12.4~12.14概率论复习与相应理解(学习、复习、备考概率论,这一篇就够了)

未分配的题目 

490fe698dd1249529a3d350f435d20b4.jpg

0c11e31a2f26465399fe4f53a6606da5.jpg

6b427212b31b43a385bb45f9cb4b26c1.jpg

bc605ecff4934f6482d2d5c7110edd97.jpg

d7a022af2c554cf3988a9a7115fd5121.jpg

5de4e8c534fc4755b08ca0cfdc426ad7.jpg

5ca7ade3436046c3aa3ad6bc2943a8cf.jpg

58d883686c4347968d00ae045e8c2bcf.jpg

5c7575b2edcd4b8cb2e8d69f16697e2e.jpg

e107f905908642e6b02bbb49bd714edd.jpg

048e4f744469414b875de1fa5412185d.jpg

a8b6c4a6a5b14c3fa263caf1c652ecfb.jpg

d517ad4e2dbb453b838b99a35d2dd6ae.jpg

5b8df31e7e02440a913bf7961a5ec174.jpg

fa831db3019d4e24a3a24277e4d555e5.jpg

 

概率计算(一些转换公式与全概率公式)与实际概率 ,贝叶斯

一些转换公式

相关性质计算 

常规,公式的COV与P

复习相关公式

计算出新表达式的均值,方差,再套正态分布的公式

COV的运算性质

如果两变量独立,那么EXY=EXEY

算COVXY,就是EXY-EXEY

E(X[X]),对于带绝对值的均值,直接进行积分,利用积分的对称关系求解

期望表达式中的式子,就是每个点对应的函数式的值。

 

面积为ΠR^2,派为常数,所以面积的期望取决于X^2的期望,方差取决于X^2的方差

COV(S,C)最终可化简为COV(R,R^2)=E(R*R^2)-E(R)E(R^2)

X^2的方差,计算一下X^4的积分,一共要算X^3,X^4两个积分

对于此类型的X,Y变化,满足变化后的量,均值为0,方差为1

奇怪,不规则的COV,P

一般就是离散的二维变量X,Y。核心就是依据题目特点,写出X,Y的离散分布表,然后就计算,EXY,EX,EY,EX^2,EY^2,DX,DY等关键数据

即主要是考分布律的求解

联合分布律,直接联合各变量可能出现的所有离散值列表,然后分别计算格子上各种情况的概率,就变得一目了然了

直接依照各变量可能取值列表,然后明确每个格子所代表的实际含义,再进行概率计算即可

标准差等的均值,方差性质

样本均值就是分布均值,与取样数量N无关;样本方差为分布方差除以N。

样本均值的均值是分布均值。

样本方差

样本均值为X拔,样本均值的均值就是总体均值;

样本均值的方差是总体方差除以N

样本方差为S的平方,样本方差的均值等于总体的方差

区分样本均值的方差与样本方差

还需要区分的是,样本均值与样本,即X拔与X,X与μ,X拔与μ

另外,对于样本方差的方差,考虑构建卡方分布

即样本方差为N-1,除以总体方差后,可以转为N-1的卡方分布,然后样本方差的方差,可以转化为卡方分布的方差,卡方分布的方差为二倍的自由度

两种方法,一种是转为自由度为1的卡方分布,然后注意卡方分布的方差为2^N,均值为N;一种是利用方差的定义,即样本减去均值的差的均值,满足这个式子,所以就是在问样本方差,为原样本方差除以取样数量

还有一种思路是,涉及均值,绝对值等要素组合在一起时,考虑直接积分,利用正态分布的对称性进行求解。

ES^2=DX,E(X拔^2)=D(X拔)+E(X拔)^2,

D(X拔)=1/nDX,E(X拔)=EX

常见分布

正态分布公式背写,

常见分布缩写,P是泊松,E是指数,G是几何分布

常见分布的期望与方差,泊松的期望就是朗姆达,方差?

