        

输出

Network_bn((conv1): Conv2d(3, 12, kernel_size=(5, 5), stride=(1, 1))(bn1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(12, 12, kernel_size=(5, 5), stride=(1, 1))(bn2): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(conv4): Conv2d(12, 24, kernel_size=(5, 5), stride=(1, 1))(bn4): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv5): Conv2d(24, 24, kernel_size=(5, 5), stride=(1, 1))(bn5): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(fc1): Linear(in_features=60000, out_features=4, bias=True)
)
=================================================================
Layer (type:depth-idx)                   Param #
=================================================================
Network_bn                               --
├─Conv2d: 1-1                            912
├─BatchNorm2d: 1-2                       24
├─Conv2d: 1-3                            3,612
├─BatchNorm2d: 1-4                       24
├─MaxPool2d: 1-5                         --
├─Conv2d: 1-6                            7,224
├─BatchNorm2d: 1-7                       48
├─Conv2d: 1-8                            14,424
├─BatchNorm2d: 1-9                       48
├─Linear: 1-10                           240,004
=================================================================
Total params: 266,320
Trainable params: 266,320
Non-trainable params: 0
=================================================================

2.3 训练模型

2.3.1 训练模型

"""训练模型--设置超参数"""
loss_fn = nn.CrossEntropyLoss()  # 创建损失函数,计算实际输出和真实相差多少,交叉熵损失函数,事实上,它就是做图片分类任务时常用的损失函数
learn_rate = 1e-4  # 学习率
opt = torch.optim.SGD(model.parameters(), lr=learn_rate)  # 作用是定义优化器,用来训练时候优化模型参数;其中,SGD表示随机梯度下降,用于控制实际输出y与真实y之间的相差有多大

2.3.2 编写训练函数

"""训练模型--编写训练函数"""
# 训练循环
def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片num_batches = len(dataloader)  # 批次数目,1875(60000/32)train_loss, train_acc = 0, 0  # 初始化训练损失和正确率for X, y in dataloader:  # 加载数据加载器,得到里面的 X(图片数据)和 y(真实标签)X, y = X.to(device), y.to(device) # 用于将数据存到显卡# 计算预测误差pred = model(X)  # 网络输出loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失# 反向传播optimizer.zero_grad()  # 清空过往梯度loss.backward()  # 反向传播,计算当前梯度optimizer.step()  # 根据梯度更新网络参数# 记录acc与losstrain_acc += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc /= sizetrain_loss /= num_batchesreturn train_acc, train_loss

2.3.3 编写测试函数

"""训练模型--编写测试函数"""
# 测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器
def test(dataloader, model, loss_fn):size = len(dataloader.dataset)  # 测试集的大小,一共10000张图片num_batches = len(dataloader)  # 批次数目,313(10000/32=312.5,向上取整)test_loss, test_acc = 0, 0# 当不进行训练时,停止梯度更新,节省计算内存消耗with torch.no_grad(): # 测试时模型参数不用更新,所以 no_grad,整个模型参数正向推就ok,不反向更新参数for imgs, target in dataloader:imgs, target = imgs.to(device), target.to(device)# 计算losstarget_pred = model(imgs)loss = loss_fn(target_pred, target)test_loss += loss.item()test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()#统计预测正确的个数test_acc /= sizetest_loss /= num_batchesreturn test_acc, test_loss

2.3.4 正式训练

"""训练模型--正式训练"""
epochs = 20
train_loss = []
train_acc = []
test_loss = []
test_acc = []for epoch in range(epochs):model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)model.eval()epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')print(template.format(epoch + 1, epoch_train_acc * 100, epoch_train_loss, epoch_test_acc * 100, epoch_test_loss))
print('Done')

