OpenCV-Python15:图像阈值处理

目录

目标

图像阈值及分割算法介绍

简单阈值算法 

自适应阈值算法 

Otsu`s 二值化算法

Otsu`s 二值化原理 


目标

  • 通过本文你将学到图像二值化、简单阈值处理、自适应阈值、Otsu`s 二值化等。
  • 将学习的函数有cv2.threshold,cv2.adaptiveThreshold 等。

图像阈值及分割算法介绍

        图像阈值是图像分割中常用的一种方法,通过将图像中的像素值与一个特定的阈值进行比较,将像素分为两个类别:小于阈值的像素被归为一类,大于等于阈值的像素被归为另一类。

常用的图像阈值分割算法包括:

  1. 全局阈值法:将图像中的所有像素都与一个全局阈值进行比较,从而将图像分为两个类别。常用的全局阈值法有基于直方图的Otsu算法和基于最大类间方差的Kapur算法。
  2. 自适应阈值法:将图像分为许多小的区域,在每个小区域内分别计算一个局部阈值,根据每个像素与其对应的局部阈值的比较结果进行分割。常用的自适应阈值法有基于局部平均值的均值法和基于局部中值的中值法。
  3. 大津阈值法(Otsu算法):通过最大化类间方差来确定最佳阈值,使得类间差异最大,类内差异最小。该方法适用于具有双峰直方图的图像。
  4. Kapur算法:基于最大类间方差原理,通过最大化类间熵来确定最佳阈值。相比于Otsu算法,Kapur算法对于非双峰直方图的图像更具鲁棒性。
  5. 均值法:将图像分成若干个小的区域,计算每个区域的像素平均值,将每个像素与其对应区域的平均值进行比较,从而确定像素的类别。
  6. 中值法:将图像分成若干个小的区域,计算每个区域的像素中值,将每个像素与其对应区域的中值进行比较,从而确定像素的类别。

        这些图像阈值分割算法各有优劣,选择适合具体应用场景的算法可以提高分割结果的准确性和鲁棒性,下面重点介绍一下OpenCV-Python中的几种重点算法。

简单阈值算法 

        简单阈值算法是一种全局阈值法,与名字一样,是一种非常简单的分割算法。原理是当像素值高于阈值时,我们给这个像素赋予一个新值(可能是白色),否则我们给它赋予另外一种颜色(也许是黑色)。OpenCV中的这个算法的实现函数就是就是cv2.threshhold()

其参数的含义如下:

1.src:输入图像,即要进行阈值分割的原始图像,通常为灰度图像。

2.thresh:阈值,用于将像素分为两个类别的分界值。根据阈值与像素值的比较结果,将像素分为两类:小于阈值的像素被归为一类,大于等于阈值的像素被归为另一类。

3.maxval:当像素值大于等于阈值时,像素所赋予的新值,通常为255。

4.type:阈值分割的类型,用于指定阈值分割的方法。常用的类型有:

  • cv2.THRESH_BINARY:二值化,将大于阈值的像素置为maxval,小于阈值的像素置为0。
  • cv2.THRESH_BINARY_INV:反二值化,将小于阈值的像素置为maxval,大于阈值像素置为0。
  • cv2.THRESH_TRUNC:截断,将大于阈值的像素置为阈值,小于阈值的像素保持不变。
  • cv2.THRESH_TOZERO:取零,将小于阈值的像素置为0,大于阈值的像素保持不变。
  • cv2.THRESH_TOZERO_INV:反取零,将大于阈值的像素置为0,小于阈值的像素保持不变。

函数的返回值为:

  • retval:所选择的阈值。
  • dst:阈值分割后的图像。

不同方法的测试代码如下: 

import cv2
import numpy as np
from matplotlib import pyplot as pltimg=cv2.imread('gradient.png',0)
ret,thresh1=cv2.threshold(img,127,255,cv2.THRESH_BINARY)
ret,thresh2=cv2.threshold(img,127,255,cv2.THRESH_BINARY_INV)
ret,thresh3=cv2.threshold(img,127,255,cv2.THRESH_TRUNC)
ret,thresh4=cv2.threshold(img,127,255,cv2.THRESH_TOZERO)
ret,thresh5=cv2.threshold(img,127,255,cv2.THRESH_TOZERO_INV)titles = ['Original Image','BINARY','BINARY_INV','TRUNC','TOZERO','TOZERO_INV']
images = [img, thresh1, thresh2, thresh3, thresh4, thresh5]for i in xrange(6):
plt.subplot(2,3,i+1),plt.imshow(images[i],'gray')
plt.title(titles[i])
plt.xticks([]),plt.yticks([])
plt.show()

效果如下:

自适应阈值算法 

        自适应阈值算法是一种根据图像局部区域的统计特性来确定阈值的方法,适用于图像中存在光照不均匀或者对比度较低的情况。Opencv-Python中提供了cv2.adaptiveThreshold()函数来实现自适应阈值算法。

cv2.adaptiveThreshold()函数的参数如下:

1.src:输入图像,即要进行阈值分割的原始图像。通常为灰度图像。

2.maxval:当像素值大于等于阈值时,像素所赋予的新值。通常为255。

3.adaptiveMethod:自适应阈值算法的方法。有两种可选:

  • cv2.ADAPTIVE_THRESH_MEAN_C:根据邻域均值确定阈值。
  • cv2.ADAPTIVE_THRESH_GAUSSIAN_C:根据邻域加权平均值确定阈值。

4.thresholdType:阈值分割的类型,用于指定阈值分割的方法。常用的类型有:

  • cv2.THRESH_BINARY:二值化,将大于阈值的像素置为maxval,小于阈值的像素置为0。
  • cv2.THRESH_BINARY_INV:反二值化,将小于阈值的像素置为maxval,大于阈值的像素置为0。

5.blockSize:邻域大小,用于计算局部均值或者加权平均值。

6.C:从计算得到的局部均值或者加权平均值中减去的一个常数。

代码如下:

import cv2
import numpy as np
from matplotlib import pyplot as pltimg = cv2.imread('dave.jpg',0)
# 中值滤波
img = cv2.medianBlur(img,5)
ret,th1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY)
#11 为Block size, 2 为C 值
th2 = cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_MEAN_C,\
cv2.THRESH_BINARY,11,2)
th3 = cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,\
cv2.THRESH_BINARY,11,2)titles = ['Original Image', 'Global Thresholding (v = 127)',
'Adaptive Mean Thresholding', 'Adaptive Gaussian Thresholding']
images = [img, th1, th2, th3]
for i in xrange(4):
plt.subplot(2,2,i+1),plt.imshow(images[i],'gray')
plt.title(titles[i])
plt.xticks([]),plt.yticks([])
plt.show()

效果如下:

Otsu`s 二值化算法

        Otsu’s 二值化算法是一种自动确定阈值的方法,它可以根据图像的灰度直方图来确定一个最佳的阈值,从而将图像分割为前景和背景两部分。Opencv-Python中提供了cv2.threshold()函数来实现Otsu’s 二值化算法。

cv2.threshold()函数的参数如下:

1.src:输入图像,即要进行阈值分割的原始图像。通常为灰度图像。

2.thresh:阈值,用于将像素分为两类。在Otsu’s 二值化算法中,这个参数不需要指定。

3.maxval:当像素值大于等于阈值时,像素所赋予的新值。通常为255。

4.type:阈值分割的类型,用于指定阈值分割的方法。在Otsu’s 二值化算法中,应该使用cv2.THRESH_BINARY

5.dst:输出图像,即阈值分割后的图像。

函数的返回值为阈值。

下面是一个示例代码,展示了如何使用Otsu’s 二值化算法对图像进行阈值分割:

import cv2
import numpy as np
from matplotlib import pyplot as pltimg = cv2.imread('noisy2.png',0)
# global thresholding
ret1,th1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY)
# Otsu's thresholding
ret2,th2 = cv2.threshold(img,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
# Otsu's thresholding after Gaussian filtering
#􈙹5,5􈙺为􅒇斯核的大小􈙽0 为标准差
blur = cv2.GaussianBlur(img,(5,5),0)
# 􄾷值一定􄌰􄕭为0􈙲
ret3,th3 = cv2.threshold(blur,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
# plot all the images and their histograms
images = [img, 0, th1,
img, 0, th2,
blur, 0, th3]
titles = ['Original Noisy Image','Histogram','Global Thresholding (v=127)',
'Original Noisy Image','Histogram',"Otsu's Thresholding",
'Gaussian filtered Image','Histogram',"Otsu's Thresholding"]
# 􄦈􄭻使用了pyplot 中画直方图的方法􈙽plt.hist, 􄌰注意的是它的参数是一维数组
# 所以􄦈􄭻使用了􈙹numpy􈙺ravel 方法􈙽将多维数组􄤛换成一维􈙽也可以使用flatten 方法
#ndarray.flat 1-D iterator over an array.
#ndarray.flatten 1-D array copy of the elements of an array in row-major order.for i in xrange(3):
plt.subplot(3,3,i*3+1),plt.imshow(images[i*3],'gray')
plt.title(titles[i*3]), plt.xticks([]), plt.yticks([])
plt.subplot(3,3,i*3+2),plt.hist(images[i*3].ravel(),256)
plt.title(titles[i*3+1]), plt.xticks([]), plt.yticks([])
plt.subplot(3,3,i*3+3),plt.imshow(images[i*3+2],'gray')
plt.title(titles[i*3+2]), plt.xticks([]), plt.yticks([])
plt.show()

效果如下:

Otsu`s 二值化原理 

        在这一部分我们会演示怎样使用Python 来实现Otsu`s二值化算法,从而告诉大家它是如何工作的。因为是双峰图,Otsu 算法就是要找到一个阈值t, 使得同一类加权方差最小,需要满下列关系式:


其中:


        其实就是在两个峰之找到一个值t将两个峰分开,并且使每一个峰内的方差最小。实现这个算法的Python 代码如下:

# -*- coding: utf-8 -*-
"""
Created on Sat Jan 11 14:46:12 2014
@author: duan
"""
import cv2
import numpy as np
img = cv2.imread('noisy2.png',0)
blur = cv2.GaussianBlur(img,(5,5),0)
# find normalized_histogram, and its cumulative distribution function
# 􄕐算归一化直方图
#CalcHist(image, accumulate=0, mask=NULL)
hist = cv2.calcHist([blur],[0],None,[256],[0,256])
hist_norm = hist.ravel()/hist.max()
Q = hist_norm.cumsum()
bins = np.arange(256)
fn_min = np.inf
thresh = -1
for i in xrange(1,256):
p1,p2 = np.hsplit(hist_norm,[i]) # probabilities
q1,q2 = Q[i],Q[255]-Q[i] # cum sum of classes
b1,b2 = np.hsplit(bins,[i]) # weights
# finding means and variances
m1,m2 = np.sum(p1*b1)/q1, np.sum(p2*b2)/q2
v1,v2 = np.sum(((b1-m1)**2)*p1)/q1,np.sum(((b2-m2)**2)*p2)/q2
# calculates the minimization function
fn = v1*q1 + v2*q2
if fn < fn_min:
fn_min = fn
thresh = i
# find otsu's threshold value with OpenCV function
ret, otsu = cv2.threshold(blur,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
print (thresh,ret)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/222842.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Numpy 实现C4.5决策树