指数的期望是1/朗姆达,方差为1/朗姆达的平方。(理解为,指数分布的含义为等待时间,参数朗姆达的含义为发生次数,即频率,所以平均等待时间为频率事件间的间隔,1/朗姆达)

几何分布?在指数分布的基础上,就只是方差还要再多乘一个1-p,即1-参数

二项分布为期望为np,方差为np(1-p)

对于后一项的处理方式,为直接积分,即回归期望的定义。

对于期望式中难以处理的部分,如绝对值以及其他不能转换的部分,可以考虑直接通过期望定义来进行积分计算

第一空,就是直接离散化计算概率,不用考虑卷积公式。第二问就是直接展开,利用独立分布时,EXY=EXEY进行计算

此题需要注意,平均就诊时间是参数的倒数,参数的含义 是一定时间内事件发生的次数、频率,所以间隔时间是参数的倒数

密度:朗姆达E^-朗姆达,分布:1-E^-朗姆达

总点击次数为4,类似前题,直接离散化穷举计算即可

两个都服从泊松分布,第一个参数为3,第二个参数为2。用卷积公式,这两个是独立的,然后有一个联合密度函数,就在那个联合密度函数上进行卷积公式。也不用卷积公式,直接离散化的穷举计算即可

满足指数分布,可以直到各自的均值与方差,然后由相关系数知道均方差,均方差=EXY-EXEY,就求出EXY

指数分布的均值为参数的倒数,方差为参数倒数的平方,也是均值的平方

泊松分布的均值为参数,方差也为参数

几何分布的均值为参数的倒数,方差为参数倒数的平方基础上再乘个Q

基于标准正态分布间的转化 

卡方分布是直接相加

T分布是分子为一个标准正态,卡方为分布除以其自由度后开根号 。T的自由度就是分母卡方的自由度

F分布分子分母均为卡方除以其自由度后开根号

样本方差除以方差可以转化为卡方分布

从而,样本方差在分子上时,可为卡方分布;在分母上是,为标准差的形式,则为除以自由度后开根号,即T分布。分子分母都有样本方差,考虑F分布

即出现样本方差,就需要考虑到卡方分布,T分布,F分布

X与Y独立,且都为标准正态分布,那么平方加和为自由度为2的卡方分布,找分位点即可

相同原理可以应用于炮弹落点为(X,Y),且X,Y独立满足标准正态分布,那么落地到原点的距离Z满足Z^2=X^2+Y^2,即Z^2服从自由度为2的卡方分布

第一空直接运算,就是自由度为6的卡方分布

DS^2,考虑构造卡方分布,(N-1)S^2/方差为自由度为N-1的卡方分布,然后卡方分布的方差为两倍的自由度,即可得;第二空,为自由度为N-1的T分布,T分布的均值为0,方差为N/N-2;第三空为自由度为1的卡方分布

第一空为自由度为N的卡方分布;第二空为F分布,分子自由度为N,分母为M

注意分母的i是从3开始1,而不是从1开始的,还有就是T分布与F分布一定要注意除以各自的自由度

注意第一个空,为样本均值,减完后,其分布满足均值为0,因为样本均值的均值等于总体均值

但要注意它的方差,样本均值不是一个常量,而是一个变量,如果为常量,如总体均值,那么这个分布的方差不会变;但是为样本均值,它的方差为总体方差除以n,但是依然不能直接运算,因为X1与样本均值不独立,应把其拆为独立的部分后再进行运算

对于第二问,涉及到样本均值,就一定会有样本方差,考虑自由度减1;不可用第一问的结论,因为这N个分布并不相互独立,而卡方分布必须满足相加的各几个分布相独立

统计量的性质

无偏估计

若为无偏估计,那么统计量的均值为数值期望

三个想法;第一是直接拆开,然后进行运算;第二是构建辅助分布,然后利用卡方分布;第三同样是辅助分布,但是是利用EX^2转方差的性质。

这里需要注意是可以成功构建一个卡方分布的,因为两两样本间的差值是相互独立的,但是需要注意上例中,涉及到样本均值就无法建立卡方分布,因为样本均值并非与每个样本独立。