输出

Epoch: 1, Train_acc:55.8%, Train_loss:1.098, Test_acc:58.7%,Test_loss:1.073
Epoch: 2, Train_acc:79.8%, Train_loss:0.682, Test_acc:74.2%,Test_loss:1.073
Epoch: 3, Train_acc:83.7%, Train_loss:0.536, Test_acc:78.2%,Test_loss:0.552
Epoch: 4, Train_acc:85.3%, Train_loss:0.472, Test_acc:80.9%,Test_loss:0.466
Epoch: 5, Train_acc:88.4%, Train_loss:0.412, Test_acc:82.7%,Test_loss:0.477
Epoch: 6, Train_acc:88.8%, Train_loss:0.367, Test_acc:88.0%,Test_loss:0.418
Epoch: 7, Train_acc:90.7%, Train_loss:0.318, Test_acc:88.4%,Test_loss:0.411
Epoch: 8, Train_acc:91.4%, Train_loss:0.288, Test_acc:86.2%,Test_loss:0.371
Epoch: 9, Train_acc:91.8%, Train_loss:0.289, Test_acc:86.7%,Test_loss:0.377
Epoch:10, Train_acc:91.4%, Train_loss:0.282, Test_acc:89.3%,Test_loss:0.342
Epoch:11, Train_acc:93.1%, Train_loss:0.248, Test_acc:89.3%,Test_loss:0.332
Epoch:12, Train_acc:93.6%, Train_loss:0.230, Test_acc:87.6%,Test_loss:0.344
Epoch:13, Train_acc:94.8%, Train_loss:0.216, Test_acc:88.9%,Test_loss:0.381
Epoch:14, Train_acc:94.2%, Train_loss:0.206, Test_acc:87.6%,Test_loss:0.340
Epoch:15, Train_acc:94.8%, Train_loss:0.199, Test_acc:88.4%,Test_loss:0.316
Epoch:16, Train_acc:94.7%, Train_loss:0.205, Test_acc:88.4%,Test_loss:0.475
Epoch:17, Train_acc:95.7%, Train_loss:0.222, Test_acc:86.7%,Test_loss:0.340
Epoch:18, Train_acc:96.1%, Train_loss:0.200, Test_acc:88.0%,Test_loss:0.319
Epoch:19, Train_acc:95.4%, Train_loss:0.182, Test_acc:88.4%,Test_loss:0.337
Epoch:20, Train_acc:96.8%, Train_loss:0.192, Test_acc:89.3%,Test_loss:0.304
Done

2.4 结果可视化

"""训练模型--结果可视化"""
epochs_range = range(epochs)plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

3 知识点详解

3.1 torchvision.transforms.Compose()详解

torchvision是pytorch的一个图形库,它服务于PyTorch深度学习框架的,主要用来构建计算机视觉模型。torchvision.transforms主要是用于常见的一些图形变换。以下是torchvision的构成:

1.torchvision.datasets: 一些加载数据的函数及常用的数据集接口;
2.torchvision.models: 包含常用的模型结构(含预训练模型),例如AlexNet、VGG、ResNet等;
3.torchvision.transforms: 常用的图片变换,例如裁剪、旋转等;
4.torchvision.utils: 其他的一些有用的方法。

torchvision.transforms.Compose()类的主要作用是串联多个图片变换的操作。from torchvision.transforms import transformstrain_transforms = transforms.Compose([transforms.Resize([224, 224]),                  # 将输入图片resize成统一尺寸transforms.RandomRotation(degrees=(-10, 10)),   # 随机旋转,-10到10度之间随机选transforms.RandomHorizontalFlip(p=0.5),         # 随机水平翻转 选择一个概率概率transforms.RandomVerticalFlip(p=0.5),           # 随机垂直翻转transforms.RandomPerspective(distortion_scale=0.6, p=1.0),    # 随机视角transforms.GaussianBlur(kernel_size=(5, 9), sigma=(0.1, 5)),  # 随机选择的高斯模糊模糊图像transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛mean=[0.485, 0.456, 0.406], std = [0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

参考链接:torchvision.transforms.Compose()详解【Pytorch入门手册】

3.2 pathlib中glob匹配多个格式文件获取数据列表

可视化数据可用另一种方式显示

'''数据预处理-可视化数据'''cloudyPath = Path(data_dir)/"cloudy"image_files = list(p.resolve() for p in cloudyPath.glob('*') if p.suffix in [".jpg", ".png", ".jpeg"])plt.figure(figsize=(16, 6))for i in range(len(image_files[:24])):image_file = image_files[i]ax = plt.subplot(3, 8, i + 1)img = Image.open(str(image_file))plt.imshow(img)plt.axis("off")# 显示图片plt.tight_layout()plt.show()

3.3 plt.tight_layout()作用

tight_layout会自动调整子图参数,使之填充整个图像区域。这是个实验特性,可能在一些情况下不工作。它仅仅检查坐标轴标签、刻度标签以及标题的部分。

当你拥有多个子图时,你会经常看到不同轴域的标签叠在一起。

plt.rcParams['savefig.facecolor'] = "0.8"def example_plot(ax, fontsize=12):ax.plot([1, 2])ax.locator_params(nbins=3)ax.set_xlabel('x-label', fontsize=fontsize)ax.set_ylabel('y-label', fontsize=fontsize)ax.set_title('Title', fontsize=fontsize)plt.close('all')
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2)
example_plot(ax1)
example_plot(ax2)
example_plot(ax3)
example_plot(ax4)