C4.5 信息增益比实现决策树 信息增益比 g R ( D , A ) g ( D , A ) H ( D ) g_{R}(D, A)\frac{g(D, A)}{H(D)} gR​(D,A)H(D)g(D,A)​ 其中&#xff0c; g ( D , A ) g(D,A) g(D,A)是信息增益&#xff0c; H ( D ) H(D) H(D)是数据集 D D D的熵 代码实现 import numpy as …

Qt图像处理-Qt中配置OpenCV打开本地图片

本文讲解Qt中配置OpenCV过程并用实例展示如何使用OpenCV打开图片(windows环境下) 一、下载OpenCv 本文使用版本OpenCV-MinGW-Build-OpenCV-3.4.5 下载地址: https://codeload.github.com/huihut/OpenCV-MinGW-Build/zip/refs/heads/OpenCV-3.4.5 点击Code-local-Downlo…

Linux基本命令操作

一、命令操作快捷键 1.Tab键&#xff1a;自动补齐 2.ctrlL &#xff1a;清屏 二、使用命令获取帮助信息 1. # ls --help 2. # man ls 三、目录和文件管理命令 1. pwd \\显示路径 2. cd \\进入或切换目录 3.​​​​​​​ ls -l \\显示详细信息 4. ​​​​​​​ ls -a \\…

实验5:NAT配置

1.实验目的&#xff1a; 了解NAT的基本概念和功能 掌握NAT的配置方法和命令 观察和分析NAT的工作原理和流程 2.实验内容&#xff1a; 在路由器上配置静态NAT&#xff0c;实现内网主机通过公网IP地址访问外网服务器在路由器上配置动态NAT&#xff0c;实现内网主机通过公网I…

STM32的基本定时器注意点

本文介绍了STM32基本定时器3个重要的寄存器PSC、ARR、CNT&#xff0c;以及缓冲机制和计数细节。 基本定时器的框图 预分频器寄存器(TIMx_PSC)可以在运行过程中修改它的数值&#xff0c;新的预分频数值将在下一个更新事件时起作用。因为更新事件发生时&#xff0c;会把 TIMx_PS…

CGAL的最优传输曲线重构

1、介绍 此程序包实现了一种重建和简化二维点集的方法。输入是一组具有质量属性的二维点&#xff0c;可能受到噪声和离群值的干扰。输出是一组线段和孤立点&#xff0c;它们近似于输入点&#xff0c;如下图所示。质量属性与每个点的近似重要性有关。 左&#xff1a;输入点集受到…

@德人合科技——天锐绿盾|电脑文件防止泄密|文件、文档、图纸、源代码等透明加密保护,防泄密软件系统

德人合科技——天锐绿盾提供了一种企业办公电脑文件防止泄密的解决方案&#xff0c;该方案对文件、文档、设计图纸、源代码等进行了透明加密保护。 pc访问地址&#xff1a; https://isite.baidu.com/site/wjz012xr/2eae091d-1b97-4276-90bc-6757c5dfedee 透明加密是一种保护文…

基于ssm生活缴费系统及相关安全技术的设计与实现论文

摘 要 互联网发展至今&#xff0c;无论是其理论还是技术都已经成熟&#xff0c;而且它广泛参与在社会中的方方面面。它让信息都可以通过网络传播&#xff0c;搭配信息管理工具可以很好地为人们提供服务。针对生活缴费信息管理混乱&#xff0c;出错率高&#xff0c;信息安全性差…

[PyTorch][chapter 7][李宏毅深度学习][深度学习简介]

前言&#xff1a; 深度学习常用的开发平台 TensorFlow torch theano caffe DSSTNE mxnet libdnn CNTK 目录&#xff1a; 1&#xff1a; 深度学习发展历史 2&#xff1a; DeepLearning 工程简介 3&#xff1a; DNN 简介 一 发展历史 二 DeepLearning 工程简介 深度学习三…

STM32--Wi-Fi插座_风扇_灯

项目需求 两个互相通信的双方&#xff0c;波特率必须相同!!!!!! 通过 ESP8266 模块&#xff0c;实现手机控制 wifi 插座 / 风扇 / 灯。 项目设计 串口 1 用于与 ESP8266 通讯&#xff0c;串口 2 连接 PC &#xff0c;用于打印 log &#xff0c;查看系统状态。 项目实现 注意&a…