置信区间的计算

对于总体均值的置信区间,若总体方差已知,就构建正态分布

若总体方差未知,就构建T分布

对于总体方差的置信区间,无论总体均值是否已知,都构建卡方分布来进行求解,

若总体均值已知,那么分子上的X-均值,就是一个一个算

若总体均值未知,那么分子上的X-均值,就不能一个一个算,因为此时总体均值不知道,那么就是通过样本方差来解决这一问题,即N-1乘以样本方差,等于那个,不过是自由度减一,而且每项减的是样本均值而不是总体均值

在总体方差估计区间中,需注意卡方分布是不对称的,也就是要查两次表,左右都是二分之α的水平

对总体方差估计,总体均值未知,采用N-1的卡方分布,问有无增大,所以检验假设为方差<=70,统计量应分布于左侧,拒绝域为右侧,右侧占0。05

对方差估计,均值未知,考虑自由度为N-1的卡方分布,即(N-1)样本方差除以估计方差,左右两侧为α/2的水平

对总体均值估计,方差已知,采用标准正态,注意假设为均值小于等于32,然后统计量水平为单侧(左侧),拒绝域在右侧

对总体均值的估计,总体方差不知,用自由度-1的T分布,左右为二分之α,即0.025

对总体均值估计,总体方差未知,采用自由度N-1的T分布,置信度95%,分布在左右两侧

对总体方差估计,总体均值未知,采用N-1的卡方分布,分子为N-1*S^2,分母为方差,左右为α/2

问方差,方差估计,那就是卡方分布,由于均值未知,所以依据样本方差构建,样本方差乘(样本数量-1)除以总体方差,就是n-1的卡方分布,问是否明显变化,双侧估计,拒绝域就是比1-α/2小或者比α/2大

第一类第二类错误

第一类第二类错误理解

主要是第二类错误的计算

第一类错误是说原假设为真,然后放弃原假设,即弃真错误;第二类错误是说原假设为假,接受原假设。一般思路为固定犯第一类错误的概率,然后缩小第二类错误的概率。

犯第一类错误的概率就是α,固定后,就可以确定拒绝域边界的情况。

犯第二类错误,原假设为假,依然接受,那么就是依据第一类错误固定下的边界C,可以表达出相应量在的一个区间里(即不在拒绝域内),然后可以计算在实际分布条件下分布在这个区间里的概率

就是说,拒绝域的边界值,和第一类错误的概率,α水平息息相关,互为决定。

变量间转换,概率计算题

 求积分公式

涉及一维与二维

考虑平方的转化

卷积公式计算

证明题

似然估计练练

理解

 密度函数与分布函数的理解

有一个函数,它可以取很多值,如果取每个值的概率都一样,那就是分布均匀的,是均匀函数,如果分布不均匀,就不是均匀函数分布;每个值在函数取值出现的概率就是密度函数,均匀时都一样;不均匀时根据出现的值,有其对应的出现概率。

分布函数可以理解为,分布函数这个值,然后函数取值的点落在这个值划定的左区间内的概率(或者可以说是占比)

从这个角度,密度函数的自变量取值范围,就是对应会出现的值,然后这个值通过密度函数会得到其出现的概率;而分布函数就是立一个区间右端点,然后问自变量(可能出现的值)取值在这个区间里的概率。

二维变量密度函数,卷积公式理解

卷积公式就是,原来两个变量x,y,然后有一个z综合了2个变量的信息,通过卷积公式就是把其中一个变量视为常数,然后用z去替换掉剩下的那个变量,利用的方式就是一维的函数替换,求反函数,然后乘一个求导(注意另一个变量在此时表现为常数),之后就得到了把其中一个变量替换后的x,z联合分布(以替换y为例),然后再对每个z收缩其所有的x,即可求得z的单独密度函数。

即替掉哪个变量(计为Y)时,就求Y与Z的关系式(Y为因变量),把X视为常数,然后在函数里踢掉Y为Z,然后乘一个YZ关系式中对Z求导的结果(可能涉及到X,求导时其视为常数),最后就收缩所有的X得到Z的式子。

第一步是要得到联合密度函数,就是把不同变量X,Y的取值综合在一起的一个密度联式

在一维当中,Y与X满足一个关系式(Y为因变量),X已知分布函数,那么转换求反函数,得到X为因变量的与Y的关系式,然后这个表达式对Y求导,取绝对值,把X当中的换掉为Y,就是Y的分布函数