产生图片:
在这里插入图片描述
增加plt.tight_layout()会调整子图之间的间隔来减少堆叠。
在这里插入图片描述
参考链接:plt.tight_layout()

3.4 x.view()函数

在构建神经网络的时候,经常会用到x.view()函数,实际上view()类似于reshape()的用法,将张量重新规划格式,本文将简单介绍这个函数的用法。

import torcha = torch.arange(1,17)
print(a.shape)
print(a)
a = a.view(-1,4)
print(a.shape)
print(a)

输出

torch.Size([16])
tensor([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16])
torch.Size([4, 4])
tensor([[ 1,  2,  3,  4],[ 5,  6,  7,  8],[ 9, 10, 11, 12],[13, 14, 15, 16]])

这里view的第一个参数有时会是-1,-1代表不确定,行数将由张量的长度除以列数决定,也就是说
a.view(-1,4) == a.view(4,4)
a.view(-1,8) == a.view(2,8)

参考链接:x.view(-1,4)

3.5 The freeze_support error解决方案

RuntimeError:An attempt has been made to start a new process before thecurrent process has finished its bootstrapping phase.This probably means that you are not using fork to start yourchild processes and you have forgotten to use the proper idiomin the main module:if __name__ == '__main__':freeze_support()...The "freeze_support()" line can be omitted if the programis not going to be frozen to produce an executable.

这个错误相信很多人都碰到过,就是,在Linux中可以很好运行的代码,在Windows中会给出这样的错误。
究其原因,往往出现在multiprocess上。当程序中调用 multiprocess函数,却不是在main中时,会出现这样的报错。

解决方案:
写一个main函数,然后在if name == ‘main’:中运行这个main函数。把那些引用multiprocessing的函数作都放到main()函数里去执行就OK了。
参考链接:Windows freeze_support Error: An attempt has been made to start a new process

3.6 提升测试acc–改变优化器

原文优化器设置为SDG

opt = torch.optim.Adam(model.parameters(), lr=learn_rate) 

变更优化器为Adam后,代码如下

opt = torch.optim.Adam(model.parameters(), lr=learn_rate) 

变更后,测试精度提升

Epoch: 2, Train_acc:84.2%, Train_loss:0.435, Test_acc:90.2%,Test_loss:0.257
Epoch: 3, Train_acc:89.1%, Train_loss:0.323, Test_acc:84.9%,Test_loss:0.481
Epoch: 4, Train_acc:89.3%, Train_loss:0.346, Test_acc:91.6%,Test_loss:0.218
Epoch: 5, Train_acc:91.3%, Train_loss:0.272, Test_acc:92.9%,Test_loss:0.271
Epoch: 6, Train_acc:96.9%, Train_loss:0.183, Test_acc:94.7%,Test_loss:0.184
Epoch: 7, Train_acc:93.8%, Train_loss:0.261, Test_acc:92.0%,Test_loss:0.312
Epoch: 8, Train_acc:95.6%, Train_loss:0.141, Test_acc:92.4%,Test_loss:0.203
Epoch: 9, Train_acc:97.2%, Train_loss:0.143, Test_acc:94.2%,Test_loss:0.170
Epoch:10, Train_acc:93.1%, Train_loss:0.224, Test_acc:93.8%,Test_loss:0.265
Epoch:11, Train_acc:95.3%, Train_loss:0.275, Test_acc:93.8%,Test_loss:0.211
Epoch:12, Train_acc:95.6%, Train_loss:0.164, Test_acc:94.7%,Test_loss:0.196
Epoch:13, Train_acc:98.2%, Train_loss:0.066, Test_acc:93.3%,Test_loss:0.432
Epoch:14, Train_acc:99.0%, Train_loss:0.052, Test_acc:95.1%,Test_loss:0.191
Epoch:15, Train_acc:98.7%, Train_loss:0.087, Test_acc:93.3%,Test_loss:0.248
Epoch:16, Train_acc:96.8%, Train_loss:0.156, Test_acc:93.8%,Test_loss:0.290
Epoch:17, Train_acc:97.7%, Train_loss:0.067, Test_acc:93.8%,Test_loss:0.268
Epoch:18, Train_acc:99.1%, Train_loss:0.036, Test_acc:94.7%,Test_loss:0.388
Epoch:19, Train_acc:99.6%, Train_loss:0.021, Test_acc:95.6%,Test_loss:0.176
Epoch:20, Train_acc:99.9%, Train_loss:0.012, Test_acc:95.1%,Test_loss:0.181
Done