【计算思维】第14届蓝桥杯省赛计算思维U12组真题试卷

第14届蓝桥杯省赛计算思维U12组真题试卷 选择题 第 1 题 单选题 晶晶在注册一个学习网站时&#xff0c;需要设置密码。 网站提示&#xff1a; 密码必须由8~16个字符组成&#xff0c;可以包含数字、大写字母、小写字母、特殊符号这4种字 符类型。 包含4种不同类型字符的…

《数据结构、算法与应用C++语言描述》-最大高度优先左高树-C++实现

左高树 完整可编译运行代码见&#xff1a;Github::Data-Structures-Algorithms-and-Applications/_26maxHblt 定义 (大顶堆和小顶堆)堆结构是一种隐式数据结构(implicit data structure)。用完全二叉树表示的堆在数组中是隐式存储的(即没有明确的指针或其他数据能够用来重塑…

数据结构从入门到入土——初识泛型

目录 一&#xff0c;包装类 1.基本数据类型和对应的包装类 2.装箱和拆箱 3.自动装箱和自动拆箱 二&#xff0c;什么是泛型&#xff1f; 三&#xff0c;引出泛型 语法 四&#xff0c;泛型类的使用 1.语法 2.类型推导(Type Inference) 五&#xff0c;裸类型(Raw Type) …

数据结构与算法:冒泡排序

原理 从前到后&#xff0c;连续相连两个数对比&#xff0c;如果前一个数大于后一个数&#xff0c;则交换。 第一次&#xff1a; arr[0] 和 arr[1] 对比&#xff0c;若arr[0] 大于 arr[1]&#xff0c; 交换两个值。 arr[1] 和 arr[2]对比&#xff0c;若arr[1] 大于 arr[2]&…

Three.js中文网1-12入门案例

Three.js中文网 <template><div id"webgl"></div> </template><script setup> import * as THREE from three; import { OrbitControls } from three/addons/controls/OrbitControls.js;// 创建3D场景对象Scene const scene new THR…

智能优化算法应用:基于原子搜索算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于原子搜索算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于原子搜索算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.原子搜索算法4.实验参数设定5.算法结果6.…

Rocket MQ 架构介绍

文章目录 为什么选择Rocket MQ基本概念优点缺点架构图编程模型发送者发送消息固定步骤消费者消费消息固定步骤 为什么选择Rocket MQ Rocket MQ是阿帕奇顶级的开源项目&#xff0c;由阿里开发并开源。它的研发背景是Active MQ与Kafka不能很好的解决当时的业务场景。官网上是这么…

JVM调优:参数(学习笔记)

一、jvm的运行参数 标准参数 -help、-version、-D参数 jvm的标准参数&#xff0c;一般都是很稳定的&#xff0c;在未来的JVM版本中不会改变&#xff0c;可以使用java -help 检索出所有的标准参数。 通过以下命令查看&#xff1a; 命令&#xff1a;java -help 可以看到我们经常…

react经验8:使用antd的checkbox实现全选与半选控制

预期实现的效果 列表项部分选中时&#xff0c;checkall处于半选状态&#xff0c;点击checkall要么全选&#xff0c;要么全不选。 实现步骤 列表项类型 declare type TableRow {key: Keytitle: stringisSelected?: boolean }示范数据 const [tabledata, setTabledata] u…

一篇文章讲透TCP/IP协议

1 OSI 7层参考模型 2 实操连接百度 nc连接百度2次&#xff0c;使用命令netstat -natp查看就会重新连接一次百度 请求百度 3 三次握手、socket 应用层协议控制长连接和短连接 应用层协议->传输控制层&#xff08;TCP UDP&#xff09;->TCP&#xff08; 面向连接&am…