对于泊松分布与指数分布的区分

泊松分布与指数分布共用一个参数,就是朗姆达,这个参数的含义就是一定时间内事件发生的次数,频率,是次数、频率。

相应的,等待时间,寿命,就是频率的倒数。

要根据实际意义确定真正的朗姆达

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/223673.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

前后端项目,nginx部署前端项目后刷新浏览器报错404的问题

问题&#xff1a; Vue单页应用项目打包部署Nginx服务器后&#xff0c;刷新页面后&#xff0c;出现404。 原因&#xff1a; 加载单页应用后路由改变均由浏览器处理&#xff0c;而刷新时将会请求当前的链接&#xff0c;而Nginx无法找到对应的页面。 解决&#xff1a; 在Nginx配…

python爬虫学习-批量爬取图片

python爬虫学习-批量爬取图片 爬虫步骤爬取前十页图片到本地根据页码获取网络源码使用xpath解析网页解析网页并下载图片主函数如下 爬取的网站为站长素材&#xff08;仅做学习使用&#xff09; 爬取的目标网站为 https://sc.chinaz.com/tupian/qinglvtupian.html如果爬取多页&…

大数据讲课笔记1.2 Linux用户操作

文章目录 零、学习目标一、导入新课二、新课讲解&#xff08;一&#xff09;用户账号管理1、用户与用户组文件2、用户账号管理工作 &#xff08;二&#xff09;用户操作1、切换用户&#xff08;1&#xff09;语法格式&#xff08;2&#xff09;切换到普通用户&#xff08;3&…

NVH软件导入音频文件

我们经常会遇到一种情况是&#xff1a;车主上下班路上经常会听到一个异响&#xff0c;但车交到我们手上&#xff0c;我们怎么在外面去试车&#xff0c;都听不到这个异响&#xff0c;或者条件达不到重现不了这个异响。如果是这样&#xff0c;我们是不是有点崩溃&#xff1f;但&a…

jstree组件的使用详细教程,部分案例( PHP / fastAdmin )

jstree 组件的使用。 简介&#xff1a;JsTree是一个jquery的插件&#xff0c;它提交一个非常友好并且强大的交互性的树&#xff0c;并且是完全免费或开源的&#xff08;MIT 许可&#xff09;。Jstree技持Html 或 json格式的的数据&#xff0c; 或者是ajax方式的动态请求加载数…

公司团队规范研发流程概要

一、背景 ● 背景&#xff1a;XXX研发部门开发流程步骤以及开发工具&#xff0c;依赖版本&#xff0c;开发规范等相关信息。 ● 技术定位&#xff1a;All。 ● 目标群体&#xff1a;所有相关研发部门技术人员。 二、操作步骤 2.1 开发前的准备 准备工作一 开发相关账号开通…

中职网络安全应急响应—Server2228

应急响应 任务环境说明: 服务器场景:Server2228(开放链接) 用户名:root,密码:p@ssw0rd123 1. 找出被黑客修改的系统别名,并将倒数第二个别名作为Flag值提交; 通过用户名和密码登录系统 在 Linux 中,利用 “alias” 命令去查看当前系统中定义的所有别名 flag:ss …

软实力篇---第二篇

系列文章目录 文章目录 系列文章目录前言一、必知必会的几点二、必须了解的两大法则三、项目经历怎么写前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站,这篇文章男女通用,看懂了就去分享给你的码吧。 一、必知必…

Echarts饼图中显示百分比

开发中遇到一个需求&#xff0c;要在饼图上显示数据百分比&#xff0c;下图&#xff1a; 查了echarts 文档&#xff0c;并不能通过简单的配置来实现&#xff0c;原因如下&#xff1a;在单个serie的label中&#xff0c;只能设置一个label&#xff0c;位置可以选择在饼图内部inne…