在这里插入图片描述
优化器的详解可以参考链接深度学习 Day11——T11优化器对比实验

总结

通过本文的学习,遇到The freeze_support error问题,网上检索该问题解决方案,顺利解决该问题,并通过改变优化器的方式,提升了原有模型的测试精度。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/223816.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2023 re:Invent使用 PartyRock 和 Amazon Bedrock 安全高效构建 AI 应用程序

前言 本篇文章授权活动官方亚马逊云科技文章转发、改写权&#xff0c;包括不限于在 亚马逊云科技开发者社区, 知乎&#xff0c;自媒体平台&#xff0c;第三方开发者媒体等亚马逊云科技官方渠道 “Your Data, Your AI, Your Future.&#xff08;你的数据&#xff0c;你的AI&…

HarmonyOS保存应用数据

数据管理 1 概述 在移动互联网蓬勃发展的今天&#xff0c;移动应用给我们生活带来了极大的便利&#xff0c;这些便利的本质在于数据的互联互通。因此在应用的开发中数据存储占据了非常重要的位置&#xff0c;HarmonyOS应用开发也不例外。 本文将为您介绍HarmonyOS提供的数据管…

统信UOS上图形化配置系统和应用代理

原文链接&#xff1a;统信UOS上图形化配置系统和应用代理 hello&#xff0c;大家好啊&#xff0c;今天我要给大家介绍的是在统信UOS操作系统上如何通过图形化界面配置系统代理和应用代理。在许多公司的内网环境中&#xff0c;直接访问互联网可能受到限制&#xff0c;但通常会提…

智慧工地源码:为施工企业提供专业落地的解决方案

智慧工地利用物联网、大数据、AI等核心技术&#xff0c;实时采集现场数据&#xff0c;自动分析&#xff0c;精准分析、智能决策、科学评价&#xff0c;形成一套数据驱动的新型管理模式。为施工企业提供生产提效、安全可控、成本节约的项目管理解决方案&#xff0c;提升项目部管…

关于linux 磁盘占用排查问题

1.关于磁盘 查看整体磁盘占用大小 df -h 2. 先排除mysql 数据大小 查询库的大小 SELECT table_schema AS "Database", ROUND(SUM(data_length index_length) / 1024 / 1024, 2) AS "Size (MB)" FROM information_schema.TABLES GROUP BY table_schema…

理解Mysql索引原理及特性

作为开发人员&#xff0c;碰到了执行时间较长的sql时&#xff0c;基本上大家都会说”加个索引吧”。但是索引是什么东西&#xff0c;索引有哪些特性&#xff0c;下面和大家简单讨论一下。 1 索引如何工作&#xff0c;是如何加快查询速度 索引就好比书本的目录&#xff0c;提高数…

【力扣】19. 删除链表的倒数第 N 个结点

19. 删除链表的倒数第 N 个结点 相比于昨天&#xff0c;感觉刷题越来越轻松了~ 我进步了&#xff01; 以后刷题力度要加快了&#xff0c;因为我报了蓝桥杯&#xff01;加油~ 法一&#xff1a;计算链表长度 思路&#xff1a; 首先用个函数来计算出该链表的长度&#xff0c;然…

C语言之⽂件操作

一为啥需要文件&#xff1f; 如果没有⽂件&#xff0c;我们写的程序的数据是存储在电脑的内存中&#xff0c;如果程序退出&#xff0c;内存回收&#xff0c;数据就丢失了&#xff0c;等再次运⾏程序&#xff0c;是看不到上次程序的数据的&#xff0c;如果要将数据进⾏持久化的保…

C语言->动态内存管理

系列文章目录 文章目录 前言 ✅作者简介&#xff1a;大家好&#xff0c;我是橘橙黄又青&#xff0c;一个想要与大家共同进步的男人&#x1f609;&#x1f609; &#x1f34e;个人主页&#xff1a;橘橙黄又青_C语言,函数,指针-CSDN博客 目的&#xff1a;学习malloc&#xff0c…