在线监控网址源码/ 网站监控工具源码/ 网站监控系统源码/定时任务/网站网址URL状态监控神器

源码介绍&#xff1a; 在线监控网址源码、 网站监控工具源码&#xff0c;它作为网站监控系统源码&#xff0c;有定时任务&#xff0c;支持卡密充值&#xff0c;是网站网址URL状态监控神器。让数据库监控更加简单和专业。远程云中监控、实时邮件告警、丰富的指标和图表、分析和…

【教学类-06-17】20231215 (题目填满55格)X-Y之间“加法题+题”

背景需求&#xff1a; 0-5加法、减法是大班孩子选择较多的题型&#xff0c;因为只有21题&#xff0c;做题速度快&#xff0c;完成后&#xff0c;&#xff0c;他们会问&#xff1a;“后面的空白格子做什么” “可以画画&#xff0c;自己出题目” 但是大部分孩子都不会自己出题目…

【导航栏内容的设置 Objective-C语言】

一、那接下来呢,我们就来做一做,关于导航控制器, 1.设置它顶部的导航栏儿内容的东西, 1)我们刚刚讲过的这个,通过代码去跳转、返回、 2)通过storyboard去跳转、返回、 但是,这两种情况,大家是不是已经注意到,导航栏里面,没有任何内容, 然后呢,返回,这是红色,…

C++ Qt开发:ProgressBar进度条组件

Qt 是一个跨平台C图形界面开发库&#xff0c;利用Qt可以快速开发跨平台窗体应用程序&#xff0c;在Qt中我们可以通过拖拽的方式将不同组件放到指定的位置&#xff0c;实现图形化开发极大的方便了开发效率&#xff0c;本章将重点介绍ProgressBar进度条组件的常用方法及灵活运用。…

骨传导耳机可以保护听力吗?一文读懂骨传导耳机和开放式耳机的区别!

由于骨传导耳机通过人体骨骼来传递声音&#xff0c;不经过耳道&#xff0c;不会损伤耳膜以及内毛细胞&#xff0c;所以使用骨传导耳机不仅不会损伤听力&#xff0c;还能在一定程度上起到保护听力的作用。 一、骨传导耳机和开放式耳机的区别是什么&#xff1f; 由于骨传导耳机…

5G工业网关视频传输应用

随着科技的不断进步&#xff0c;5G网络技术已经成为了当前最热门的话题之一。而其中一个引人注目的领域就是5G视频传输和5G工业网关应用。在传统网络通信中&#xff0c;由于带宽和延迟的限制&#xff0c;视频传输常常受到限制&#xff0c;而工业网关应用也存在着链路不稳定、数…

【用三大件写出的开门烟花特效】

又到了一年一度的春节时期啦&#xff01;昨天呢是北方的小年&#xff0c;今天是南方的小年&#xff0c;看到大家可以愉快的放烟花&#xff0c;过大年很是羡慕呀&#xff01;辞旧岁&#xff0c;贺新春&#xff0c;今年我呀要放烟花&#xff0c;过春节&#xff01;&#x1f9e8;。…

[已解决]HttpMessageNotReadableException: JSON parse error: Unexpected character:解析JSON时出现异常的问题分析与解决方案

&#x1f337;&#x1f341; 博主 libin9iOak带您 Go to New World.✨&#x1f341; &#x1f984; 个人主页——libin9iOak的博客&#x1f390; &#x1f433; 《面试题大全》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33…

小小手表探索更多 好玩伴也是好帮手

华为儿童手表 5X 不仅是孩子的好玩伴&#xff0c;也是家长的好帮手。全能形态让小小手表探索更多&#xff0c;高清双摄记录美好&#xff0c;离线定位随时掌握&#xff0c;绿色纯净守护成长&#xff0c;让孩子享受科技带来的安全与乐趣。

「新版」PyCharm 加载condav Environment / Conda executableis not found

在新版的 PyCharm 配置中&#xff0c;设置Conda环境不再与旧版本保持一致&#xff0c;对于新手而言可能不清楚如何加载&#xff0c;作者也是郁闷了好久&#xff0c;经过一顿输出发现需要通过加载conda配置&#xff0c;才调取conda虚拟环境&#xff0c;而不再是直接调取conda的虚…