动手学深度学习-注意力机制

10.1注意力提示 自主性注意力机制 有意识的注意力机制。非自主性注意力机制 无意识的注意力机制。 小结: 人类的注意力是有限的&#xff0c;有价值和稀缺的资源。受试者使用非自主性和自主性提示有选择的引导注意力&#xff0c;前者基于突出性&#xff0c;后者则依赖于意识。…

Android多国语言翻译 国际化

语言目录详细对应关系 Arabic, Egypt (ar-rEG) —————————–阿拉伯语&#xff0c;埃及 Arabic, Israel (ar-rIL) ——————————-阿拉伯语&#xff0c;以色列 Bulgarian, Bulgaria (bg-rBG) ———————保加利亚语&#xff0c;保加利亚 Catalan, Spain (ca-r…

24年五年制专转本招生院校有可能发生变动

据悉&#xff0c;24年五年制专转本院校可能将发生改变&#xff0c;南京传媒学院有可能停止招生 将新增一所招生大学&#xff1a;南京航空航天大学金城学院 南京航空航天大学金城学院始建于1999年&#xff0c;是南京航空航天大学联合社会力量创办的独立学院。学校位于江苏省南京…

Selenium IED-安装及简单使用

本文已收录于专栏 《自动化测试》 目录 背景介绍优势特点安装步骤录制脚本总结提升 背景介绍 Selenium 通过使用 WebDriver 支持市场上所有主流浏览器的自动化。 Webdriver 是一个 API 和协议&#xff0c;它定义了一个语言中立的接口&#xff0c;用于控制 web 浏览器的行为。 每…

luttuce(RedisTempate)实现hash expire lua脚本

话不多说先放脚本&#xff1a; local argv ARGV local length #argv if length > 0 then local unpackArgs {} for i 1, length - 1 dotable.insert(unpackArgs, argv[i]) end if redis.call(exists, KEYS[1]) 1 thenredis.call(del, KEYS[1])redis.call(hset, KEYS[…

成都工业学院Web技术基础(WEB)实验二:HTML5表格、表单标签的使用

写在前面 1、基于2022级计算机大类实验指导书 2、代码仅提供参考&#xff0c;前端变化比较大&#xff0c;按照要求&#xff0c;只能做到像&#xff0c;不能做到一模一样 3、图片和文字仅为示例&#xff0c;需要自行替换 4、如果代码不满足你的要求&#xff0c;请寻求其他的…

报表生成器Stimulsoft用户手册:预览中具有动态数据排序的报告

Stimulsoft Reports 是一款报告编写器&#xff0c;主要用于在桌面和Web上从头开始创建任何复杂的报告。可以在大多数平台上轻松实现部署&#xff0c;如ASP.NET, WinForms, .NET Core, JavaScript, WPF, Angular, Blazor, PHP, Java等&#xff0c;在你的应用程序中嵌入报告设计器…

快来看!苹果开放侧载,对开发者来说是祸是福?

不知道你们听说了没有&#xff1f; 苹果公司在向SEC提供的2023年10-K文件中明确表现&#xff0c;伴随着欧盟委员会《数字市场法案》的正式落地将不得不在苹果手机上开放“应用侧载”功能。 简单来说&#xff0c;就是你的App可以不用在App Store里下载&#xff0c;而是可以通过…

【深度学习目标检测】六、基于深度学习的路标识别(python,目标检测,yolov8)

YOLOv8是一种物体检测算法&#xff0c;是YOLO系列算法的最新版本。 YOLO&#xff08;You Only Look Once&#xff09;是一种实时物体检测算法&#xff0c;其优势在于快速且准确的检测结果。YOLOv8在之前的版本基础上进行了一系列改进和优化&#xff0c;提高了检测速度和准确性。…

SQL Server数据库使用T-SQL语句简单填充

文章目录 操作步骤&#xff1a;1.新建数据库起名RGB2.新建表起名rgb3.添加三个列名4.点击新建查询5.填入以下T-SQL语句&#xff0c;点击执行&#xff08;F5&#xff09;6.刷新之后&#xff0c;查看数据 操作环境&#xff1a; win10 Microsoft SQL Server Management Studio 20…

vcpkg下载及安装

文章目录 vcpkg是什么vcpkg的优势Windows环境下的下载及安装1.下载 Linux环境下的下载及安装常用命令介绍1.1.1 设置默认安装的平台1.1.2可选步骤&#xff0c;将vcpkg与Visual Studio配合使用&#xff08;需要管理员权限&#xff09;1.1.3 软件包升级1.1.4 查找安装软件包1.1.5…